3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-02-19 23:14:40 +00:00

add finite_set to quantifieed theories in smt_setup, fix type signature for map-inverse axioms

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2025-10-27 20:34:13 +01:00
parent c0ca3b5a0a
commit 2f06bcc731
5 changed files with 65 additions and 57 deletions

View file

@ -71,7 +71,7 @@ void finite_set_decl_plugin::init() {
sort* arrABsetA[2] = { arrAB, setA };
sort* arrABoolsetA[2] = { arrABool, setA };
sort* intintT[2] = { intT, intT };
sort *arrABsetBsetA[3] = {arrAB, setB, setA};
sort *arrABBsetA[3] = {arrAB, B, setA};
m_sigs.resize(LAST_FINITE_SET_OP);
m_sigs[OP_FINITE_SET_EMPTY] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EMPTY], 1, 0, nullptr, setA);
@ -86,7 +86,7 @@ void finite_set_decl_plugin::init() {
m_sigs[OP_FINITE_SET_FILTER] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_FILTER], 1, 2, arrABoolsetA, setA);
m_sigs[OP_FINITE_SET_RANGE] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_RANGE], 0, 2, intintT, setInt);
m_sigs[OP_FINITE_SET_EXT] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EXT], 1, 2, setAsetA, A);
m_sigs[OP_FINITE_SET_MAP_INVERSE] = alloc(polymorphism::psig, m, "set.map_inverse", 2, 3, arrABsetBsetA, A);
m_sigs[OP_FINITE_SET_MAP_INVERSE] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_MAP_INVERSE], 2, 3, arrABBsetA, A);
}
sort * finite_set_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) {

View file

@ -201,8 +201,8 @@ public:
return m_manager.mk_app(m_fid, OP_FINITE_SET_MAP, arr, set);
}
app *mk_map_inverse(expr *arr, expr *a, expr *b) {
return m_manager.mk_app(m_fid, OP_FINITE_SET_MAP_INVERSE, arr, b, a);
app *mk_map_inverse(expr *f, expr *x, expr *b) {
return m_manager.mk_app(m_fid, OP_FINITE_SET_MAP_INVERSE, f, x, b);
}
app * mk_filter(expr* arr, expr* set) {

View file

@ -206,11 +206,15 @@ void finite_set_axioms::in_range_axiom(expr* r) {
// a := set.map(f, b)
// (x in a) <=> set.map_inverse(f, x, b) in b
void finite_set_axioms::in_map_axiom(expr *x, expr *a) {
expr* f = nullptr, *b = nullptr;
expr *f = nullptr, *b = nullptr;
sort *elem_sort = nullptr;
VERIFY(u.is_finite_set(a->get_sort(), elem_sort));
if (x->get_sort() != elem_sort)
return;
if (!u.is_map(a, f, b))
return;
expr_ref inv(u.mk_map_inverse(x, f, b), m);
expr_ref inv(u.mk_map_inverse(f, x, b), m);
expr_ref f1(u.mk_in(x, a), m);
expr_ref f2(u.mk_in(inv, b), m);
add_binary("map-inverse", x, a, m.mk_not(f1), f2);
@ -221,8 +225,12 @@ void finite_set_axioms::in_map_axiom(expr *x, expr *a) {
// (x in b) => f(x) in a
void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) {
expr* f = nullptr, *b = nullptr;
sort *elem_sort = nullptr;
if (!u.is_map(a, f, b))
return;
VERIFY(u.is_finite_set(b->get_sort(), elem_sort));
if (x->get_sort() != elem_sort)
return;
expr_ref x_in_b(u.mk_in(x, b), m);
@ -286,56 +294,59 @@ void finite_set_axioms::add_ternary(char const *name, expr *p1, expr *p2, expr *
// Auxiliary algebraic axioms to ease reasoning about set.size
// The axioms are not required for completenss for the base fragment
// as they are handled by creating semi-linear sets.
void finite_set_axioms::size_ub_axiom(expr *e) {
expr *b = nullptr, *x = nullptr, *y = nullptr;
void finite_set_axioms::size_ub_axiom(expr *sz) {
expr *b = nullptr, *e = nullptr, *x = nullptr, *y = nullptr;
if (!u.is_size(sz, e))
return;
arith_util a(m);
expr_ref ineq(m);
if (u.is_singleton(e, b))
add_unit("size", e, m.mk_eq(u.mk_size(e), a.mk_int(1)));
add_unit("size", e, m.mk_eq(sz, a.mk_int(1)));
else if (u.is_empty(e))
add_unit("size", e, m.mk_eq(u.mk_size(e), a.mk_int(0)));
add_unit("size", e, m.mk_eq(sz, a.mk_int(0)));
else if (u.is_union(e, x, y)) {
ineq = a.mk_le(u.mk_size(e), a.mk_add(u.mk_size(x), u.mk_size(y)));
ineq = a.mk_le(sz, a.mk_add(u.mk_size(x), u.mk_size(y)));
m_rewriter(ineq);
add_unit("size", e, ineq);
}
else if (u.is_intersect(e, x, y)) {
ineq = a.mk_le(u.mk_size(e), u.mk_size(x));
ineq = a.mk_le(sz, u.mk_size(x));
m_rewriter(ineq);
add_unit("size", e, ineq);
ineq = a.mk_le(u.mk_size(e), u.mk_size(y));
ineq = a.mk_le(sz, u.mk_size(y));
m_rewriter(ineq);
add_unit("size", e, ineq);
}
else if (u.is_difference(e, x, y)) {
ineq = a.mk_le(u.mk_size(e), u.mk_size(x));
ineq = a.mk_le(sz, u.mk_size(x));
m_rewriter(ineq);
add_unit("size", e, ineq);
}
else if (u.is_filter(e, x, y)) {
ineq = a.mk_le(u.mk_size(e), u.mk_size(y));
ineq = a.mk_le(sz, u.mk_size(y));
m_rewriter(ineq);
add_unit("size", e, ineq);
}
else if (u.is_map(e, x, y)) {
ineq = a.mk_le(u.mk_size(e), u.mk_size(y));
ineq = a.mk_le(sz, u.mk_size(y));
m_rewriter(ineq);
add_unit("size", e, ineq);
}
else if (u.is_range(e, x, y)) {
ineq = a.mk_eq(u.mk_size(e), m.mk_ite(a.mk_le(x, y), a.mk_add(a.mk_sub(y, x), a.mk_int(1)), a.mk_int(0)));
ineq = a.mk_eq(sz, m.mk_ite(a.mk_le(x, y), a.mk_add(a.mk_sub(y, x), a.mk_int(1)), a.mk_int(0)));
m_rewriter(ineq);
add_unit("size", e, ineq);
}
}
void finite_set_axioms::size_lb_axiom(expr* e) {
VERIFY(u.is_size(e));
arith_util a(m);
expr_ref ineq(m);
ineq = a.mk_le(a.mk_int(0), u.mk_size(e));
ineq = a.mk_le(a.mk_int(0), e);
m_rewriter(ineq);
add_unit("size-lb", e, ineq);
add_unit("size", e, ineq);
}
void finite_set_axioms::subset_axiom(expr* a) {