mirror of
https://github.com/Z3Prover/z3
synced 2025-11-25 15:09:32 +00:00
add interpretations when there are ranges
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
65f38eac16
commit
2e4402c8f3
8 changed files with 427 additions and 158 deletions
|
|
@ -233,14 +233,25 @@ bool finite_set_decl_plugin::is_value(app * e) const {
|
|||
continue;
|
||||
}
|
||||
|
||||
bool is_setop =
|
||||
is_app_of(a, m_family_id, OP_FINITE_SET_UNION)
|
||||
|| is_app_of(a, m_family_id, OP_FINITE_SET_INTERSECT)
|
||||
|| is_app_of(a, m_family_id, OP_FINITE_SET_DIFFERENCE);
|
||||
// Check if it's a union
|
||||
if (is_app_of(a, m_family_id, OP_FINITE_SET_UNION)) {
|
||||
if (is_setop) {
|
||||
// Add arguments to todo list
|
||||
for (auto arg : *a)
|
||||
todo.push_back(arg);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (is_app_of(a, m_family_id, OP_FINITE_SET_RANGE)) {
|
||||
for (auto arg : *a)
|
||||
if (!m_manager->is_value(arg))
|
||||
return false;
|
||||
continue;
|
||||
}
|
||||
|
||||
// can add also ranges where lo and hi are values.
|
||||
|
||||
// If it's none of the above, it's not a value
|
||||
|
|
@ -271,3 +282,10 @@ bool finite_set_decl_plugin::are_distinct(app* e1, app* e2) const {
|
|||
// that the other doesn't contain. Such as (union (singleton a) (singleton b)) and (singleton c) where c is different from a, b.
|
||||
return false;
|
||||
}
|
||||
|
||||
func_decl *finite_set_util::mk_range_decl() {
|
||||
arith_util a(m_manager);
|
||||
sort *i = a.mk_int();
|
||||
sort *domain[2] = {i, i};
|
||||
return m_manager.mk_func_decl(m_fid, OP_FINITE_SET_RANGE, 0, nullptr, 2, domain, nullptr);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -195,6 +195,8 @@ public:
|
|||
return m_manager.mk_app(m_fid, OP_FINITE_SET_FILTER, arr, set);
|
||||
}
|
||||
|
||||
func_decl *mk_range_decl();
|
||||
|
||||
app * mk_range(expr* low, expr* high) {
|
||||
return m_manager.mk_app(m_fid, OP_FINITE_SET_RANGE, low, high);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -19,6 +19,7 @@ Revision History:
|
|||
--*/
|
||||
|
||||
#include "ast/ast.h"
|
||||
#include "ast/ast_pp.h"
|
||||
#include "ast/finite_set_decl_plugin.h"
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
#include "ast/array_decl_plugin.h"
|
||||
|
|
@ -38,8 +39,8 @@ void finite_set_axioms::in_empty_axiom(expr *x) {
|
|||
expr_ref empty_set(u.mk_empty(elem_sort), m);
|
||||
expr_ref x_in_empty(u.mk_in(x, empty_set), m);
|
||||
|
||||
theory_axiom ax(m, "in-empty");
|
||||
ax.clause.push_back(m.mk_not(x_in_empty));
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "in-empty");
|
||||
ax->clause.push_back(m.mk_not(x_in_empty));
|
||||
m_add_clause(ax);
|
||||
}
|
||||
|
||||
|
|
@ -50,27 +51,28 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) {
|
|||
if (!u.is_union(a, b, c))
|
||||
return;
|
||||
|
||||
theory_axiom ax(m, "in-union");
|
||||
|
||||
expr_ref x_in_a(u.mk_in(x, a), m);
|
||||
expr_ref x_in_b(u.mk_in(x, b), m);
|
||||
expr_ref x_in_c(u.mk_in(x, c), m);
|
||||
|
||||
// (x in a) => (x in b) or (x in c)
|
||||
ax.clause.push_back(m.mk_not(x_in_a));
|
||||
ax.clause.push_back(x_in_b);
|
||||
ax.clause.push_back(x_in_c);
|
||||
m_add_clause(ax);
|
||||
theory_axiom *ax1 = alloc(theory_axiom, m, "in-union");
|
||||
ax1->clause.push_back(m.mk_not(x_in_a));
|
||||
ax1->clause.push_back(x_in_b);
|
||||
ax1->clause.push_back(x_in_c);
|
||||
m_add_clause(ax1);
|
||||
|
||||
// (x in b) => (x in a)
|
||||
theory_axiom ax2(m, "in-union");
|
||||
ax2.clause.push_back(m.mk_not(x_in_b));
|
||||
ax2.clause.push_back(x_in_a);
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-union");
|
||||
ax2->clause.push_back(m.mk_not(x_in_b));
|
||||
ax2->clause.push_back(x_in_a);
|
||||
m_add_clause(ax2);
|
||||
|
||||
// (x in c) => (x in a)
|
||||
theory_axiom ax3(m, "in-union");
|
||||
ax3.clause.push_back(m.mk_not(x_in_c));
|
||||
ax3.clause.push_back(x_in_a);
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-union");
|
||||
ax3->clause.push_back(m.mk_not(x_in_c));
|
||||
ax3->clause.push_back(x_in_a);
|
||||
m_add_clause(ax3);
|
||||
}
|
||||
|
||||
|
|
@ -86,22 +88,22 @@ void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) {
|
|||
expr_ref x_in_c(u.mk_in(x, c), m);
|
||||
|
||||
// (x in a) => (x in b)
|
||||
theory_axiom ax1(m, "in-intersect");
|
||||
ax1.clause.push_back(m.mk_not(x_in_a));
|
||||
ax1.clause.push_back(x_in_b);
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "in-intersect");
|
||||
ax1->clause.push_back(m.mk_not(x_in_a));
|
||||
ax1->clause.push_back(x_in_b);
|
||||
m_add_clause(ax1);
|
||||
|
||||
// (x in a) => (x in c)
|
||||
theory_axiom ax2(m, "in-intersect");
|
||||
ax2.clause.push_back(m.mk_not(x_in_a));
|
||||
ax2.clause.push_back(x_in_c);
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-intersect");
|
||||
ax2->clause.push_back(m.mk_not(x_in_a));
|
||||
ax2->clause.push_back(x_in_c);
|
||||
m_add_clause(ax2);
|
||||
|
||||
// (x in b) and (x in c) => (x in a)
|
||||
theory_axiom ax3(m, "in-intersect");
|
||||
ax3.clause.push_back(m.mk_not(x_in_b));
|
||||
ax3.clause.push_back(m.mk_not(x_in_c));
|
||||
ax3.clause.push_back(x_in_a);
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-intersect");
|
||||
ax3->clause.push_back(m.mk_not(x_in_b));
|
||||
ax3->clause.push_back(m.mk_not(x_in_c));
|
||||
ax3->clause.push_back(x_in_a);
|
||||
m_add_clause(ax3);
|
||||
}
|
||||
|
||||
|
|
@ -117,22 +119,22 @@ void finite_set_axioms::in_difference_axiom(expr *x, expr *a) {
|
|||
expr_ref x_in_c(u.mk_in(x, c), m);
|
||||
|
||||
// (x in a) => (x in b)
|
||||
theory_axiom ax1(m, "in-difference");
|
||||
ax1.clause.push_back(m.mk_not(x_in_a));
|
||||
ax1.clause.push_back(x_in_b);
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "in-difference");
|
||||
ax1->clause.push_back(m.mk_not(x_in_a));
|
||||
ax1->clause.push_back(x_in_b);
|
||||
m_add_clause(ax1);
|
||||
|
||||
// (x in a) => not (x in c)
|
||||
theory_axiom ax2(m, "in-difference");
|
||||
ax2.clause.push_back(m.mk_not(x_in_a));
|
||||
ax2.clause.push_back(m.mk_not(x_in_c));
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-difference");
|
||||
ax2->clause.push_back(m.mk_not(x_in_a));
|
||||
ax2->clause.push_back(m.mk_not(x_in_c));
|
||||
m_add_clause(ax2);
|
||||
|
||||
// (x in b) and not (x in c) => (x in a)
|
||||
theory_axiom ax3(m, "in-difference");
|
||||
ax3.clause.push_back(m.mk_not(x_in_b));
|
||||
ax3.clause.push_back(x_in_c);
|
||||
ax3.clause.push_back(x_in_a);
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-difference");
|
||||
ax3->clause.push_back(m.mk_not(x_in_b));
|
||||
ax3->clause.push_back(x_in_c);
|
||||
ax3->clause.push_back(x_in_a);
|
||||
m_add_clause(ax3);
|
||||
}
|
||||
|
||||
|
|
@ -145,11 +147,11 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) {
|
|||
|
||||
expr_ref x_in_a(u.mk_in(x, a), m);
|
||||
|
||||
theory_axiom ax(m, "in-singleton");
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "in-singleton");
|
||||
if (x == b) {
|
||||
// If x and b are syntactically identical, then (x in a) is always true
|
||||
|
||||
ax.clause.push_back(x_in_a);
|
||||
ax->clause.push_back(x_in_a);
|
||||
m_add_clause(ax);
|
||||
return;
|
||||
}
|
||||
|
|
@ -157,17 +159,42 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) {
|
|||
expr_ref x_eq_b(m.mk_eq(x, b), m);
|
||||
|
||||
// (x in a) => (x == b)
|
||||
ax.clause.push_back(m.mk_not(x_in_a));
|
||||
ax.clause.push_back(x_eq_b);
|
||||
ax->clause.push_back(m.mk_not(x_in_a));
|
||||
ax->clause.push_back(x_eq_b);
|
||||
m_add_clause(ax);
|
||||
ax.clause.reset();
|
||||
ax = alloc(theory_axiom, m, "in-singleton");
|
||||
|
||||
// (x == b) => (x in a)
|
||||
ax.clause.push_back(m.mk_not(x_eq_b));
|
||||
ax.clause.push_back(x_in_a);
|
||||
ax->clause.push_back(m.mk_not(x_eq_b));
|
||||
ax->clause.push_back(x_in_a);
|
||||
m_add_clause(ax);
|
||||
}
|
||||
|
||||
void finite_set_axioms::in_singleton_axiom(expr* a) {
|
||||
expr *b = nullptr;
|
||||
if (!u.is_singleton(a, b))
|
||||
return;
|
||||
|
||||
arith_util arith(m);
|
||||
|
||||
expr_ref b_in_a(u.mk_in(b, a), m);
|
||||
|
||||
auto ax = alloc(theory_axiom, m, "in-singleton");
|
||||
ax->clause.push_back(b_in_a);
|
||||
m_add_clause(ax);
|
||||
|
||||
ax = alloc(theory_axiom, m, "in-singleton");
|
||||
expr_ref bm1_in_a(u.mk_in(arith.mk_add(b, arith.mk_int(-1)), a), m);
|
||||
ax->clause.push_back(m.mk_not(bm1_in_a));
|
||||
m_add_clause(ax);
|
||||
|
||||
ax = alloc(theory_axiom, m, "in-singleton");
|
||||
expr_ref bp1_in_a(u.mk_in(arith.mk_add(b, arith.mk_int(1)), a), m);
|
||||
ax->clause.push_back(m.mk_not(bp1_in_a));
|
||||
}
|
||||
|
||||
|
||||
|
||||
// a := set.range(lo, hi)
|
||||
// (x in a) <=> (lo <= x <= hi)
|
||||
void finite_set_axioms::in_range_axiom(expr *x, expr *a) {
|
||||
|
|
@ -177,29 +204,58 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) {
|
|||
|
||||
arith_util arith(m);
|
||||
expr_ref x_in_a(u.mk_in(x, a), m);
|
||||
expr_ref lo_le_x(arith.mk_le(lo, x), m);
|
||||
expr_ref x_le_hi(arith.mk_le(x, hi), m);
|
||||
expr_ref lo_le_x(arith.mk_le(arith.mk_sub(lo, x), arith.mk_int(0)), m);
|
||||
expr_ref x_le_hi(arith.mk_le(arith.mk_sub(x, hi), arith.mk_int(0)), m);
|
||||
m_rewriter(lo_le_x);
|
||||
m_rewriter(x_le_hi);
|
||||
|
||||
// (x in a) => (lo <= x)
|
||||
theory_axiom ax1(m, "in-range");
|
||||
ax1.clause.push_back(m.mk_not(x_in_a));
|
||||
ax1.clause.push_back(lo_le_x);
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "in-range");
|
||||
ax1->clause.push_back(m.mk_not(x_in_a));
|
||||
ax1->clause.push_back(lo_le_x);
|
||||
m_add_clause(ax1);
|
||||
|
||||
// (x in a) => (x <= hi)
|
||||
theory_axiom ax2(m, "in-range");
|
||||
ax2.clause.push_back(m.mk_not(x_in_a));
|
||||
ax2.clause.push_back(x_le_hi);
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-range");
|
||||
ax2->clause.push_back(m.mk_not(x_in_a));
|
||||
ax2->clause.push_back(x_le_hi);
|
||||
m_add_clause(ax2);
|
||||
|
||||
// (lo <= x) and (x <= hi) => (x in a)
|
||||
theory_axiom ax3(m, "in-range");
|
||||
ax3.clause.push_back(m.mk_not(lo_le_x));
|
||||
ax3.clause.push_back(m.mk_not(x_le_hi));
|
||||
ax3.clause.push_back(x_in_a);
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-range");
|
||||
ax3->clause.push_back(m.mk_not(lo_le_x));
|
||||
ax3->clause.push_back(m.mk_not(x_le_hi));
|
||||
ax3->clause.push_back(x_in_a);
|
||||
m_add_clause(ax3);
|
||||
}
|
||||
|
||||
// a := set.range(lo, hi)
|
||||
// (not (set.in (- lo 1) r))
|
||||
// (not (set.in (+ hi 1) r))
|
||||
// (set.in lo r)
|
||||
// (set.in hi r)
|
||||
void finite_set_axioms::in_range_axiom(expr* r) {
|
||||
expr *lo = nullptr, *hi = nullptr;
|
||||
if (!u.is_range(r, lo, hi))
|
||||
return;
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "range-bounds");
|
||||
ax->clause.push_back(u.mk_in(lo, r));
|
||||
m_add_clause(ax);
|
||||
|
||||
ax = alloc(theory_axiom, m, "range-bounds");
|
||||
ax->clause.push_back(u.mk_in(hi, r));
|
||||
m_add_clause(ax);
|
||||
|
||||
arith_util a(m);
|
||||
ax = alloc(theory_axiom, m, "range-bounds");
|
||||
ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(hi, a.mk_int(1)), r)));
|
||||
m_add_clause(ax);
|
||||
|
||||
ax = alloc(theory_axiom, m, "range-bounds");
|
||||
ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(lo, a.mk_int(-1)), r)));
|
||||
m_add_clause(ax);
|
||||
}
|
||||
|
||||
// a := set.map(f, b)
|
||||
// (x in a) <=> set.map_inverse(f, x, b) in b
|
||||
void finite_set_axioms::in_map_axiom(expr *x, expr *a) {
|
||||
|
|
@ -228,9 +284,9 @@ void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) {
|
|||
expr_ref fx_in_a(u.mk_in(fx, a), m);
|
||||
|
||||
// (x in b) => f(x) in a
|
||||
theory_axiom ax(m, "in-map-image");
|
||||
ax.clause.push_back(m.mk_not(x_in_b));
|
||||
ax.clause.push_back(fx_in_a);
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "in-map-image");
|
||||
ax->clause.push_back(m.mk_not(x_in_b));
|
||||
ax->clause.push_back(fx_in_a);
|
||||
m_add_clause(ax);
|
||||
}
|
||||
|
||||
|
|
@ -249,22 +305,22 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) {
|
|||
expr_ref px(autil.mk_select(p, x), m);
|
||||
|
||||
// (x in a) => (x in b)
|
||||
theory_axiom ax1(m, "in-filter");
|
||||
ax1.clause.push_back(m.mk_not(x_in_a));
|
||||
ax1.clause.push_back(x_in_b);
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "in-filter");
|
||||
ax1->clause.push_back(m.mk_not(x_in_a));
|
||||
ax1->clause.push_back(x_in_b);
|
||||
m_add_clause(ax1);
|
||||
|
||||
// (x in a) => p(x)
|
||||
theory_axiom ax2(m, "in-filter");
|
||||
ax2.clause.push_back(m.mk_not(x_in_a));
|
||||
ax2.clause.push_back(px);
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-filter");
|
||||
ax2->clause.push_back(m.mk_not(x_in_a));
|
||||
ax2->clause.push_back(px);
|
||||
m_add_clause(ax2);
|
||||
|
||||
// (x in b) and p(x) => (x in a)
|
||||
theory_axiom ax3(m, "in-filter");
|
||||
ax3.clause.push_back(m.mk_not(x_in_b));
|
||||
ax3.clause.push_back(m.mk_not(px));
|
||||
ax3.clause.push_back(x_in_a);
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-filter");
|
||||
ax3->clause.push_back(m.mk_not(x_in_b));
|
||||
ax3->clause.push_back(m.mk_not(px));
|
||||
ax3->clause.push_back(x_in_a);
|
||||
m_add_clause(ax3);
|
||||
}
|
||||
|
||||
|
|
@ -280,8 +336,8 @@ void finite_set_axioms::size_singleton_axiom(expr *a) {
|
|||
expr_ref one(arith.mk_int(1), m);
|
||||
expr_ref eq(m.mk_eq(size_a, one), m);
|
||||
|
||||
theory_axiom ax(m, "size-singleton");
|
||||
ax.clause.push_back(eq);
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "size-singleton");
|
||||
ax->clause.push_back(eq);
|
||||
m_add_clause(ax);
|
||||
}
|
||||
|
||||
|
|
@ -293,14 +349,14 @@ void finite_set_axioms::subset_axiom(expr* a) {
|
|||
expr_ref intersect_bc(u.mk_intersect(b, c), m);
|
||||
expr_ref eq(m.mk_eq(intersect_bc, b), m);
|
||||
|
||||
theory_axiom ax1(m, "subset");
|
||||
ax1.clause.push_back(m.mk_not(a));
|
||||
ax1.clause.push_back(eq);
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "subset");
|
||||
ax1->clause.push_back(m.mk_not(a));
|
||||
ax1->clause.push_back(eq);
|
||||
m_add_clause(ax1);
|
||||
|
||||
theory_axiom ax2(m, "subset");
|
||||
ax2.clause.push_back(a);
|
||||
ax2.clause.push_back(m.mk_not(eq));
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "subset");
|
||||
ax2->clause.push_back(a);
|
||||
ax2->clause.push_back(m.mk_not(eq));
|
||||
m_add_clause(ax2);
|
||||
}
|
||||
|
||||
|
|
@ -313,15 +369,15 @@ void finite_set_axioms::extensionality_axiom(expr *a, expr* b) {
|
|||
expr_ref diff_in_b(u.mk_in(diff_ab, b), m);
|
||||
|
||||
// (a != b) => (x in diff_ab != x in diff_ba)
|
||||
theory_axiom ax(m, "extensionality");
|
||||
ax.clause.push_back(a_eq_b);
|
||||
ax.clause.push_back(m.mk_not(diff_in_a));
|
||||
ax.clause.push_back(m.mk_not(diff_in_b));
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "extensionality");
|
||||
ax->clause.push_back(a_eq_b);
|
||||
ax->clause.push_back(m.mk_not(diff_in_a));
|
||||
ax->clause.push_back(m.mk_not(diff_in_b));
|
||||
m_add_clause(ax);
|
||||
|
||||
theory_axiom ax2(m, "extensionality");
|
||||
ax2.clause.push_back(m.mk_not(a_eq_b));
|
||||
ax2.clause.push_back(diff_in_a);
|
||||
ax2.clause.push_back(diff_in_b);
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "extensionality");
|
||||
ax2->clause.push_back(m.mk_not(a_eq_b));
|
||||
ax2->clause.push_back(diff_in_a);
|
||||
ax2->clause.push_back(diff_in_b);
|
||||
m_add_clause(ax2);
|
||||
}
|
||||
|
|
@ -12,6 +12,8 @@ Abstract:
|
|||
|
||||
--*/
|
||||
|
||||
#include "ast/rewriter/th_rewriter.h"
|
||||
|
||||
struct theory_axiom {
|
||||
expr_ref_vector clause;
|
||||
vector<parameter> params;
|
||||
|
|
@ -32,14 +34,15 @@ std::ostream &operator<<(std::ostream &out, theory_axiom const &ax);
|
|||
class finite_set_axioms {
|
||||
ast_manager& m;
|
||||
finite_set_util u;
|
||||
th_rewriter m_rewriter;
|
||||
|
||||
std::function<void(theory_axiom const &)> m_add_clause;
|
||||
std::function<void(theory_axiom *)> m_add_clause;
|
||||
|
||||
public:
|
||||
|
||||
finite_set_axioms(ast_manager &m) : m(m), u(m) {}
|
||||
finite_set_axioms(ast_manager &m) : m(m), u(m), m_rewriter(m) {}
|
||||
|
||||
void set_add_clause(std::function<void(theory_axiom const &)> &ac) {
|
||||
void set_add_clause(std::function<void(theory_axiom*)> &ac) {
|
||||
m_add_clause = ac;
|
||||
}
|
||||
|
||||
|
|
@ -62,10 +65,23 @@ public:
|
|||
// (x in a) <=> (x == b)
|
||||
void in_singleton_axiom(expr *x, expr *a);
|
||||
|
||||
// a := set.singleton(b)
|
||||
// b in a
|
||||
// b-1 not in a
|
||||
// b+1 not in a
|
||||
void in_singleton_axiom(expr *a);
|
||||
|
||||
// a := set.range(lo, hi)
|
||||
// (x in a) <=> (lo <= x <= hi)
|
||||
void in_range_axiom(expr *x, expr *a);
|
||||
|
||||
// a := set.range(lo, hi)
|
||||
// (not (set.in (- lo 1) a))
|
||||
// (not (set.in (+ hi 1) a))
|
||||
// (set.in lo a)
|
||||
// (set.in hi a)
|
||||
void in_range_axiom(expr *a);
|
||||
|
||||
// a := set.map(f, b)
|
||||
// (x in a) <=> set.map_inverse(f, x, b) in b
|
||||
void in_map_axiom(expr *x, expr *a);
|
||||
|
|
|
|||
|
|
@ -1525,16 +1525,24 @@ namespace smt {
|
|||
}
|
||||
|
||||
lbool context::find_assignment(expr * n) const {
|
||||
if (m.is_false(n))
|
||||
return l_false;
|
||||
|
||||
expr* arg = nullptr;
|
||||
if (m.is_not(n, arg)) {
|
||||
|
||||
if (b_internalized(arg))
|
||||
return ~get_assignment_core(arg);
|
||||
if (m.is_false(arg))
|
||||
return l_true;
|
||||
if (m.is_true(arg))
|
||||
return l_false;
|
||||
return l_undef;
|
||||
}
|
||||
if (b_internalized(n))
|
||||
return get_assignment(n);
|
||||
if (m.is_false(n))
|
||||
return l_false;
|
||||
if (m.is_true(n))
|
||||
return l_true;
|
||||
return l_undef;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@ Abstract:
|
|||
#include "smt/theory_finite_set.h"
|
||||
#include "smt/smt_context.h"
|
||||
#include "smt/smt_model_generator.h"
|
||||
#include "smt/smt_arith_value.h"
|
||||
#include "ast/ast_pp.h"
|
||||
|
||||
namespace smt {
|
||||
|
|
@ -29,8 +30,8 @@ namespace smt {
|
|||
m_axioms(m), m_find(*this)
|
||||
{
|
||||
// Setup the add_clause callback for axioms
|
||||
std::function<void(theory_axiom const &)> add_clause_fn =
|
||||
[this](theory_axiom const &ax) {
|
||||
std::function<void(theory_axiom *)> add_clause_fn =
|
||||
[this](theory_axiom* ax) {
|
||||
this->add_clause(ax);
|
||||
};
|
||||
m_axioms.set_add_clause(add_clause_fn);
|
||||
|
|
@ -67,7 +68,7 @@ namespace smt {
|
|||
theory_var r = theory::mk_var(n);
|
||||
VERIFY(r == static_cast<theory_var>(m_find.mk_var()));
|
||||
SASSERT(r == static_cast<int>(m_var_data.size()));
|
||||
m_var_data.push_back(alloc(var_data));
|
||||
m_var_data.push_back(alloc(var_data, m));
|
||||
ctx.push_trail(push_back_vector<ptr_vector<var_data>>(m_var_data));
|
||||
ctx.push_trail(new_obj_trail(m_var_data.back()));
|
||||
expr *e = n->get_expr();
|
||||
|
|
@ -90,7 +91,8 @@ namespace smt {
|
|||
m_var_data[r]->m_setops.push_back(n);
|
||||
ctx.push_trail(push_back_trail(m_var_data[r]->m_setops));
|
||||
for (auto arg : enode::args(n)) {
|
||||
if (!u.is_finite_set(arg->get_expr()))
|
||||
expr *e = arg->get_expr();
|
||||
if (!u.is_finite_set(e))
|
||||
continue;
|
||||
auto v = arg->get_root()->get_th_var(get_id());
|
||||
SASSERT(v != null_theory_var);
|
||||
|
|
@ -103,6 +105,9 @@ namespace smt {
|
|||
}
|
||||
else if (u.is_map(e) || u.is_filter(e)) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
}
|
||||
else if (u.is_range(e)) {
|
||||
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
|
@ -157,6 +162,7 @@ namespace smt {
|
|||
* for each T := (set.op U V) in d2->setops
|
||||
* then S ~ T by construction
|
||||
* add axioms for (set.in x T)
|
||||
*
|
||||
*/
|
||||
|
||||
void theory_finite_set::add_in_axioms(enode *in, var_data *d) {
|
||||
|
|
@ -276,6 +282,9 @@ namespace smt {
|
|||
if (activate_unasserted_clause())
|
||||
return FC_CONTINUE;
|
||||
|
||||
if (false && activate_range_local_axioms())
|
||||
return FC_CONTINUE;
|
||||
|
||||
if (assume_eqs())
|
||||
return FC_CONTINUE;
|
||||
|
||||
|
|
@ -293,20 +302,38 @@ namespace smt {
|
|||
* - (set.singleton x) -> (set.in x (set.singleton x))
|
||||
* - (set.singleton x) -> (set.size (set.singleton x)) = 1
|
||||
* - (set.empty) -> (set.size (set.empty)) = 0
|
||||
* - (set.range lo hi) -> lo-1,hi+1 not in range, lo, hi in range
|
||||
*/
|
||||
void theory_finite_set::add_immediate_axioms(app* term) {
|
||||
expr *elem = nullptr, *set = nullptr;
|
||||
expr *lo = nullptr, *hi = nullptr;
|
||||
unsigned sz = m_clauses.axioms.size();
|
||||
if (u.is_in(term, elem, set) && u.is_empty(set))
|
||||
add_membership_axioms(elem, set);
|
||||
else if (u.is_subset(term))
|
||||
m_axioms.subset_axiom(term);
|
||||
else if (u.is_singleton(term, elem))
|
||||
m_axioms.in_singleton_axiom(elem, term);
|
||||
else if (u.is_singleton(term))
|
||||
m_axioms.in_singleton_axiom(term);
|
||||
else if (u.is_range(term, lo, hi)) {
|
||||
m_axioms.in_range_axiom(term);
|
||||
auto range = ctx.get_enode(term);
|
||||
auto v = range->get_th_var(get_id());
|
||||
// declare lo-1, lo, hi, hi+1 as range local.
|
||||
// we don't have to add additional range local variables for them.
|
||||
auto &range_local = m_var_data[v]->m_range_local;
|
||||
ctx.push_trail(push_back_vector(range_local));
|
||||
arith_util a(m);
|
||||
range_local.push_back(lo);
|
||||
range_local.push_back(hi);
|
||||
range_local.push_back(a.mk_add(lo, a.mk_int(-1)));
|
||||
range_local.push_back(a.mk_add(hi, a.mk_int(1)));
|
||||
}
|
||||
|
||||
// Assert all new lemmas as clauses
|
||||
for (unsigned i = sz; i < m_clauses.axioms.size(); ++i)
|
||||
for (unsigned i = sz; i < m_clauses.axioms.size(); ++i) {
|
||||
m_clauses.squeue.push_back(i);
|
||||
ctx.push_trail(push_back_vector(m_clauses.squeue));
|
||||
}
|
||||
}
|
||||
|
||||
void theory_finite_set::assign_eh(bool_var v, bool is_true) {
|
||||
|
|
@ -322,8 +349,8 @@ namespace smt {
|
|||
for (unsigned i = 0; i < m_clauses.watch[idx].size(); ++i) {
|
||||
TRACE(finite_set, tout << " watch[" << i << "] size: " << m_clauses.watch[i].size() << "\n";);
|
||||
auto clause_idx = m_clauses.watch[idx][i];
|
||||
auto &ax = m_clauses.axioms[clause_idx];
|
||||
auto &clause = ax.clause;
|
||||
auto* ax = m_clauses.axioms[clause_idx];
|
||||
auto &clause = ax->clause;
|
||||
if (any_of(clause, [&](expr *lit) { return ctx.find_assignment(lit) == l_true; })) {
|
||||
TRACE(finite_set, tout << " satisfied\n";);
|
||||
m_clauses.watch[idx][j++] = clause_idx;
|
||||
|
|
@ -365,6 +392,7 @@ namespace smt {
|
|||
continue; // the clause is removed from this watch list
|
||||
// either all literals are false, or the other watch literal is propagating.
|
||||
m_clauses.squeue.push_back(clause_idx);
|
||||
ctx.push_trail(push_back_vector(m_clauses.squeue));
|
||||
TRACE(finite_set, tout << " propagate clause\n";);
|
||||
m_clauses.watch[idx][j++] = clause_idx;
|
||||
++i;
|
||||
|
|
@ -390,21 +418,22 @@ namespace smt {
|
|||
|
||||
// empty the propagation queue of clauses to assert
|
||||
while (m_clauses.sqhead < m_clauses.squeue.size() && !ctx.inconsistent()) {
|
||||
auto index = m_clauses.squeue[m_clauses.sqhead++];
|
||||
auto const &clause = m_clauses.axioms[index];
|
||||
assert_clause(clause);
|
||||
auto clause_idx = m_clauses.squeue[m_clauses.sqhead++];
|
||||
auto ax = m_clauses.axioms[clause_idx];
|
||||
assert_clause(ax);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void theory_finite_set::activate_clause(unsigned clause_idx) {
|
||||
TRACE(finite_set, tout << "activate_clause: " << clause_idx << "\n";);
|
||||
auto &ax = m_clauses.axioms[clause_idx];
|
||||
auto &clause = ax.clause;
|
||||
auto* ax = m_clauses.axioms[clause_idx];
|
||||
auto &clause = ax->clause;
|
||||
if (any_of(clause, [&](expr *e) { return ctx.find_assignment(e) == l_true; }))
|
||||
return;
|
||||
if (clause.size() <= 1) {
|
||||
m_clauses.squeue.push_back(clause_idx);
|
||||
ctx.push_trail(push_back_vector(m_clauses.squeue));
|
||||
return;
|
||||
}
|
||||
expr *w1 = nullptr, *w2 = nullptr;
|
||||
|
|
@ -430,6 +459,7 @@ namespace smt {
|
|||
}
|
||||
if (!w2) {
|
||||
m_clauses.squeue.push_back(clause_idx);
|
||||
ctx.push_trail(push_back_vector(m_clauses.squeue));
|
||||
return;
|
||||
}
|
||||
bool w1neg = m.is_not(w1, w1);
|
||||
|
|
@ -446,8 +476,8 @@ namespace smt {
|
|||
unsigned index;
|
||||
unwatch_clause(theory_finite_set &th, unsigned index) : th(th), index(index) {}
|
||||
void undo() override {
|
||||
auto &ax = th.m_clauses.axioms[index];
|
||||
auto &clause = ax.clause;
|
||||
auto* ax = th.m_clauses.axioms[index];
|
||||
auto &clause = ax->clause;
|
||||
expr *w1 = clause.get(0);
|
||||
expr *w2 = clause.get(1);
|
||||
bool w1neg = th.m.is_not(w1, w1);
|
||||
|
|
@ -487,8 +517,9 @@ namespace smt {
|
|||
// Create a union expression that is canonical (sorted)
|
||||
auto& set = *m_set_members[r];
|
||||
ptr_vector<expr> elems;
|
||||
for (auto e : set)
|
||||
elems.push_back(e->get_expr());
|
||||
for (auto [e,b] : set)
|
||||
if (b)
|
||||
elems.push_back(e->get_expr());
|
||||
std::sort(elems.begin(), elems.end(), [](expr *a, expr *b) { return a->get_id() < b->get_id(); });
|
||||
expr *s = mk_union(elems.size(), elems.data(), n->get_expr()->get_sort());
|
||||
trail.push_back(s);
|
||||
|
|
@ -569,9 +600,10 @@ namespace smt {
|
|||
}
|
||||
}
|
||||
|
||||
void theory_finite_set::add_clause(theory_axiom const& ax) {
|
||||
void theory_finite_set::add_clause(theory_axiom* ax) {
|
||||
TRACE(finite_set, tout << "add_clause: " << ax << "\n");
|
||||
ctx.push_trail(push_back_vector(m_clauses.axioms));
|
||||
ctx.push_trail(new_obj_trail(ax));
|
||||
m_clauses.axioms.push_back(ax);
|
||||
m_stats.m_num_axioms_created++;
|
||||
}
|
||||
|
|
@ -601,19 +633,19 @@ namespace smt {
|
|||
mg.register_factory(m_factory);
|
||||
collect_members();
|
||||
}
|
||||
|
||||
|
||||
void theory_finite_set::collect_members() {
|
||||
// This method can be used to collect all elements that are members of sets
|
||||
// and ensure that the model factory has values for them.
|
||||
// For now, we rely on the default model construction.
|
||||
reset_set_members();
|
||||
|
||||
for (auto f : m_set_in_decls) {
|
||||
for (auto n : ctx.enodes_of(f)) {
|
||||
SASSERT(u.is_in(n->get_expr()));
|
||||
auto x = n->get_arg(0);
|
||||
if (!ctx.is_relevant(x))
|
||||
if (!ctx.is_relevant(n))
|
||||
continue;
|
||||
x = x->get_root();
|
||||
SASSERT(u.is_in(n->get_expr()));
|
||||
auto x = n->get_arg(0)->get_root();
|
||||
if (x->is_marked())
|
||||
continue;
|
||||
x->set_mark(); // make sure we only do this once per element
|
||||
|
|
@ -622,61 +654,139 @@ namespace smt {
|
|||
continue;
|
||||
if (!u.is_in(p->get_expr()))
|
||||
continue;
|
||||
if (ctx.get_assignment(p->get_expr()) != l_true)
|
||||
continue;
|
||||
bool b = ctx.find_assignment(p->get_expr()) == l_true;
|
||||
auto set = p->get_arg(1)->get_root();
|
||||
auto elem = p->get_arg(0)->get_root();
|
||||
if (elem != x)
|
||||
continue;
|
||||
if (!m_set_members.contains(set))
|
||||
m_set_members.insert(set, alloc(obj_hashtable<enode>));
|
||||
m_set_members.find(set)->insert(x);
|
||||
if (!m_set_members.contains(set)) {
|
||||
using om = obj_map<enode, bool>;
|
||||
auto m = alloc(om);
|
||||
m_set_members.insert(set, m);
|
||||
}
|
||||
m_set_members.find(set)->insert(x, b);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (auto f : m_set_in_decls) {
|
||||
for (auto n : ctx.enodes_of(f)) {
|
||||
SASSERT(u.is_in(n->get_expr()));
|
||||
auto x = n->get_arg(0);
|
||||
x = x->get_root();
|
||||
auto x = n->get_arg(0)->get_root();
|
||||
if (x->is_marked())
|
||||
x->unset_mark();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// to collect range interpretations for S:
|
||||
// walk parents of S that are (set.in x S)
|
||||
// evaluate truth value of (set.in x S), evaluate x
|
||||
// add (eval(x), eval(set.in x S)) into a vector.
|
||||
// sort the vector by eval(x)
|
||||
// [(v1, b1), (v2, b2), ..., (vn, bn)]
|
||||
// for the first i, with b_i true, add the range [vi, v_{i+1}-1].
|
||||
// the last bn should be false by construction.
|
||||
|
||||
void theory_finite_set::add_range_interpretation(enode* s) {
|
||||
vector<std::tuple<rational, enode *, bool>> elements;
|
||||
arith_value av(m);
|
||||
av.init(&ctx);
|
||||
for (auto p : enode::parents(s)) {
|
||||
if (!ctx.is_relevant(p))
|
||||
continue;
|
||||
if (u.is_in(p->get_expr())) {
|
||||
rational val;
|
||||
auto x = p->get_arg(0)->get_root();
|
||||
VERIFY(av.get_value_equiv(x->get_expr(), val) && val.is_int());
|
||||
elements.push_back({val, x, ctx.find_assignment(p->get_expr()) == l_true});
|
||||
}
|
||||
}
|
||||
std::stable_sort(elements.begin(), elements.end(),
|
||||
[](auto const &a, auto const &b) { return std::get<0>(a) < std::get<0>(b); });
|
||||
|
||||
|
||||
}
|
||||
|
||||
struct finite_set_value_proc : model_value_proc {
|
||||
theory_finite_set &th;
|
||||
sort *s = nullptr;
|
||||
obj_hashtable<enode>* m_elements = nullptr;
|
||||
enode *n = nullptr;
|
||||
obj_map<enode, bool>* m_elements = nullptr;
|
||||
|
||||
finite_set_value_proc(theory_finite_set &th, sort *s, obj_hashtable<enode> *elements)
|
||||
: th(th), s(s), m_elements(elements) {}
|
||||
// use range interpretations if there is a range constraint and the base sort is integer
|
||||
bool use_range() {
|
||||
auto &m = th.m;
|
||||
sort *base_s = nullptr;
|
||||
VERIFY(th.u.is_finite_set(n->get_expr()->get_sort(), base_s));
|
||||
arith_util a(m);
|
||||
if (!a.is_int(base_s))
|
||||
return false;
|
||||
func_decl_ref range_fn(th.u.mk_range_decl(), m);
|
||||
return th.ctx.get_num_enodes_of(range_fn.get()) > 0;
|
||||
}
|
||||
|
||||
finite_set_value_proc(theory_finite_set &th, enode *n, obj_map<enode, bool> *elements)
|
||||
: th(th), n(n), m_elements(elements) {}
|
||||
|
||||
void get_dependencies(buffer<model_value_dependency> &result) override {
|
||||
if (!m_elements)
|
||||
return;
|
||||
for (auto v : *m_elements)
|
||||
result.push_back(model_value_dependency(v));
|
||||
bool ur = use_range();
|
||||
for (auto [n, b] : *m_elements)
|
||||
if (!ur || b)
|
||||
result.push_back(model_value_dependency(n));
|
||||
}
|
||||
|
||||
app *mk_value(model_generator &mg, expr_ref_vector const &values) override {
|
||||
SASSERT(values.empty() == !m_elements);
|
||||
if (values.empty())
|
||||
auto s = n->get_sort();
|
||||
if (values.empty())
|
||||
return th.u.mk_empty(s);
|
||||
|
||||
SASSERT(m_elements);
|
||||
SASSERT(values.size() == m_elements->size());
|
||||
return th.mk_union(values.size(), values.data(), s);
|
||||
SASSERT(m_elements);
|
||||
if (use_range())
|
||||
return mk_range_value(mg, values);
|
||||
else
|
||||
return th.mk_union(values.size(), values.data(), s);
|
||||
}
|
||||
|
||||
app *mk_range_value(model_generator &mg, expr_ref_vector const &values) {
|
||||
unsigned i = 0;
|
||||
arith_value av(th.m);
|
||||
av.init(&th.ctx);
|
||||
vector<std::tuple<rational, enode *, bool>> elems;
|
||||
for (auto [n, b] : *m_elements) {
|
||||
rational r;
|
||||
av.get_value(n->get_expr(), r);
|
||||
elems.push_back({r, n, b});
|
||||
}
|
||||
std::stable_sort(elems.begin(), elems.end(),
|
||||
[](auto const &a, auto const &b) { return std::get<0>(a) < std::get<0>(b); });
|
||||
app *range = nullptr;
|
||||
arith_util a(th.m);
|
||||
|
||||
for (unsigned j = 0; j < elems.size(); ++j) {
|
||||
auto [r, n, b] = elems[j];
|
||||
if (!b)
|
||||
continue;
|
||||
rational lo = r;
|
||||
rational hi = j + 1 < elems.size() ? std::get<0>(elems[j + 1]) - rational(1) : r;
|
||||
while (j + 1 < elems.size() && std::get<0>(elems[j + 1]) == hi + rational(1) && std::get<2>(elems[j + 1])) {
|
||||
hi = std::get<0>(elems[j + 1]);
|
||||
++j;
|
||||
}
|
||||
auto new_range = th.u.mk_range(a.mk_int(lo), a.mk_int(hi));
|
||||
range = range ? th.u.mk_union(range, new_range) : new_range;
|
||||
}
|
||||
return range ? range : th.u.mk_empty(n->get_sort());
|
||||
}
|
||||
};
|
||||
|
||||
model_value_proc * theory_finite_set::mk_value(enode * n, model_generator & mg) {
|
||||
TRACE(finite_set, tout << "mk_value: " << mk_pp(n->get_expr(), m) << "\n";);
|
||||
obj_hashtable<enode>*elements = nullptr;
|
||||
sort *s = n->get_expr()->get_sort();
|
||||
m_set_members.find(n->get_root(), elements);
|
||||
return alloc(finite_set_value_proc, *this, s, elements);
|
||||
TRACE(finite_set, tout << "mk_value: " << mk_pp(n->get_expr(), m) << "\n";);
|
||||
obj_map<enode, bool>*elements = nullptr;
|
||||
n = n->get_root();
|
||||
m_set_members.find(n, elements);
|
||||
return alloc(finite_set_value_proc, *this, n, elements);
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -692,10 +802,62 @@ namespace smt {
|
|||
return false;
|
||||
}
|
||||
|
||||
bool theory_finite_set::assert_clause(theory_axiom const &ax) {
|
||||
auto const &clause = ax.clause;
|
||||
/*
|
||||
* Add x-1, x+1 in range axioms for every x in setop(range, S)
|
||||
* then x-1, x+1 will also propagate against setop(range, S).
|
||||
*/
|
||||
bool theory_finite_set::activate_range_local_axioms() {
|
||||
bool new_axiom = false;
|
||||
func_decl_ref range_fn(u.mk_range_decl(), m);
|
||||
for (auto range : ctx.enodes_of(range_fn.get())) {
|
||||
SASSERT(u.is_range(range->get_expr()));
|
||||
auto v = range->get_th_var(get_id());
|
||||
for (auto p : m_var_data[v]->m_parent_setops) {
|
||||
auto w = p->get_th_var(get_id());
|
||||
for (auto in : m_var_data[w]->m_parent_in) {
|
||||
if (activate_range_local_axioms(in->get_arg(0)->get_expr(), range))
|
||||
new_axiom = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return new_axiom;
|
||||
}
|
||||
|
||||
|
||||
bool theory_finite_set::activate_range_local_axioms(expr* elem, enode* range) {
|
||||
auto v = range->get_th_var(get_id());
|
||||
auto &range_local = m_var_data[v]->m_range_local;
|
||||
auto &parent_in = m_var_data[v]->m_parent_in;
|
||||
if (range_local.contains(elem))
|
||||
return false;
|
||||
arith_util a(m);
|
||||
expr_ref lo(a.mk_add(elem, a.mk_int(-1)), m);
|
||||
expr_ref hi(a.mk_add(elem, a.mk_int(1)), m);
|
||||
bool new_axiom = false;
|
||||
if (!range_local.contains(lo) && all_of(parent_in, [lo](enode* in) { return in->get_arg(0)->get_expr() != lo; })) {
|
||||
// lo is not range local and lo is not already in an expression (lo in range)
|
||||
// checking that lo is not in range_local is actually redundant because we will instantiate
|
||||
// membership expressions for every range local expression.
|
||||
// but we keep this set and check for now in case we want to change the saturation strategy.
|
||||
ctx.push_trail(push_back_vector(range_local));
|
||||
range_local.push_back(lo);
|
||||
m_axioms.in_range_axiom(lo, range->get_expr());
|
||||
new_axiom = true;
|
||||
}
|
||||
if (!range_local.contains(hi) &&
|
||||
all_of(parent_in, [&hi](enode *in) { return in->get_arg(0)->get_expr() != hi; })) {
|
||||
ctx.push_trail(push_back_vector(range_local));
|
||||
range_local.push_back(hi);
|
||||
m_axioms.in_range_axiom(hi, range->get_expr());
|
||||
new_axiom = true;
|
||||
}
|
||||
return new_axiom;
|
||||
}
|
||||
|
||||
bool theory_finite_set::assert_clause(theory_axiom const *ax) {
|
||||
expr *unit = nullptr;
|
||||
unsigned undef_count = 0;
|
||||
auto &clause = ax->clause;
|
||||
for (auto e : clause) {
|
||||
switch (ctx.find_assignment(e)) {
|
||||
case l_true:
|
||||
|
|
@ -719,8 +881,8 @@ namespace smt {
|
|||
}
|
||||
m_stats.m_num_axioms_propagated++;
|
||||
enode_pair_vector eqs;
|
||||
auto just = ext_theory_propagation_justification(get_id(), ctx, antecedent.size(), antecedent.data(), eqs.size(), eqs.data(), lit, ax.params.size(),
|
||||
ax.params.data());
|
||||
auto just = ext_theory_propagation_justification(get_id(), ctx, antecedent.size(), antecedent.data(), eqs.size(), eqs.data(),
|
||||
lit, ax->params.size(), ax->params.data());
|
||||
auto bjust = ctx.mk_justification(just);
|
||||
if (ctx.clause_proof_active()) {
|
||||
// assume all justifications is a non-empty list of symbol parameters
|
||||
|
|
@ -729,8 +891,8 @@ namespace smt {
|
|||
// this misses conflicts at base level.
|
||||
proof_ref pr(m);
|
||||
expr_ref_vector args(m);
|
||||
for (auto const& p : ax.params)
|
||||
args.push_back(m.mk_const(p.get_symbol(), m.mk_proof_sort()));
|
||||
for (auto const& p : ax->params)
|
||||
args.push_back(m.mk_const(p.get_symbol(), m.mk_proof_sort()));
|
||||
pr = m.mk_app(m.get_family_name(get_family_id()), args.size(), args.data(), m.mk_proof_sort());
|
||||
justification_proof_wrapper jp(ctx, pr.get(), false);
|
||||
ctx.get_clause_proof().propagate(lit, &jp, antecedent);
|
||||
|
|
@ -748,7 +910,7 @@ namespace smt {
|
|||
literal_vector lclause;
|
||||
for (auto e : clause)
|
||||
lclause.push_back(mk_literal(e));
|
||||
ctx.mk_th_axiom(get_id(), lclause, ax.params.size(), ax.params.data());
|
||||
ctx.mk_th_axiom(get_id(), lclause, ax->params.size(), ax->params.data());
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -101,13 +101,15 @@ namespace smt {
|
|||
friend struct finite_set_value_proc;
|
||||
|
||||
struct var_data {
|
||||
ptr_vector<enode> m_setops;
|
||||
ptr_vector<enode> m_parent_in;
|
||||
ptr_vector<enode> m_parent_setops;
|
||||
ptr_vector<enode> m_setops; // set operations equivalent to this
|
||||
ptr_vector<enode> m_parent_in; // x in A expressions
|
||||
ptr_vector<enode> m_parent_setops; // set of set expressions where this appears as sub-expression
|
||||
expr_ref_vector m_range_local; // set of range local variables associated with range
|
||||
var_data(ast_manager &m) : m_range_local(m) {}
|
||||
};
|
||||
|
||||
struct theory_clauses {
|
||||
vector<theory_axiom> axioms; // vector of created theory axioms
|
||||
ptr_vector<theory_axiom> axioms; // vector of created theory axioms
|
||||
unsigned aqhead = 0; // queue head of created axioms
|
||||
unsigned_vector squeue; // propagation queue of axioms to be added to the solver
|
||||
unsigned sqhead = 0; // head into propagation queue axioms to be added to solver
|
||||
|
|
@ -133,12 +135,16 @@ namespace smt {
|
|||
}
|
||||
};
|
||||
|
||||
struct range {
|
||||
rational lo, hi;
|
||||
};
|
||||
|
||||
finite_set_util u;
|
||||
finite_set_axioms m_axioms;
|
||||
th_union_find m_find;
|
||||
theory_clauses m_clauses;
|
||||
finite_set_factory *m_factory = nullptr;
|
||||
obj_map<enode, obj_hashtable<enode> *> m_set_members;
|
||||
obj_map<enode, obj_map<enode, bool> *> m_set_members;
|
||||
ptr_vector<func_decl> m_set_in_decls;
|
||||
ptr_vector<var_data> m_var_data;
|
||||
stats m_stats;
|
||||
|
|
@ -172,11 +178,13 @@ namespace smt {
|
|||
|
||||
// Helper methods for axiom instantiation
|
||||
void add_membership_axioms(expr* elem, expr* set);
|
||||
void add_clause(theory_axiom const& ax);
|
||||
bool assert_clause(theory_axiom const &ax);
|
||||
void add_clause(theory_axiom * ax);
|
||||
bool assert_clause(theory_axiom const *ax);
|
||||
void activate_clause(unsigned index);
|
||||
bool activate_unasserted_clause();
|
||||
void add_immediate_axioms(app *atom);
|
||||
bool activate_range_local_axioms();
|
||||
bool activate_range_local_axioms(expr *elem, enode *range);
|
||||
bool assume_eqs();
|
||||
bool is_new_axiom(expr *a, expr *b);
|
||||
app *mk_union(unsigned num_elems, expr *const *elems, sort* set_sort);
|
||||
|
|
@ -184,6 +192,7 @@ namespace smt {
|
|||
// model construction
|
||||
void collect_members();
|
||||
void reset_set_members();
|
||||
void add_range_interpretation(enode *s);
|
||||
|
||||
// manage union-find of theory variables
|
||||
theory_var find(theory_var v) const { return m_find.find(v); }
|
||||
|
|
|
|||
|
|
@ -130,14 +130,12 @@ static void tst_finite_set_map_filter() {
|
|||
static void tst_finite_set_is_value() {
|
||||
ast_manager m;
|
||||
reg_decl_plugins(m);
|
||||
|
||||
|
||||
|
||||
|
||||
finite_set_util fsets(m);
|
||||
arith_util arith(m);
|
||||
finite_set_decl_plugin* plugin = static_cast<finite_set_decl_plugin*>(m.get_plugin(fsets.get_family_id()));
|
||||
|
||||
// Create Int sort and finite set sort
|
||||
// Create Int sort and finite set sort
|
||||
|
||||
// Test with Int sort (should be fully interpreted)
|
||||
sort_ref int_sort(arith.mk_int(), m);
|
||||
|
|
@ -145,7 +143,7 @@ static void tst_finite_set_is_value() {
|
|||
sort_ref finite_set_int(m.mk_sort(fsets.get_family_id(), FINITE_SET_SORT, 1, &int_param), m);
|
||||
|
||||
|
||||
// Test 1: Empty set is a value
|
||||
// Test 1: Empty set is a value
|
||||
app_ref empty_set(fsets.mk_empty(finite_set_int), m);
|
||||
ENSURE(plugin->is_value(empty_set.get()));
|
||||
|
||||
|
|
@ -179,19 +177,19 @@ static void tst_finite_set_is_value() {
|
|||
app_ref union_triple(fsets.mk_union(union_temp, singleton_nine), m);
|
||||
ENSURE(plugin->is_value(union_triple.get()));
|
||||
|
||||
// Test 8: Range is NOT a value (it's not a union of empty/singletons)
|
||||
// Test 8: Range is a value
|
||||
expr_ref zero(arith.mk_int(0), m);
|
||||
expr_ref ten(arith.mk_int(10), m);
|
||||
app_ref range_set(fsets.mk_range(zero, ten), m);
|
||||
ENSURE(!plugin->is_value(range_set.get()));
|
||||
ENSURE(plugin->is_value(range_set.get()));
|
||||
|
||||
// Test 9: Union with range is NOT a value
|
||||
// Test 9: Union with range is a value
|
||||
app_ref union_with_range(fsets.mk_union(singleton_five, range_set), m);
|
||||
ENSURE(!plugin->is_value(union_with_range.get()));
|
||||
ENSURE(plugin->is_value(union_with_range.get()));
|
||||
|
||||
// Test 10: Intersect is NOT a value
|
||||
// Test 10: Intersect is a value
|
||||
app_ref intersect_set(fsets.mk_intersect(singleton_five, singleton_seven), m);
|
||||
ENSURE(!plugin->is_value(intersect_set.get()));
|
||||
ENSURE(plugin->is_value(intersect_set.get()));
|
||||
ENSURE(m.is_fully_interp(int_sort));
|
||||
ENSURE(m.is_fully_interp(finite_set_int));
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue