mirror of
https://github.com/Z3Prover/z3
synced 2026-02-19 15:04:42 +00:00
add finite_set to quantifieed theories in smt_setup, fix type signature for map-inverse axioms
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
c0ca3b5a0a
commit
2f06bcc731
5 changed files with 65 additions and 57 deletions
|
|
@ -845,6 +845,7 @@ namespace smt {
|
|||
setup_bv();
|
||||
setup_dl();
|
||||
setup_seq_str(st);
|
||||
setup_finite_set();
|
||||
setup_fpa();
|
||||
setup_recfuns();
|
||||
setup_special_relations();
|
||||
|
|
|
|||
|
|
@ -66,6 +66,7 @@ namespace smt {
|
|||
* (set.in (f x) (set.map f S))
|
||||
*/
|
||||
theory_var theory_finite_set::mk_var(enode *n) {
|
||||
TRACE(finite_set, tout << "mk_var: " << enode_pp(n, ctx) << "\n");
|
||||
theory_var r = theory::mk_var(n);
|
||||
VERIFY(r == static_cast<theory_var>(m_find.mk_var()));
|
||||
SASSERT(r == static_cast<int>(m_var_data.size()));
|
||||
|
|
@ -88,7 +89,7 @@ namespace smt {
|
|||
}
|
||||
else if (u.is_union(e) || u.is_intersect(e) ||
|
||||
u.is_difference(e) || u.is_singleton(e) ||
|
||||
u.is_empty(e) || u.is_range(e)) {
|
||||
u.is_empty(e) || u.is_range(e) || u.is_filter(e) || u.is_map(e)) {
|
||||
m_var_data[r]->m_setops.push_back(n);
|
||||
ctx.push_trail(push_back_trail(m_var_data[r]->m_setops));
|
||||
for (auto arg : enode::args(n)) {
|
||||
|
|
@ -104,9 +105,6 @@ namespace smt {
|
|||
ctx.push_trail(push_back_trail(m_var_data[v]->m_parent_setops));
|
||||
}
|
||||
}
|
||||
else if (u.is_map(e) || u.is_filter(e)) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
}
|
||||
else if (u.is_range(e)) {
|
||||
|
||||
}
|
||||
|
|
@ -362,9 +360,7 @@ namespace smt {
|
|||
* - (set.range lo hi) -> lo-1,hi+1 not in range, lo, hi in range if lo <= hi *
|
||||
*
|
||||
* Other axioms:
|
||||
* - (set.singleton x) -> (set.size (set.singleton x)) = 1
|
||||
* - (set.empty) -> (set.size (set.empty)) = 0
|
||||
|
||||
* - (set.size s) -> 0 <= (set.size s) <= upper-bound(s)
|
||||
*/
|
||||
void theory_finite_set::add_immediate_axioms(app* term) {
|
||||
expr *elem = nullptr, *set = nullptr;
|
||||
|
|
@ -390,6 +386,10 @@ namespace smt {
|
|||
range_local.push_back(a.mk_add(lo, a.mk_int(-1)));
|
||||
range_local.push_back(a.mk_add(hi, a.mk_int(1)));
|
||||
}
|
||||
else if (u.is_size(term)) {
|
||||
m_axioms.size_lb_axiom(term);
|
||||
m_axioms.size_ub_axiom(term);
|
||||
}
|
||||
|
||||
// Assert all new lemmas as clauses
|
||||
for (unsigned i = sz; i < m_clauses.axioms.size(); ++i) {
|
||||
|
|
@ -631,38 +631,34 @@ namespace smt {
|
|||
void theory_finite_set::add_membership_axioms(expr *elem, expr *set) {
|
||||
TRACE(finite_set, tout << "add_membership_axioms: " << mk_pp(elem, m) << " in " << mk_pp(set, m) << "\n";);
|
||||
|
||||
try {
|
||||
// Instantiate appropriate axiom based on set structure
|
||||
if (!is_new_axiom(elem, set))
|
||||
;
|
||||
else if (u.is_empty(set)) {
|
||||
m_axioms.in_empty_axiom(elem);
|
||||
}
|
||||
else if (u.is_singleton(set)) {
|
||||
m_axioms.in_singleton_axiom(elem, set);
|
||||
}
|
||||
else if (u.is_union(set)) {
|
||||
m_axioms.in_union_axiom(elem, set);
|
||||
}
|
||||
else if (u.is_intersect(set)) {
|
||||
m_axioms.in_intersect_axiom(elem, set);
|
||||
}
|
||||
else if (u.is_difference(set)) {
|
||||
m_axioms.in_difference_axiom(elem, set);
|
||||
}
|
||||
else if (u.is_range(set)) {
|
||||
m_axioms.in_range_axiom(elem, set);
|
||||
}
|
||||
else if (u.is_map(set)) {
|
||||
m_axioms.in_map_axiom(elem, set);
|
||||
m_axioms.in_map_image_axiom(elem, set);
|
||||
}
|
||||
else if (u.is_filter(set)) {
|
||||
m_axioms.in_filter_axiom(elem, set);
|
||||
}
|
||||
} catch (...) {
|
||||
TRACE(finite_set, tout << "exception\n");
|
||||
throw;
|
||||
if (!is_new_axiom(elem, set))
|
||||
;
|
||||
else if (u.is_empty(set)) {
|
||||
m_axioms.in_empty_axiom(elem);
|
||||
}
|
||||
else if (u.is_singleton(set)) {
|
||||
m_axioms.in_singleton_axiom(elem, set);
|
||||
}
|
||||
else if (u.is_union(set)) {
|
||||
m_axioms.in_union_axiom(elem, set);
|
||||
}
|
||||
else if (u.is_intersect(set)) {
|
||||
m_axioms.in_intersect_axiom(elem, set);
|
||||
}
|
||||
else if (u.is_difference(set)) {
|
||||
m_axioms.in_difference_axiom(elem, set);
|
||||
}
|
||||
else if (u.is_range(set)) {
|
||||
m_axioms.in_range_axiom(elem, set);
|
||||
}
|
||||
else if (u.is_map(set)) {
|
||||
// TODO type of elem could be from the pre-image
|
||||
m_axioms.in_map_axiom(elem, set);
|
||||
m_axioms.in_map_image_axiom(elem, set);
|
||||
}
|
||||
else if (u.is_filter(set)) {
|
||||
m_axioms.in_filter_axiom(elem, set);
|
||||
}
|
||||
TRACE(finite_set, tout << "after add_membership_axioms: " << mk_pp(elem, m) << " in " << mk_pp(set, m) << "\n";);
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue