3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-02-20 07:24:40 +00:00

add interpretations when there are ranges

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2025-10-20 23:21:30 +02:00
parent 65f38eac16
commit 2e4402c8f3
8 changed files with 427 additions and 158 deletions

View file

@ -233,14 +233,25 @@ bool finite_set_decl_plugin::is_value(app * e) const {
continue;
}
bool is_setop =
is_app_of(a, m_family_id, OP_FINITE_SET_UNION)
|| is_app_of(a, m_family_id, OP_FINITE_SET_INTERSECT)
|| is_app_of(a, m_family_id, OP_FINITE_SET_DIFFERENCE);
// Check if it's a union
if (is_app_of(a, m_family_id, OP_FINITE_SET_UNION)) {
if (is_setop) {
// Add arguments to todo list
for (auto arg : *a)
todo.push_back(arg);
continue;
}
if (is_app_of(a, m_family_id, OP_FINITE_SET_RANGE)) {
for (auto arg : *a)
if (!m_manager->is_value(arg))
return false;
continue;
}
// can add also ranges where lo and hi are values.
// If it's none of the above, it's not a value
@ -271,3 +282,10 @@ bool finite_set_decl_plugin::are_distinct(app* e1, app* e2) const {
// that the other doesn't contain. Such as (union (singleton a) (singleton b)) and (singleton c) where c is different from a, b.
return false;
}
func_decl *finite_set_util::mk_range_decl() {
arith_util a(m_manager);
sort *i = a.mk_int();
sort *domain[2] = {i, i};
return m_manager.mk_func_decl(m_fid, OP_FINITE_SET_RANGE, 0, nullptr, 2, domain, nullptr);
}

View file

@ -195,6 +195,8 @@ public:
return m_manager.mk_app(m_fid, OP_FINITE_SET_FILTER, arr, set);
}
func_decl *mk_range_decl();
app * mk_range(expr* low, expr* high) {
return m_manager.mk_app(m_fid, OP_FINITE_SET_RANGE, low, high);
}

View file

@ -19,6 +19,7 @@ Revision History:
--*/
#include "ast/ast.h"
#include "ast/ast_pp.h"
#include "ast/finite_set_decl_plugin.h"
#include "ast/arith_decl_plugin.h"
#include "ast/array_decl_plugin.h"
@ -38,8 +39,8 @@ void finite_set_axioms::in_empty_axiom(expr *x) {
expr_ref empty_set(u.mk_empty(elem_sort), m);
expr_ref x_in_empty(u.mk_in(x, empty_set), m);
theory_axiom ax(m, "in-empty");
ax.clause.push_back(m.mk_not(x_in_empty));
theory_axiom* ax = alloc(theory_axiom, m, "in-empty");
ax->clause.push_back(m.mk_not(x_in_empty));
m_add_clause(ax);
}
@ -50,27 +51,28 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) {
if (!u.is_union(a, b, c))
return;
theory_axiom ax(m, "in-union");
expr_ref x_in_a(u.mk_in(x, a), m);
expr_ref x_in_b(u.mk_in(x, b), m);
expr_ref x_in_c(u.mk_in(x, c), m);
// (x in a) => (x in b) or (x in c)
ax.clause.push_back(m.mk_not(x_in_a));
ax.clause.push_back(x_in_b);
ax.clause.push_back(x_in_c);
m_add_clause(ax);
theory_axiom *ax1 = alloc(theory_axiom, m, "in-union");
ax1->clause.push_back(m.mk_not(x_in_a));
ax1->clause.push_back(x_in_b);
ax1->clause.push_back(x_in_c);
m_add_clause(ax1);
// (x in b) => (x in a)
theory_axiom ax2(m, "in-union");
ax2.clause.push_back(m.mk_not(x_in_b));
ax2.clause.push_back(x_in_a);
theory_axiom* ax2 = alloc(theory_axiom, m, "in-union");
ax2->clause.push_back(m.mk_not(x_in_b));
ax2->clause.push_back(x_in_a);
m_add_clause(ax2);
// (x in c) => (x in a)
theory_axiom ax3(m, "in-union");
ax3.clause.push_back(m.mk_not(x_in_c));
ax3.clause.push_back(x_in_a);
theory_axiom* ax3 = alloc(theory_axiom, m, "in-union");
ax3->clause.push_back(m.mk_not(x_in_c));
ax3->clause.push_back(x_in_a);
m_add_clause(ax3);
}
@ -86,22 +88,22 @@ void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) {
expr_ref x_in_c(u.mk_in(x, c), m);
// (x in a) => (x in b)
theory_axiom ax1(m, "in-intersect");
ax1.clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(x_in_b);
theory_axiom* ax1 = alloc(theory_axiom, m, "in-intersect");
ax1->clause.push_back(m.mk_not(x_in_a));
ax1->clause.push_back(x_in_b);
m_add_clause(ax1);
// (x in a) => (x in c)
theory_axiom ax2(m, "in-intersect");
ax2.clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(x_in_c);
theory_axiom* ax2 = alloc(theory_axiom, m, "in-intersect");
ax2->clause.push_back(m.mk_not(x_in_a));
ax2->clause.push_back(x_in_c);
m_add_clause(ax2);
// (x in b) and (x in c) => (x in a)
theory_axiom ax3(m, "in-intersect");
ax3.clause.push_back(m.mk_not(x_in_b));
ax3.clause.push_back(m.mk_not(x_in_c));
ax3.clause.push_back(x_in_a);
theory_axiom* ax3 = alloc(theory_axiom, m, "in-intersect");
ax3->clause.push_back(m.mk_not(x_in_b));
ax3->clause.push_back(m.mk_not(x_in_c));
ax3->clause.push_back(x_in_a);
m_add_clause(ax3);
}
@ -117,22 +119,22 @@ void finite_set_axioms::in_difference_axiom(expr *x, expr *a) {
expr_ref x_in_c(u.mk_in(x, c), m);
// (x in a) => (x in b)
theory_axiom ax1(m, "in-difference");
ax1.clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(x_in_b);
theory_axiom* ax1 = alloc(theory_axiom, m, "in-difference");
ax1->clause.push_back(m.mk_not(x_in_a));
ax1->clause.push_back(x_in_b);
m_add_clause(ax1);
// (x in a) => not (x in c)
theory_axiom ax2(m, "in-difference");
ax2.clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(m.mk_not(x_in_c));
theory_axiom* ax2 = alloc(theory_axiom, m, "in-difference");
ax2->clause.push_back(m.mk_not(x_in_a));
ax2->clause.push_back(m.mk_not(x_in_c));
m_add_clause(ax2);
// (x in b) and not (x in c) => (x in a)
theory_axiom ax3(m, "in-difference");
ax3.clause.push_back(m.mk_not(x_in_b));
ax3.clause.push_back(x_in_c);
ax3.clause.push_back(x_in_a);
theory_axiom* ax3 = alloc(theory_axiom, m, "in-difference");
ax3->clause.push_back(m.mk_not(x_in_b));
ax3->clause.push_back(x_in_c);
ax3->clause.push_back(x_in_a);
m_add_clause(ax3);
}
@ -145,11 +147,11 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) {
expr_ref x_in_a(u.mk_in(x, a), m);
theory_axiom ax(m, "in-singleton");
theory_axiom* ax = alloc(theory_axiom, m, "in-singleton");
if (x == b) {
// If x and b are syntactically identical, then (x in a) is always true
ax.clause.push_back(x_in_a);
ax->clause.push_back(x_in_a);
m_add_clause(ax);
return;
}
@ -157,17 +159,42 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) {
expr_ref x_eq_b(m.mk_eq(x, b), m);
// (x in a) => (x == b)
ax.clause.push_back(m.mk_not(x_in_a));
ax.clause.push_back(x_eq_b);
ax->clause.push_back(m.mk_not(x_in_a));
ax->clause.push_back(x_eq_b);
m_add_clause(ax);
ax.clause.reset();
ax = alloc(theory_axiom, m, "in-singleton");
// (x == b) => (x in a)
ax.clause.push_back(m.mk_not(x_eq_b));
ax.clause.push_back(x_in_a);
ax->clause.push_back(m.mk_not(x_eq_b));
ax->clause.push_back(x_in_a);
m_add_clause(ax);
}
void finite_set_axioms::in_singleton_axiom(expr* a) {
expr *b = nullptr;
if (!u.is_singleton(a, b))
return;
arith_util arith(m);
expr_ref b_in_a(u.mk_in(b, a), m);
auto ax = alloc(theory_axiom, m, "in-singleton");
ax->clause.push_back(b_in_a);
m_add_clause(ax);
ax = alloc(theory_axiom, m, "in-singleton");
expr_ref bm1_in_a(u.mk_in(arith.mk_add(b, arith.mk_int(-1)), a), m);
ax->clause.push_back(m.mk_not(bm1_in_a));
m_add_clause(ax);
ax = alloc(theory_axiom, m, "in-singleton");
expr_ref bp1_in_a(u.mk_in(arith.mk_add(b, arith.mk_int(1)), a), m);
ax->clause.push_back(m.mk_not(bp1_in_a));
}
// a := set.range(lo, hi)
// (x in a) <=> (lo <= x <= hi)
void finite_set_axioms::in_range_axiom(expr *x, expr *a) {
@ -177,29 +204,58 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) {
arith_util arith(m);
expr_ref x_in_a(u.mk_in(x, a), m);
expr_ref lo_le_x(arith.mk_le(lo, x), m);
expr_ref x_le_hi(arith.mk_le(x, hi), m);
expr_ref lo_le_x(arith.mk_le(arith.mk_sub(lo, x), arith.mk_int(0)), m);
expr_ref x_le_hi(arith.mk_le(arith.mk_sub(x, hi), arith.mk_int(0)), m);
m_rewriter(lo_le_x);
m_rewriter(x_le_hi);
// (x in a) => (lo <= x)
theory_axiom ax1(m, "in-range");
ax1.clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(lo_le_x);
theory_axiom* ax1 = alloc(theory_axiom, m, "in-range");
ax1->clause.push_back(m.mk_not(x_in_a));
ax1->clause.push_back(lo_le_x);
m_add_clause(ax1);
// (x in a) => (x <= hi)
theory_axiom ax2(m, "in-range");
ax2.clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(x_le_hi);
theory_axiom* ax2 = alloc(theory_axiom, m, "in-range");
ax2->clause.push_back(m.mk_not(x_in_a));
ax2->clause.push_back(x_le_hi);
m_add_clause(ax2);
// (lo <= x) and (x <= hi) => (x in a)
theory_axiom ax3(m, "in-range");
ax3.clause.push_back(m.mk_not(lo_le_x));
ax3.clause.push_back(m.mk_not(x_le_hi));
ax3.clause.push_back(x_in_a);
theory_axiom* ax3 = alloc(theory_axiom, m, "in-range");
ax3->clause.push_back(m.mk_not(lo_le_x));
ax3->clause.push_back(m.mk_not(x_le_hi));
ax3->clause.push_back(x_in_a);
m_add_clause(ax3);
}
// a := set.range(lo, hi)
// (not (set.in (- lo 1) r))
// (not (set.in (+ hi 1) r))
// (set.in lo r)
// (set.in hi r)
void finite_set_axioms::in_range_axiom(expr* r) {
expr *lo = nullptr, *hi = nullptr;
if (!u.is_range(r, lo, hi))
return;
theory_axiom* ax = alloc(theory_axiom, m, "range-bounds");
ax->clause.push_back(u.mk_in(lo, r));
m_add_clause(ax);
ax = alloc(theory_axiom, m, "range-bounds");
ax->clause.push_back(u.mk_in(hi, r));
m_add_clause(ax);
arith_util a(m);
ax = alloc(theory_axiom, m, "range-bounds");
ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(hi, a.mk_int(1)), r)));
m_add_clause(ax);
ax = alloc(theory_axiom, m, "range-bounds");
ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(lo, a.mk_int(-1)), r)));
m_add_clause(ax);
}
// a := set.map(f, b)
// (x in a) <=> set.map_inverse(f, x, b) in b
void finite_set_axioms::in_map_axiom(expr *x, expr *a) {
@ -228,9 +284,9 @@ void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) {
expr_ref fx_in_a(u.mk_in(fx, a), m);
// (x in b) => f(x) in a
theory_axiom ax(m, "in-map-image");
ax.clause.push_back(m.mk_not(x_in_b));
ax.clause.push_back(fx_in_a);
theory_axiom* ax = alloc(theory_axiom, m, "in-map-image");
ax->clause.push_back(m.mk_not(x_in_b));
ax->clause.push_back(fx_in_a);
m_add_clause(ax);
}
@ -249,22 +305,22 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) {
expr_ref px(autil.mk_select(p, x), m);
// (x in a) => (x in b)
theory_axiom ax1(m, "in-filter");
ax1.clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(x_in_b);
theory_axiom* ax1 = alloc(theory_axiom, m, "in-filter");
ax1->clause.push_back(m.mk_not(x_in_a));
ax1->clause.push_back(x_in_b);
m_add_clause(ax1);
// (x in a) => p(x)
theory_axiom ax2(m, "in-filter");
ax2.clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(px);
theory_axiom* ax2 = alloc(theory_axiom, m, "in-filter");
ax2->clause.push_back(m.mk_not(x_in_a));
ax2->clause.push_back(px);
m_add_clause(ax2);
// (x in b) and p(x) => (x in a)
theory_axiom ax3(m, "in-filter");
ax3.clause.push_back(m.mk_not(x_in_b));
ax3.clause.push_back(m.mk_not(px));
ax3.clause.push_back(x_in_a);
theory_axiom* ax3 = alloc(theory_axiom, m, "in-filter");
ax3->clause.push_back(m.mk_not(x_in_b));
ax3->clause.push_back(m.mk_not(px));
ax3->clause.push_back(x_in_a);
m_add_clause(ax3);
}
@ -280,8 +336,8 @@ void finite_set_axioms::size_singleton_axiom(expr *a) {
expr_ref one(arith.mk_int(1), m);
expr_ref eq(m.mk_eq(size_a, one), m);
theory_axiom ax(m, "size-singleton");
ax.clause.push_back(eq);
theory_axiom* ax = alloc(theory_axiom, m, "size-singleton");
ax->clause.push_back(eq);
m_add_clause(ax);
}
@ -293,14 +349,14 @@ void finite_set_axioms::subset_axiom(expr* a) {
expr_ref intersect_bc(u.mk_intersect(b, c), m);
expr_ref eq(m.mk_eq(intersect_bc, b), m);
theory_axiom ax1(m, "subset");
ax1.clause.push_back(m.mk_not(a));
ax1.clause.push_back(eq);
theory_axiom* ax1 = alloc(theory_axiom, m, "subset");
ax1->clause.push_back(m.mk_not(a));
ax1->clause.push_back(eq);
m_add_clause(ax1);
theory_axiom ax2(m, "subset");
ax2.clause.push_back(a);
ax2.clause.push_back(m.mk_not(eq));
theory_axiom* ax2 = alloc(theory_axiom, m, "subset");
ax2->clause.push_back(a);
ax2->clause.push_back(m.mk_not(eq));
m_add_clause(ax2);
}
@ -313,15 +369,15 @@ void finite_set_axioms::extensionality_axiom(expr *a, expr* b) {
expr_ref diff_in_b(u.mk_in(diff_ab, b), m);
// (a != b) => (x in diff_ab != x in diff_ba)
theory_axiom ax(m, "extensionality");
ax.clause.push_back(a_eq_b);
ax.clause.push_back(m.mk_not(diff_in_a));
ax.clause.push_back(m.mk_not(diff_in_b));
theory_axiom* ax = alloc(theory_axiom, m, "extensionality");
ax->clause.push_back(a_eq_b);
ax->clause.push_back(m.mk_not(diff_in_a));
ax->clause.push_back(m.mk_not(diff_in_b));
m_add_clause(ax);
theory_axiom ax2(m, "extensionality");
ax2.clause.push_back(m.mk_not(a_eq_b));
ax2.clause.push_back(diff_in_a);
ax2.clause.push_back(diff_in_b);
theory_axiom* ax2 = alloc(theory_axiom, m, "extensionality");
ax2->clause.push_back(m.mk_not(a_eq_b));
ax2->clause.push_back(diff_in_a);
ax2->clause.push_back(diff_in_b);
m_add_clause(ax2);
}

View file

@ -12,6 +12,8 @@ Abstract:
--*/
#include "ast/rewriter/th_rewriter.h"
struct theory_axiom {
expr_ref_vector clause;
vector<parameter> params;
@ -32,14 +34,15 @@ std::ostream &operator<<(std::ostream &out, theory_axiom const &ax);
class finite_set_axioms {
ast_manager& m;
finite_set_util u;
th_rewriter m_rewriter;
std::function<void(theory_axiom const &)> m_add_clause;
std::function<void(theory_axiom *)> m_add_clause;
public:
finite_set_axioms(ast_manager &m) : m(m), u(m) {}
finite_set_axioms(ast_manager &m) : m(m), u(m), m_rewriter(m) {}
void set_add_clause(std::function<void(theory_axiom const &)> &ac) {
void set_add_clause(std::function<void(theory_axiom*)> &ac) {
m_add_clause = ac;
}
@ -62,10 +65,23 @@ public:
// (x in a) <=> (x == b)
void in_singleton_axiom(expr *x, expr *a);
// a := set.singleton(b)
// b in a
// b-1 not in a
// b+1 not in a
void in_singleton_axiom(expr *a);
// a := set.range(lo, hi)
// (x in a) <=> (lo <= x <= hi)
void in_range_axiom(expr *x, expr *a);
// a := set.range(lo, hi)
// (not (set.in (- lo 1) a))
// (not (set.in (+ hi 1) a))
// (set.in lo a)
// (set.in hi a)
void in_range_axiom(expr *a);
// a := set.map(f, b)
// (x in a) <=> set.map_inverse(f, x, b) in b
void in_map_axiom(expr *x, expr *a);