3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-31 19:52:29 +00:00

add interpretations when there are ranges

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2025-10-20 23:21:30 +02:00
parent 65f38eac16
commit 2e4402c8f3
8 changed files with 427 additions and 158 deletions

View file

@ -233,14 +233,25 @@ bool finite_set_decl_plugin::is_value(app * e) const {
continue; continue;
} }
bool is_setop =
is_app_of(a, m_family_id, OP_FINITE_SET_UNION)
|| is_app_of(a, m_family_id, OP_FINITE_SET_INTERSECT)
|| is_app_of(a, m_family_id, OP_FINITE_SET_DIFFERENCE);
// Check if it's a union // Check if it's a union
if (is_app_of(a, m_family_id, OP_FINITE_SET_UNION)) { if (is_setop) {
// Add arguments to todo list // Add arguments to todo list
for (auto arg : *a) for (auto arg : *a)
todo.push_back(arg); todo.push_back(arg);
continue; continue;
} }
if (is_app_of(a, m_family_id, OP_FINITE_SET_RANGE)) {
for (auto arg : *a)
if (!m_manager->is_value(arg))
return false;
continue;
}
// can add also ranges where lo and hi are values. // can add also ranges where lo and hi are values.
// If it's none of the above, it's not a value // If it's none of the above, it's not a value
@ -271,3 +282,10 @@ bool finite_set_decl_plugin::are_distinct(app* e1, app* e2) const {
// that the other doesn't contain. Such as (union (singleton a) (singleton b)) and (singleton c) where c is different from a, b. // that the other doesn't contain. Such as (union (singleton a) (singleton b)) and (singleton c) where c is different from a, b.
return false; return false;
} }
func_decl *finite_set_util::mk_range_decl() {
arith_util a(m_manager);
sort *i = a.mk_int();
sort *domain[2] = {i, i};
return m_manager.mk_func_decl(m_fid, OP_FINITE_SET_RANGE, 0, nullptr, 2, domain, nullptr);
}

View file

@ -195,6 +195,8 @@ public:
return m_manager.mk_app(m_fid, OP_FINITE_SET_FILTER, arr, set); return m_manager.mk_app(m_fid, OP_FINITE_SET_FILTER, arr, set);
} }
func_decl *mk_range_decl();
app * mk_range(expr* low, expr* high) { app * mk_range(expr* low, expr* high) {
return m_manager.mk_app(m_fid, OP_FINITE_SET_RANGE, low, high); return m_manager.mk_app(m_fid, OP_FINITE_SET_RANGE, low, high);
} }

View file

@ -19,6 +19,7 @@ Revision History:
--*/ --*/
#include "ast/ast.h" #include "ast/ast.h"
#include "ast/ast_pp.h"
#include "ast/finite_set_decl_plugin.h" #include "ast/finite_set_decl_plugin.h"
#include "ast/arith_decl_plugin.h" #include "ast/arith_decl_plugin.h"
#include "ast/array_decl_plugin.h" #include "ast/array_decl_plugin.h"
@ -38,8 +39,8 @@ void finite_set_axioms::in_empty_axiom(expr *x) {
expr_ref empty_set(u.mk_empty(elem_sort), m); expr_ref empty_set(u.mk_empty(elem_sort), m);
expr_ref x_in_empty(u.mk_in(x, empty_set), m); expr_ref x_in_empty(u.mk_in(x, empty_set), m);
theory_axiom ax(m, "in-empty"); theory_axiom* ax = alloc(theory_axiom, m, "in-empty");
ax.clause.push_back(m.mk_not(x_in_empty)); ax->clause.push_back(m.mk_not(x_in_empty));
m_add_clause(ax); m_add_clause(ax);
} }
@ -50,27 +51,28 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) {
if (!u.is_union(a, b, c)) if (!u.is_union(a, b, c))
return; return;
theory_axiom ax(m, "in-union");
expr_ref x_in_a(u.mk_in(x, a), m); expr_ref x_in_a(u.mk_in(x, a), m);
expr_ref x_in_b(u.mk_in(x, b), m); expr_ref x_in_b(u.mk_in(x, b), m);
expr_ref x_in_c(u.mk_in(x, c), m); expr_ref x_in_c(u.mk_in(x, c), m);
// (x in a) => (x in b) or (x in c) // (x in a) => (x in b) or (x in c)
ax.clause.push_back(m.mk_not(x_in_a)); theory_axiom *ax1 = alloc(theory_axiom, m, "in-union");
ax.clause.push_back(x_in_b); ax1->clause.push_back(m.mk_not(x_in_a));
ax.clause.push_back(x_in_c); ax1->clause.push_back(x_in_b);
m_add_clause(ax); ax1->clause.push_back(x_in_c);
m_add_clause(ax1);
// (x in b) => (x in a) // (x in b) => (x in a)
theory_axiom ax2(m, "in-union"); theory_axiom* ax2 = alloc(theory_axiom, m, "in-union");
ax2.clause.push_back(m.mk_not(x_in_b)); ax2->clause.push_back(m.mk_not(x_in_b));
ax2.clause.push_back(x_in_a); ax2->clause.push_back(x_in_a);
m_add_clause(ax2); m_add_clause(ax2);
// (x in c) => (x in a) // (x in c) => (x in a)
theory_axiom ax3(m, "in-union"); theory_axiom* ax3 = alloc(theory_axiom, m, "in-union");
ax3.clause.push_back(m.mk_not(x_in_c)); ax3->clause.push_back(m.mk_not(x_in_c));
ax3.clause.push_back(x_in_a); ax3->clause.push_back(x_in_a);
m_add_clause(ax3); m_add_clause(ax3);
} }
@ -86,22 +88,22 @@ void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) {
expr_ref x_in_c(u.mk_in(x, c), m); expr_ref x_in_c(u.mk_in(x, c), m);
// (x in a) => (x in b) // (x in a) => (x in b)
theory_axiom ax1(m, "in-intersect"); theory_axiom* ax1 = alloc(theory_axiom, m, "in-intersect");
ax1.clause.push_back(m.mk_not(x_in_a)); ax1->clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(x_in_b); ax1->clause.push_back(x_in_b);
m_add_clause(ax1); m_add_clause(ax1);
// (x in a) => (x in c) // (x in a) => (x in c)
theory_axiom ax2(m, "in-intersect"); theory_axiom* ax2 = alloc(theory_axiom, m, "in-intersect");
ax2.clause.push_back(m.mk_not(x_in_a)); ax2->clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(x_in_c); ax2->clause.push_back(x_in_c);
m_add_clause(ax2); m_add_clause(ax2);
// (x in b) and (x in c) => (x in a) // (x in b) and (x in c) => (x in a)
theory_axiom ax3(m, "in-intersect"); theory_axiom* ax3 = alloc(theory_axiom, m, "in-intersect");
ax3.clause.push_back(m.mk_not(x_in_b)); ax3->clause.push_back(m.mk_not(x_in_b));
ax3.clause.push_back(m.mk_not(x_in_c)); ax3->clause.push_back(m.mk_not(x_in_c));
ax3.clause.push_back(x_in_a); ax3->clause.push_back(x_in_a);
m_add_clause(ax3); m_add_clause(ax3);
} }
@ -117,22 +119,22 @@ void finite_set_axioms::in_difference_axiom(expr *x, expr *a) {
expr_ref x_in_c(u.mk_in(x, c), m); expr_ref x_in_c(u.mk_in(x, c), m);
// (x in a) => (x in b) // (x in a) => (x in b)
theory_axiom ax1(m, "in-difference"); theory_axiom* ax1 = alloc(theory_axiom, m, "in-difference");
ax1.clause.push_back(m.mk_not(x_in_a)); ax1->clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(x_in_b); ax1->clause.push_back(x_in_b);
m_add_clause(ax1); m_add_clause(ax1);
// (x in a) => not (x in c) // (x in a) => not (x in c)
theory_axiom ax2(m, "in-difference"); theory_axiom* ax2 = alloc(theory_axiom, m, "in-difference");
ax2.clause.push_back(m.mk_not(x_in_a)); ax2->clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(m.mk_not(x_in_c)); ax2->clause.push_back(m.mk_not(x_in_c));
m_add_clause(ax2); m_add_clause(ax2);
// (x in b) and not (x in c) => (x in a) // (x in b) and not (x in c) => (x in a)
theory_axiom ax3(m, "in-difference"); theory_axiom* ax3 = alloc(theory_axiom, m, "in-difference");
ax3.clause.push_back(m.mk_not(x_in_b)); ax3->clause.push_back(m.mk_not(x_in_b));
ax3.clause.push_back(x_in_c); ax3->clause.push_back(x_in_c);
ax3.clause.push_back(x_in_a); ax3->clause.push_back(x_in_a);
m_add_clause(ax3); m_add_clause(ax3);
} }
@ -145,11 +147,11 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) {
expr_ref x_in_a(u.mk_in(x, a), m); expr_ref x_in_a(u.mk_in(x, a), m);
theory_axiom ax(m, "in-singleton"); theory_axiom* ax = alloc(theory_axiom, m, "in-singleton");
if (x == b) { if (x == b) {
// If x and b are syntactically identical, then (x in a) is always true // If x and b are syntactically identical, then (x in a) is always true
ax.clause.push_back(x_in_a); ax->clause.push_back(x_in_a);
m_add_clause(ax); m_add_clause(ax);
return; return;
} }
@ -157,17 +159,42 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) {
expr_ref x_eq_b(m.mk_eq(x, b), m); expr_ref x_eq_b(m.mk_eq(x, b), m);
// (x in a) => (x == b) // (x in a) => (x == b)
ax.clause.push_back(m.mk_not(x_in_a)); ax->clause.push_back(m.mk_not(x_in_a));
ax.clause.push_back(x_eq_b); ax->clause.push_back(x_eq_b);
m_add_clause(ax); m_add_clause(ax);
ax.clause.reset(); ax = alloc(theory_axiom, m, "in-singleton");
// (x == b) => (x in a) // (x == b) => (x in a)
ax.clause.push_back(m.mk_not(x_eq_b)); ax->clause.push_back(m.mk_not(x_eq_b));
ax.clause.push_back(x_in_a); ax->clause.push_back(x_in_a);
m_add_clause(ax); m_add_clause(ax);
} }
void finite_set_axioms::in_singleton_axiom(expr* a) {
expr *b = nullptr;
if (!u.is_singleton(a, b))
return;
arith_util arith(m);
expr_ref b_in_a(u.mk_in(b, a), m);
auto ax = alloc(theory_axiom, m, "in-singleton");
ax->clause.push_back(b_in_a);
m_add_clause(ax);
ax = alloc(theory_axiom, m, "in-singleton");
expr_ref bm1_in_a(u.mk_in(arith.mk_add(b, arith.mk_int(-1)), a), m);
ax->clause.push_back(m.mk_not(bm1_in_a));
m_add_clause(ax);
ax = alloc(theory_axiom, m, "in-singleton");
expr_ref bp1_in_a(u.mk_in(arith.mk_add(b, arith.mk_int(1)), a), m);
ax->clause.push_back(m.mk_not(bp1_in_a));
}
// a := set.range(lo, hi) // a := set.range(lo, hi)
// (x in a) <=> (lo <= x <= hi) // (x in a) <=> (lo <= x <= hi)
void finite_set_axioms::in_range_axiom(expr *x, expr *a) { void finite_set_axioms::in_range_axiom(expr *x, expr *a) {
@ -177,29 +204,58 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) {
arith_util arith(m); arith_util arith(m);
expr_ref x_in_a(u.mk_in(x, a), m); expr_ref x_in_a(u.mk_in(x, a), m);
expr_ref lo_le_x(arith.mk_le(lo, x), m); expr_ref lo_le_x(arith.mk_le(arith.mk_sub(lo, x), arith.mk_int(0)), m);
expr_ref x_le_hi(arith.mk_le(x, hi), m); expr_ref x_le_hi(arith.mk_le(arith.mk_sub(x, hi), arith.mk_int(0)), m);
m_rewriter(lo_le_x);
m_rewriter(x_le_hi);
// (x in a) => (lo <= x) // (x in a) => (lo <= x)
theory_axiom ax1(m, "in-range"); theory_axiom* ax1 = alloc(theory_axiom, m, "in-range");
ax1.clause.push_back(m.mk_not(x_in_a)); ax1->clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(lo_le_x); ax1->clause.push_back(lo_le_x);
m_add_clause(ax1); m_add_clause(ax1);
// (x in a) => (x <= hi) // (x in a) => (x <= hi)
theory_axiom ax2(m, "in-range"); theory_axiom* ax2 = alloc(theory_axiom, m, "in-range");
ax2.clause.push_back(m.mk_not(x_in_a)); ax2->clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(x_le_hi); ax2->clause.push_back(x_le_hi);
m_add_clause(ax2); m_add_clause(ax2);
// (lo <= x) and (x <= hi) => (x in a) // (lo <= x) and (x <= hi) => (x in a)
theory_axiom ax3(m, "in-range"); theory_axiom* ax3 = alloc(theory_axiom, m, "in-range");
ax3.clause.push_back(m.mk_not(lo_le_x)); ax3->clause.push_back(m.mk_not(lo_le_x));
ax3.clause.push_back(m.mk_not(x_le_hi)); ax3->clause.push_back(m.mk_not(x_le_hi));
ax3.clause.push_back(x_in_a); ax3->clause.push_back(x_in_a);
m_add_clause(ax3); m_add_clause(ax3);
} }
// a := set.range(lo, hi)
// (not (set.in (- lo 1) r))
// (not (set.in (+ hi 1) r))
// (set.in lo r)
// (set.in hi r)
void finite_set_axioms::in_range_axiom(expr* r) {
expr *lo = nullptr, *hi = nullptr;
if (!u.is_range(r, lo, hi))
return;
theory_axiom* ax = alloc(theory_axiom, m, "range-bounds");
ax->clause.push_back(u.mk_in(lo, r));
m_add_clause(ax);
ax = alloc(theory_axiom, m, "range-bounds");
ax->clause.push_back(u.mk_in(hi, r));
m_add_clause(ax);
arith_util a(m);
ax = alloc(theory_axiom, m, "range-bounds");
ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(hi, a.mk_int(1)), r)));
m_add_clause(ax);
ax = alloc(theory_axiom, m, "range-bounds");
ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(lo, a.mk_int(-1)), r)));
m_add_clause(ax);
}
// a := set.map(f, b) // a := set.map(f, b)
// (x in a) <=> set.map_inverse(f, x, b) in b // (x in a) <=> set.map_inverse(f, x, b) in b
void finite_set_axioms::in_map_axiom(expr *x, expr *a) { void finite_set_axioms::in_map_axiom(expr *x, expr *a) {
@ -228,9 +284,9 @@ void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) {
expr_ref fx_in_a(u.mk_in(fx, a), m); expr_ref fx_in_a(u.mk_in(fx, a), m);
// (x in b) => f(x) in a // (x in b) => f(x) in a
theory_axiom ax(m, "in-map-image"); theory_axiom* ax = alloc(theory_axiom, m, "in-map-image");
ax.clause.push_back(m.mk_not(x_in_b)); ax->clause.push_back(m.mk_not(x_in_b));
ax.clause.push_back(fx_in_a); ax->clause.push_back(fx_in_a);
m_add_clause(ax); m_add_clause(ax);
} }
@ -249,22 +305,22 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) {
expr_ref px(autil.mk_select(p, x), m); expr_ref px(autil.mk_select(p, x), m);
// (x in a) => (x in b) // (x in a) => (x in b)
theory_axiom ax1(m, "in-filter"); theory_axiom* ax1 = alloc(theory_axiom, m, "in-filter");
ax1.clause.push_back(m.mk_not(x_in_a)); ax1->clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(x_in_b); ax1->clause.push_back(x_in_b);
m_add_clause(ax1); m_add_clause(ax1);
// (x in a) => p(x) // (x in a) => p(x)
theory_axiom ax2(m, "in-filter"); theory_axiom* ax2 = alloc(theory_axiom, m, "in-filter");
ax2.clause.push_back(m.mk_not(x_in_a)); ax2->clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(px); ax2->clause.push_back(px);
m_add_clause(ax2); m_add_clause(ax2);
// (x in b) and p(x) => (x in a) // (x in b) and p(x) => (x in a)
theory_axiom ax3(m, "in-filter"); theory_axiom* ax3 = alloc(theory_axiom, m, "in-filter");
ax3.clause.push_back(m.mk_not(x_in_b)); ax3->clause.push_back(m.mk_not(x_in_b));
ax3.clause.push_back(m.mk_not(px)); ax3->clause.push_back(m.mk_not(px));
ax3.clause.push_back(x_in_a); ax3->clause.push_back(x_in_a);
m_add_clause(ax3); m_add_clause(ax3);
} }
@ -280,8 +336,8 @@ void finite_set_axioms::size_singleton_axiom(expr *a) {
expr_ref one(arith.mk_int(1), m); expr_ref one(arith.mk_int(1), m);
expr_ref eq(m.mk_eq(size_a, one), m); expr_ref eq(m.mk_eq(size_a, one), m);
theory_axiom ax(m, "size-singleton"); theory_axiom* ax = alloc(theory_axiom, m, "size-singleton");
ax.clause.push_back(eq); ax->clause.push_back(eq);
m_add_clause(ax); m_add_clause(ax);
} }
@ -293,14 +349,14 @@ void finite_set_axioms::subset_axiom(expr* a) {
expr_ref intersect_bc(u.mk_intersect(b, c), m); expr_ref intersect_bc(u.mk_intersect(b, c), m);
expr_ref eq(m.mk_eq(intersect_bc, b), m); expr_ref eq(m.mk_eq(intersect_bc, b), m);
theory_axiom ax1(m, "subset"); theory_axiom* ax1 = alloc(theory_axiom, m, "subset");
ax1.clause.push_back(m.mk_not(a)); ax1->clause.push_back(m.mk_not(a));
ax1.clause.push_back(eq); ax1->clause.push_back(eq);
m_add_clause(ax1); m_add_clause(ax1);
theory_axiom ax2(m, "subset"); theory_axiom* ax2 = alloc(theory_axiom, m, "subset");
ax2.clause.push_back(a); ax2->clause.push_back(a);
ax2.clause.push_back(m.mk_not(eq)); ax2->clause.push_back(m.mk_not(eq));
m_add_clause(ax2); m_add_clause(ax2);
} }
@ -313,15 +369,15 @@ void finite_set_axioms::extensionality_axiom(expr *a, expr* b) {
expr_ref diff_in_b(u.mk_in(diff_ab, b), m); expr_ref diff_in_b(u.mk_in(diff_ab, b), m);
// (a != b) => (x in diff_ab != x in diff_ba) // (a != b) => (x in diff_ab != x in diff_ba)
theory_axiom ax(m, "extensionality"); theory_axiom* ax = alloc(theory_axiom, m, "extensionality");
ax.clause.push_back(a_eq_b); ax->clause.push_back(a_eq_b);
ax.clause.push_back(m.mk_not(diff_in_a)); ax->clause.push_back(m.mk_not(diff_in_a));
ax.clause.push_back(m.mk_not(diff_in_b)); ax->clause.push_back(m.mk_not(diff_in_b));
m_add_clause(ax); m_add_clause(ax);
theory_axiom ax2(m, "extensionality"); theory_axiom* ax2 = alloc(theory_axiom, m, "extensionality");
ax2.clause.push_back(m.mk_not(a_eq_b)); ax2->clause.push_back(m.mk_not(a_eq_b));
ax2.clause.push_back(diff_in_a); ax2->clause.push_back(diff_in_a);
ax2.clause.push_back(diff_in_b); ax2->clause.push_back(diff_in_b);
m_add_clause(ax2); m_add_clause(ax2);
} }

View file

@ -12,6 +12,8 @@ Abstract:
--*/ --*/
#include "ast/rewriter/th_rewriter.h"
struct theory_axiom { struct theory_axiom {
expr_ref_vector clause; expr_ref_vector clause;
vector<parameter> params; vector<parameter> params;
@ -32,14 +34,15 @@ std::ostream &operator<<(std::ostream &out, theory_axiom const &ax);
class finite_set_axioms { class finite_set_axioms {
ast_manager& m; ast_manager& m;
finite_set_util u; finite_set_util u;
th_rewriter m_rewriter;
std::function<void(theory_axiom const &)> m_add_clause; std::function<void(theory_axiom *)> m_add_clause;
public: public:
finite_set_axioms(ast_manager &m) : m(m), u(m) {} finite_set_axioms(ast_manager &m) : m(m), u(m), m_rewriter(m) {}
void set_add_clause(std::function<void(theory_axiom const &)> &ac) { void set_add_clause(std::function<void(theory_axiom*)> &ac) {
m_add_clause = ac; m_add_clause = ac;
} }
@ -62,10 +65,23 @@ public:
// (x in a) <=> (x == b) // (x in a) <=> (x == b)
void in_singleton_axiom(expr *x, expr *a); void in_singleton_axiom(expr *x, expr *a);
// a := set.singleton(b)
// b in a
// b-1 not in a
// b+1 not in a
void in_singleton_axiom(expr *a);
// a := set.range(lo, hi) // a := set.range(lo, hi)
// (x in a) <=> (lo <= x <= hi) // (x in a) <=> (lo <= x <= hi)
void in_range_axiom(expr *x, expr *a); void in_range_axiom(expr *x, expr *a);
// a := set.range(lo, hi)
// (not (set.in (- lo 1) a))
// (not (set.in (+ hi 1) a))
// (set.in lo a)
// (set.in hi a)
void in_range_axiom(expr *a);
// a := set.map(f, b) // a := set.map(f, b)
// (x in a) <=> set.map_inverse(f, x, b) in b // (x in a) <=> set.map_inverse(f, x, b) in b
void in_map_axiom(expr *x, expr *a); void in_map_axiom(expr *x, expr *a);

View file

@ -1525,16 +1525,24 @@ namespace smt {
} }
lbool context::find_assignment(expr * n) const { lbool context::find_assignment(expr * n) const {
if (m.is_false(n))
return l_false;
expr* arg = nullptr; expr* arg = nullptr;
if (m.is_not(n, arg)) { if (m.is_not(n, arg)) {
if (b_internalized(arg)) if (b_internalized(arg))
return ~get_assignment_core(arg); return ~get_assignment_core(arg);
if (m.is_false(arg))
return l_true;
if (m.is_true(arg))
return l_false;
return l_undef; return l_undef;
} }
if (b_internalized(n)) if (b_internalized(n))
return get_assignment(n); return get_assignment(n);
if (m.is_false(n))
return l_false;
if (m.is_true(n))
return l_true;
return l_undef; return l_undef;
} }

View file

@ -15,6 +15,7 @@ Abstract:
#include "smt/theory_finite_set.h" #include "smt/theory_finite_set.h"
#include "smt/smt_context.h" #include "smt/smt_context.h"
#include "smt/smt_model_generator.h" #include "smt/smt_model_generator.h"
#include "smt/smt_arith_value.h"
#include "ast/ast_pp.h" #include "ast/ast_pp.h"
namespace smt { namespace smt {
@ -29,8 +30,8 @@ namespace smt {
m_axioms(m), m_find(*this) m_axioms(m), m_find(*this)
{ {
// Setup the add_clause callback for axioms // Setup the add_clause callback for axioms
std::function<void(theory_axiom const &)> add_clause_fn = std::function<void(theory_axiom *)> add_clause_fn =
[this](theory_axiom const &ax) { [this](theory_axiom* ax) {
this->add_clause(ax); this->add_clause(ax);
}; };
m_axioms.set_add_clause(add_clause_fn); m_axioms.set_add_clause(add_clause_fn);
@ -67,7 +68,7 @@ namespace smt {
theory_var r = theory::mk_var(n); theory_var r = theory::mk_var(n);
VERIFY(r == static_cast<theory_var>(m_find.mk_var())); VERIFY(r == static_cast<theory_var>(m_find.mk_var()));
SASSERT(r == static_cast<int>(m_var_data.size())); SASSERT(r == static_cast<int>(m_var_data.size()));
m_var_data.push_back(alloc(var_data)); m_var_data.push_back(alloc(var_data, m));
ctx.push_trail(push_back_vector<ptr_vector<var_data>>(m_var_data)); ctx.push_trail(push_back_vector<ptr_vector<var_data>>(m_var_data));
ctx.push_trail(new_obj_trail(m_var_data.back())); ctx.push_trail(new_obj_trail(m_var_data.back()));
expr *e = n->get_expr(); expr *e = n->get_expr();
@ -90,7 +91,8 @@ namespace smt {
m_var_data[r]->m_setops.push_back(n); m_var_data[r]->m_setops.push_back(n);
ctx.push_trail(push_back_trail(m_var_data[r]->m_setops)); ctx.push_trail(push_back_trail(m_var_data[r]->m_setops));
for (auto arg : enode::args(n)) { for (auto arg : enode::args(n)) {
if (!u.is_finite_set(arg->get_expr())) expr *e = arg->get_expr();
if (!u.is_finite_set(e))
continue; continue;
auto v = arg->get_root()->get_th_var(get_id()); auto v = arg->get_root()->get_th_var(get_id());
SASSERT(v != null_theory_var); SASSERT(v != null_theory_var);
@ -103,6 +105,9 @@ namespace smt {
} }
else if (u.is_map(e) || u.is_filter(e)) { else if (u.is_map(e) || u.is_filter(e)) {
NOT_IMPLEMENTED_YET(); NOT_IMPLEMENTED_YET();
}
else if (u.is_range(e)) {
} }
return r; return r;
} }
@ -157,6 +162,7 @@ namespace smt {
* for each T := (set.op U V) in d2->setops * for each T := (set.op U V) in d2->setops
* then S ~ T by construction * then S ~ T by construction
* add axioms for (set.in x T) * add axioms for (set.in x T)
*
*/ */
void theory_finite_set::add_in_axioms(enode *in, var_data *d) { void theory_finite_set::add_in_axioms(enode *in, var_data *d) {
@ -276,6 +282,9 @@ namespace smt {
if (activate_unasserted_clause()) if (activate_unasserted_clause())
return FC_CONTINUE; return FC_CONTINUE;
if (false && activate_range_local_axioms())
return FC_CONTINUE;
if (assume_eqs()) if (assume_eqs())
return FC_CONTINUE; return FC_CONTINUE;
@ -293,20 +302,38 @@ namespace smt {
* - (set.singleton x) -> (set.in x (set.singleton x)) * - (set.singleton x) -> (set.in x (set.singleton x))
* - (set.singleton x) -> (set.size (set.singleton x)) = 1 * - (set.singleton x) -> (set.size (set.singleton x)) = 1
* - (set.empty) -> (set.size (set.empty)) = 0 * - (set.empty) -> (set.size (set.empty)) = 0
* - (set.range lo hi) -> lo-1,hi+1 not in range, lo, hi in range
*/ */
void theory_finite_set::add_immediate_axioms(app* term) { void theory_finite_set::add_immediate_axioms(app* term) {
expr *elem = nullptr, *set = nullptr; expr *elem = nullptr, *set = nullptr;
expr *lo = nullptr, *hi = nullptr;
unsigned sz = m_clauses.axioms.size(); unsigned sz = m_clauses.axioms.size();
if (u.is_in(term, elem, set) && u.is_empty(set)) if (u.is_in(term, elem, set) && u.is_empty(set))
add_membership_axioms(elem, set); add_membership_axioms(elem, set);
else if (u.is_subset(term)) else if (u.is_subset(term))
m_axioms.subset_axiom(term); m_axioms.subset_axiom(term);
else if (u.is_singleton(term, elem)) else if (u.is_singleton(term))
m_axioms.in_singleton_axiom(elem, term); m_axioms.in_singleton_axiom(term);
else if (u.is_range(term, lo, hi)) {
m_axioms.in_range_axiom(term);
auto range = ctx.get_enode(term);
auto v = range->get_th_var(get_id());
// declare lo-1, lo, hi, hi+1 as range local.
// we don't have to add additional range local variables for them.
auto &range_local = m_var_data[v]->m_range_local;
ctx.push_trail(push_back_vector(range_local));
arith_util a(m);
range_local.push_back(lo);
range_local.push_back(hi);
range_local.push_back(a.mk_add(lo, a.mk_int(-1)));
range_local.push_back(a.mk_add(hi, a.mk_int(1)));
}
// Assert all new lemmas as clauses // Assert all new lemmas as clauses
for (unsigned i = sz; i < m_clauses.axioms.size(); ++i) for (unsigned i = sz; i < m_clauses.axioms.size(); ++i) {
m_clauses.squeue.push_back(i); m_clauses.squeue.push_back(i);
ctx.push_trail(push_back_vector(m_clauses.squeue));
}
} }
void theory_finite_set::assign_eh(bool_var v, bool is_true) { void theory_finite_set::assign_eh(bool_var v, bool is_true) {
@ -322,8 +349,8 @@ namespace smt {
for (unsigned i = 0; i < m_clauses.watch[idx].size(); ++i) { for (unsigned i = 0; i < m_clauses.watch[idx].size(); ++i) {
TRACE(finite_set, tout << " watch[" << i << "] size: " << m_clauses.watch[i].size() << "\n";); TRACE(finite_set, tout << " watch[" << i << "] size: " << m_clauses.watch[i].size() << "\n";);
auto clause_idx = m_clauses.watch[idx][i]; auto clause_idx = m_clauses.watch[idx][i];
auto &ax = m_clauses.axioms[clause_idx]; auto* ax = m_clauses.axioms[clause_idx];
auto &clause = ax.clause; auto &clause = ax->clause;
if (any_of(clause, [&](expr *lit) { return ctx.find_assignment(lit) == l_true; })) { if (any_of(clause, [&](expr *lit) { return ctx.find_assignment(lit) == l_true; })) {
TRACE(finite_set, tout << " satisfied\n";); TRACE(finite_set, tout << " satisfied\n";);
m_clauses.watch[idx][j++] = clause_idx; m_clauses.watch[idx][j++] = clause_idx;
@ -365,6 +392,7 @@ namespace smt {
continue; // the clause is removed from this watch list continue; // the clause is removed from this watch list
// either all literals are false, or the other watch literal is propagating. // either all literals are false, or the other watch literal is propagating.
m_clauses.squeue.push_back(clause_idx); m_clauses.squeue.push_back(clause_idx);
ctx.push_trail(push_back_vector(m_clauses.squeue));
TRACE(finite_set, tout << " propagate clause\n";); TRACE(finite_set, tout << " propagate clause\n";);
m_clauses.watch[idx][j++] = clause_idx; m_clauses.watch[idx][j++] = clause_idx;
++i; ++i;
@ -390,21 +418,22 @@ namespace smt {
// empty the propagation queue of clauses to assert // empty the propagation queue of clauses to assert
while (m_clauses.sqhead < m_clauses.squeue.size() && !ctx.inconsistent()) { while (m_clauses.sqhead < m_clauses.squeue.size() && !ctx.inconsistent()) {
auto index = m_clauses.squeue[m_clauses.sqhead++]; auto clause_idx = m_clauses.squeue[m_clauses.sqhead++];
auto const &clause = m_clauses.axioms[index]; auto ax = m_clauses.axioms[clause_idx];
assert_clause(clause); assert_clause(ax);
} }
} }
} }
void theory_finite_set::activate_clause(unsigned clause_idx) { void theory_finite_set::activate_clause(unsigned clause_idx) {
TRACE(finite_set, tout << "activate_clause: " << clause_idx << "\n";); TRACE(finite_set, tout << "activate_clause: " << clause_idx << "\n";);
auto &ax = m_clauses.axioms[clause_idx]; auto* ax = m_clauses.axioms[clause_idx];
auto &clause = ax.clause; auto &clause = ax->clause;
if (any_of(clause, [&](expr *e) { return ctx.find_assignment(e) == l_true; })) if (any_of(clause, [&](expr *e) { return ctx.find_assignment(e) == l_true; }))
return; return;
if (clause.size() <= 1) { if (clause.size() <= 1) {
m_clauses.squeue.push_back(clause_idx); m_clauses.squeue.push_back(clause_idx);
ctx.push_trail(push_back_vector(m_clauses.squeue));
return; return;
} }
expr *w1 = nullptr, *w2 = nullptr; expr *w1 = nullptr, *w2 = nullptr;
@ -430,6 +459,7 @@ namespace smt {
} }
if (!w2) { if (!w2) {
m_clauses.squeue.push_back(clause_idx); m_clauses.squeue.push_back(clause_idx);
ctx.push_trail(push_back_vector(m_clauses.squeue));
return; return;
} }
bool w1neg = m.is_not(w1, w1); bool w1neg = m.is_not(w1, w1);
@ -446,8 +476,8 @@ namespace smt {
unsigned index; unsigned index;
unwatch_clause(theory_finite_set &th, unsigned index) : th(th), index(index) {} unwatch_clause(theory_finite_set &th, unsigned index) : th(th), index(index) {}
void undo() override { void undo() override {
auto &ax = th.m_clauses.axioms[index]; auto* ax = th.m_clauses.axioms[index];
auto &clause = ax.clause; auto &clause = ax->clause;
expr *w1 = clause.get(0); expr *w1 = clause.get(0);
expr *w2 = clause.get(1); expr *w2 = clause.get(1);
bool w1neg = th.m.is_not(w1, w1); bool w1neg = th.m.is_not(w1, w1);
@ -487,8 +517,9 @@ namespace smt {
// Create a union expression that is canonical (sorted) // Create a union expression that is canonical (sorted)
auto& set = *m_set_members[r]; auto& set = *m_set_members[r];
ptr_vector<expr> elems; ptr_vector<expr> elems;
for (auto e : set) for (auto [e,b] : set)
elems.push_back(e->get_expr()); if (b)
elems.push_back(e->get_expr());
std::sort(elems.begin(), elems.end(), [](expr *a, expr *b) { return a->get_id() < b->get_id(); }); std::sort(elems.begin(), elems.end(), [](expr *a, expr *b) { return a->get_id() < b->get_id(); });
expr *s = mk_union(elems.size(), elems.data(), n->get_expr()->get_sort()); expr *s = mk_union(elems.size(), elems.data(), n->get_expr()->get_sort());
trail.push_back(s); trail.push_back(s);
@ -569,9 +600,10 @@ namespace smt {
} }
} }
void theory_finite_set::add_clause(theory_axiom const& ax) { void theory_finite_set::add_clause(theory_axiom* ax) {
TRACE(finite_set, tout << "add_clause: " << ax << "\n"); TRACE(finite_set, tout << "add_clause: " << ax << "\n");
ctx.push_trail(push_back_vector(m_clauses.axioms)); ctx.push_trail(push_back_vector(m_clauses.axioms));
ctx.push_trail(new_obj_trail(ax));
m_clauses.axioms.push_back(ax); m_clauses.axioms.push_back(ax);
m_stats.m_num_axioms_created++; m_stats.m_num_axioms_created++;
} }
@ -601,19 +633,19 @@ namespace smt {
mg.register_factory(m_factory); mg.register_factory(m_factory);
collect_members(); collect_members();
} }
void theory_finite_set::collect_members() { void theory_finite_set::collect_members() {
// This method can be used to collect all elements that are members of sets // This method can be used to collect all elements that are members of sets
// and ensure that the model factory has values for them. // and ensure that the model factory has values for them.
// For now, we rely on the default model construction. // For now, we rely on the default model construction.
reset_set_members(); reset_set_members();
for (auto f : m_set_in_decls) { for (auto f : m_set_in_decls) {
for (auto n : ctx.enodes_of(f)) { for (auto n : ctx.enodes_of(f)) {
SASSERT(u.is_in(n->get_expr())); if (!ctx.is_relevant(n))
auto x = n->get_arg(0);
if (!ctx.is_relevant(x))
continue; continue;
x = x->get_root(); SASSERT(u.is_in(n->get_expr()));
auto x = n->get_arg(0)->get_root();
if (x->is_marked()) if (x->is_marked())
continue; continue;
x->set_mark(); // make sure we only do this once per element x->set_mark(); // make sure we only do this once per element
@ -622,61 +654,139 @@ namespace smt {
continue; continue;
if (!u.is_in(p->get_expr())) if (!u.is_in(p->get_expr()))
continue; continue;
if (ctx.get_assignment(p->get_expr()) != l_true) bool b = ctx.find_assignment(p->get_expr()) == l_true;
continue;
auto set = p->get_arg(1)->get_root(); auto set = p->get_arg(1)->get_root();
auto elem = p->get_arg(0)->get_root(); auto elem = p->get_arg(0)->get_root();
if (elem != x) if (elem != x)
continue; continue;
if (!m_set_members.contains(set)) if (!m_set_members.contains(set)) {
m_set_members.insert(set, alloc(obj_hashtable<enode>)); using om = obj_map<enode, bool>;
m_set_members.find(set)->insert(x); auto m = alloc(om);
m_set_members.insert(set, m);
}
m_set_members.find(set)->insert(x, b);
} }
} }
} }
for (auto f : m_set_in_decls) { for (auto f : m_set_in_decls) {
for (auto n : ctx.enodes_of(f)) { for (auto n : ctx.enodes_of(f)) {
SASSERT(u.is_in(n->get_expr())); SASSERT(u.is_in(n->get_expr()));
auto x = n->get_arg(0); auto x = n->get_arg(0)->get_root();
x = x->get_root();
if (x->is_marked()) if (x->is_marked())
x->unset_mark(); x->unset_mark();
} }
} }
} }
// to collect range interpretations for S:
// walk parents of S that are (set.in x S)
// evaluate truth value of (set.in x S), evaluate x
// add (eval(x), eval(set.in x S)) into a vector.
// sort the vector by eval(x)
// [(v1, b1), (v2, b2), ..., (vn, bn)]
// for the first i, with b_i true, add the range [vi, v_{i+1}-1].
// the last bn should be false by construction.
void theory_finite_set::add_range_interpretation(enode* s) {
vector<std::tuple<rational, enode *, bool>> elements;
arith_value av(m);
av.init(&ctx);
for (auto p : enode::parents(s)) {
if (!ctx.is_relevant(p))
continue;
if (u.is_in(p->get_expr())) {
rational val;
auto x = p->get_arg(0)->get_root();
VERIFY(av.get_value_equiv(x->get_expr(), val) && val.is_int());
elements.push_back({val, x, ctx.find_assignment(p->get_expr()) == l_true});
}
}
std::stable_sort(elements.begin(), elements.end(),
[](auto const &a, auto const &b) { return std::get<0>(a) < std::get<0>(b); });
}
struct finite_set_value_proc : model_value_proc { struct finite_set_value_proc : model_value_proc {
theory_finite_set &th; theory_finite_set &th;
sort *s = nullptr; enode *n = nullptr;
obj_hashtable<enode>* m_elements = nullptr; obj_map<enode, bool>* m_elements = nullptr;
finite_set_value_proc(theory_finite_set &th, sort *s, obj_hashtable<enode> *elements) // use range interpretations if there is a range constraint and the base sort is integer
: th(th), s(s), m_elements(elements) {} bool use_range() {
auto &m = th.m;
sort *base_s = nullptr;
VERIFY(th.u.is_finite_set(n->get_expr()->get_sort(), base_s));
arith_util a(m);
if (!a.is_int(base_s))
return false;
func_decl_ref range_fn(th.u.mk_range_decl(), m);
return th.ctx.get_num_enodes_of(range_fn.get()) > 0;
}
finite_set_value_proc(theory_finite_set &th, enode *n, obj_map<enode, bool> *elements)
: th(th), n(n), m_elements(elements) {}
void get_dependencies(buffer<model_value_dependency> &result) override { void get_dependencies(buffer<model_value_dependency> &result) override {
if (!m_elements) if (!m_elements)
return; return;
for (auto v : *m_elements) bool ur = use_range();
result.push_back(model_value_dependency(v)); for (auto [n, b] : *m_elements)
if (!ur || b)
result.push_back(model_value_dependency(n));
} }
app *mk_value(model_generator &mg, expr_ref_vector const &values) override { app *mk_value(model_generator &mg, expr_ref_vector const &values) override {
SASSERT(values.empty() == !m_elements); SASSERT(values.empty() == !m_elements);
if (values.empty()) auto s = n->get_sort();
if (values.empty())
return th.u.mk_empty(s); return th.u.mk_empty(s);
SASSERT(m_elements); SASSERT(m_elements);
SASSERT(values.size() == m_elements->size()); if (use_range())
return th.mk_union(values.size(), values.data(), s); return mk_range_value(mg, values);
else
return th.mk_union(values.size(), values.data(), s);
}
app *mk_range_value(model_generator &mg, expr_ref_vector const &values) {
unsigned i = 0;
arith_value av(th.m);
av.init(&th.ctx);
vector<std::tuple<rational, enode *, bool>> elems;
for (auto [n, b] : *m_elements) {
rational r;
av.get_value(n->get_expr(), r);
elems.push_back({r, n, b});
}
std::stable_sort(elems.begin(), elems.end(),
[](auto const &a, auto const &b) { return std::get<0>(a) < std::get<0>(b); });
app *range = nullptr;
arith_util a(th.m);
for (unsigned j = 0; j < elems.size(); ++j) {
auto [r, n, b] = elems[j];
if (!b)
continue;
rational lo = r;
rational hi = j + 1 < elems.size() ? std::get<0>(elems[j + 1]) - rational(1) : r;
while (j + 1 < elems.size() && std::get<0>(elems[j + 1]) == hi + rational(1) && std::get<2>(elems[j + 1])) {
hi = std::get<0>(elems[j + 1]);
++j;
}
auto new_range = th.u.mk_range(a.mk_int(lo), a.mk_int(hi));
range = range ? th.u.mk_union(range, new_range) : new_range;
}
return range ? range : th.u.mk_empty(n->get_sort());
} }
}; };
model_value_proc * theory_finite_set::mk_value(enode * n, model_generator & mg) { model_value_proc * theory_finite_set::mk_value(enode * n, model_generator & mg) {
TRACE(finite_set, tout << "mk_value: " << mk_pp(n->get_expr(), m) << "\n";); TRACE(finite_set, tout << "mk_value: " << mk_pp(n->get_expr(), m) << "\n";);
obj_hashtable<enode>*elements = nullptr; obj_map<enode, bool>*elements = nullptr;
sort *s = n->get_expr()->get_sort(); n = n->get_root();
m_set_members.find(n->get_root(), elements); m_set_members.find(n, elements);
return alloc(finite_set_value_proc, *this, s, elements); return alloc(finite_set_value_proc, *this, n, elements);
} }
@ -692,10 +802,62 @@ namespace smt {
return false; return false;
} }
bool theory_finite_set::assert_clause(theory_axiom const &ax) { /*
auto const &clause = ax.clause; * Add x-1, x+1 in range axioms for every x in setop(range, S)
* then x-1, x+1 will also propagate against setop(range, S).
*/
bool theory_finite_set::activate_range_local_axioms() {
bool new_axiom = false;
func_decl_ref range_fn(u.mk_range_decl(), m);
for (auto range : ctx.enodes_of(range_fn.get())) {
SASSERT(u.is_range(range->get_expr()));
auto v = range->get_th_var(get_id());
for (auto p : m_var_data[v]->m_parent_setops) {
auto w = p->get_th_var(get_id());
for (auto in : m_var_data[w]->m_parent_in) {
if (activate_range_local_axioms(in->get_arg(0)->get_expr(), range))
new_axiom = true;
}
}
}
return new_axiom;
}
bool theory_finite_set::activate_range_local_axioms(expr* elem, enode* range) {
auto v = range->get_th_var(get_id());
auto &range_local = m_var_data[v]->m_range_local;
auto &parent_in = m_var_data[v]->m_parent_in;
if (range_local.contains(elem))
return false;
arith_util a(m);
expr_ref lo(a.mk_add(elem, a.mk_int(-1)), m);
expr_ref hi(a.mk_add(elem, a.mk_int(1)), m);
bool new_axiom = false;
if (!range_local.contains(lo) && all_of(parent_in, [lo](enode* in) { return in->get_arg(0)->get_expr() != lo; })) {
// lo is not range local and lo is not already in an expression (lo in range)
// checking that lo is not in range_local is actually redundant because we will instantiate
// membership expressions for every range local expression.
// but we keep this set and check for now in case we want to change the saturation strategy.
ctx.push_trail(push_back_vector(range_local));
range_local.push_back(lo);
m_axioms.in_range_axiom(lo, range->get_expr());
new_axiom = true;
}
if (!range_local.contains(hi) &&
all_of(parent_in, [&hi](enode *in) { return in->get_arg(0)->get_expr() != hi; })) {
ctx.push_trail(push_back_vector(range_local));
range_local.push_back(hi);
m_axioms.in_range_axiom(hi, range->get_expr());
new_axiom = true;
}
return new_axiom;
}
bool theory_finite_set::assert_clause(theory_axiom const *ax) {
expr *unit = nullptr; expr *unit = nullptr;
unsigned undef_count = 0; unsigned undef_count = 0;
auto &clause = ax->clause;
for (auto e : clause) { for (auto e : clause) {
switch (ctx.find_assignment(e)) { switch (ctx.find_assignment(e)) {
case l_true: case l_true:
@ -719,8 +881,8 @@ namespace smt {
} }
m_stats.m_num_axioms_propagated++; m_stats.m_num_axioms_propagated++;
enode_pair_vector eqs; enode_pair_vector eqs;
auto just = ext_theory_propagation_justification(get_id(), ctx, antecedent.size(), antecedent.data(), eqs.size(), eqs.data(), lit, ax.params.size(), auto just = ext_theory_propagation_justification(get_id(), ctx, antecedent.size(), antecedent.data(), eqs.size(), eqs.data(),
ax.params.data()); lit, ax->params.size(), ax->params.data());
auto bjust = ctx.mk_justification(just); auto bjust = ctx.mk_justification(just);
if (ctx.clause_proof_active()) { if (ctx.clause_proof_active()) {
// assume all justifications is a non-empty list of symbol parameters // assume all justifications is a non-empty list of symbol parameters
@ -729,8 +891,8 @@ namespace smt {
// this misses conflicts at base level. // this misses conflicts at base level.
proof_ref pr(m); proof_ref pr(m);
expr_ref_vector args(m); expr_ref_vector args(m);
for (auto const& p : ax.params) for (auto const& p : ax->params)
args.push_back(m.mk_const(p.get_symbol(), m.mk_proof_sort())); args.push_back(m.mk_const(p.get_symbol(), m.mk_proof_sort()));
pr = m.mk_app(m.get_family_name(get_family_id()), args.size(), args.data(), m.mk_proof_sort()); pr = m.mk_app(m.get_family_name(get_family_id()), args.size(), args.data(), m.mk_proof_sort());
justification_proof_wrapper jp(ctx, pr.get(), false); justification_proof_wrapper jp(ctx, pr.get(), false);
ctx.get_clause_proof().propagate(lit, &jp, antecedent); ctx.get_clause_proof().propagate(lit, &jp, antecedent);
@ -748,7 +910,7 @@ namespace smt {
literal_vector lclause; literal_vector lclause;
for (auto e : clause) for (auto e : clause)
lclause.push_back(mk_literal(e)); lclause.push_back(mk_literal(e));
ctx.mk_th_axiom(get_id(), lclause, ax.params.size(), ax.params.data()); ctx.mk_th_axiom(get_id(), lclause, ax->params.size(), ax->params.data());
return true; return true;
} }

View file

@ -101,13 +101,15 @@ namespace smt {
friend struct finite_set_value_proc; friend struct finite_set_value_proc;
struct var_data { struct var_data {
ptr_vector<enode> m_setops; ptr_vector<enode> m_setops; // set operations equivalent to this
ptr_vector<enode> m_parent_in; ptr_vector<enode> m_parent_in; // x in A expressions
ptr_vector<enode> m_parent_setops; ptr_vector<enode> m_parent_setops; // set of set expressions where this appears as sub-expression
expr_ref_vector m_range_local; // set of range local variables associated with range
var_data(ast_manager &m) : m_range_local(m) {}
}; };
struct theory_clauses { struct theory_clauses {
vector<theory_axiom> axioms; // vector of created theory axioms ptr_vector<theory_axiom> axioms; // vector of created theory axioms
unsigned aqhead = 0; // queue head of created axioms unsigned aqhead = 0; // queue head of created axioms
unsigned_vector squeue; // propagation queue of axioms to be added to the solver unsigned_vector squeue; // propagation queue of axioms to be added to the solver
unsigned sqhead = 0; // head into propagation queue axioms to be added to solver unsigned sqhead = 0; // head into propagation queue axioms to be added to solver
@ -133,12 +135,16 @@ namespace smt {
} }
}; };
struct range {
rational lo, hi;
};
finite_set_util u; finite_set_util u;
finite_set_axioms m_axioms; finite_set_axioms m_axioms;
th_union_find m_find; th_union_find m_find;
theory_clauses m_clauses; theory_clauses m_clauses;
finite_set_factory *m_factory = nullptr; finite_set_factory *m_factory = nullptr;
obj_map<enode, obj_hashtable<enode> *> m_set_members; obj_map<enode, obj_map<enode, bool> *> m_set_members;
ptr_vector<func_decl> m_set_in_decls; ptr_vector<func_decl> m_set_in_decls;
ptr_vector<var_data> m_var_data; ptr_vector<var_data> m_var_data;
stats m_stats; stats m_stats;
@ -172,11 +178,13 @@ namespace smt {
// Helper methods for axiom instantiation // Helper methods for axiom instantiation
void add_membership_axioms(expr* elem, expr* set); void add_membership_axioms(expr* elem, expr* set);
void add_clause(theory_axiom const& ax); void add_clause(theory_axiom * ax);
bool assert_clause(theory_axiom const &ax); bool assert_clause(theory_axiom const *ax);
void activate_clause(unsigned index); void activate_clause(unsigned index);
bool activate_unasserted_clause(); bool activate_unasserted_clause();
void add_immediate_axioms(app *atom); void add_immediate_axioms(app *atom);
bool activate_range_local_axioms();
bool activate_range_local_axioms(expr *elem, enode *range);
bool assume_eqs(); bool assume_eqs();
bool is_new_axiom(expr *a, expr *b); bool is_new_axiom(expr *a, expr *b);
app *mk_union(unsigned num_elems, expr *const *elems, sort* set_sort); app *mk_union(unsigned num_elems, expr *const *elems, sort* set_sort);
@ -184,6 +192,7 @@ namespace smt {
// model construction // model construction
void collect_members(); void collect_members();
void reset_set_members(); void reset_set_members();
void add_range_interpretation(enode *s);
// manage union-find of theory variables // manage union-find of theory variables
theory_var find(theory_var v) const { return m_find.find(v); } theory_var find(theory_var v) const { return m_find.find(v); }

View file

@ -130,14 +130,12 @@ static void tst_finite_set_map_filter() {
static void tst_finite_set_is_value() { static void tst_finite_set_is_value() {
ast_manager m; ast_manager m;
reg_decl_plugins(m); reg_decl_plugins(m);
finite_set_util fsets(m); finite_set_util fsets(m);
arith_util arith(m); arith_util arith(m);
finite_set_decl_plugin* plugin = static_cast<finite_set_decl_plugin*>(m.get_plugin(fsets.get_family_id())); finite_set_decl_plugin* plugin = static_cast<finite_set_decl_plugin*>(m.get_plugin(fsets.get_family_id()));
// Create Int sort and finite set sort // Create Int sort and finite set sort
// Test with Int sort (should be fully interpreted) // Test with Int sort (should be fully interpreted)
sort_ref int_sort(arith.mk_int(), m); sort_ref int_sort(arith.mk_int(), m);
@ -145,7 +143,7 @@ static void tst_finite_set_is_value() {
sort_ref finite_set_int(m.mk_sort(fsets.get_family_id(), FINITE_SET_SORT, 1, &int_param), m); sort_ref finite_set_int(m.mk_sort(fsets.get_family_id(), FINITE_SET_SORT, 1, &int_param), m);
// Test 1: Empty set is a value // Test 1: Empty set is a value
app_ref empty_set(fsets.mk_empty(finite_set_int), m); app_ref empty_set(fsets.mk_empty(finite_set_int), m);
ENSURE(plugin->is_value(empty_set.get())); ENSURE(plugin->is_value(empty_set.get()));
@ -179,19 +177,19 @@ static void tst_finite_set_is_value() {
app_ref union_triple(fsets.mk_union(union_temp, singleton_nine), m); app_ref union_triple(fsets.mk_union(union_temp, singleton_nine), m);
ENSURE(plugin->is_value(union_triple.get())); ENSURE(plugin->is_value(union_triple.get()));
// Test 8: Range is NOT a value (it's not a union of empty/singletons) // Test 8: Range is a value
expr_ref zero(arith.mk_int(0), m); expr_ref zero(arith.mk_int(0), m);
expr_ref ten(arith.mk_int(10), m); expr_ref ten(arith.mk_int(10), m);
app_ref range_set(fsets.mk_range(zero, ten), m); app_ref range_set(fsets.mk_range(zero, ten), m);
ENSURE(!plugin->is_value(range_set.get())); ENSURE(plugin->is_value(range_set.get()));
// Test 9: Union with range is NOT a value // Test 9: Union with range is a value
app_ref union_with_range(fsets.mk_union(singleton_five, range_set), m); app_ref union_with_range(fsets.mk_union(singleton_five, range_set), m);
ENSURE(!plugin->is_value(union_with_range.get())); ENSURE(plugin->is_value(union_with_range.get()));
// Test 10: Intersect is NOT a value // Test 10: Intersect is a value
app_ref intersect_set(fsets.mk_intersect(singleton_five, singleton_seven), m); app_ref intersect_set(fsets.mk_intersect(singleton_five, singleton_seven), m);
ENSURE(!plugin->is_value(intersect_set.get())); ENSURE(plugin->is_value(intersect_set.get()));
ENSURE(m.is_fully_interp(int_sort)); ENSURE(m.is_fully_interp(int_sort));
ENSURE(m.is_fully_interp(finite_set_int)); ENSURE(m.is_fully_interp(finite_set_int));
} }