mirror of
https://github.com/Z3Prover/z3
synced 2025-05-03 22:05:45 +00:00
code review (#98)
* streamline type conversions Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * nits Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * updates Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * na Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * use fixed array allocation for sum Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * use fixed array allocation for sum Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * revert creation time allocation Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * fix assertion Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * separate grobner_core Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * grobner_core simplifications Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
9661f75246
commit
14094bb052
12 changed files with 685 additions and 717 deletions
|
@ -24,27 +24,60 @@ using namespace nla;
|
|||
|
||||
grobner::grobner(core *c, intervals *s)
|
||||
: common(c, s),
|
||||
m_nl_gb_exhausted(false),
|
||||
m_dep_manager(m_val_manager, m_alloc),
|
||||
m_changed_leading_term(false),
|
||||
m_look_for_fixed_vars_in_rows(false)
|
||||
{}
|
||||
m_gc(m_nex_creator,
|
||||
c->m_reslim,
|
||||
c->m_nla_settings.grobner_eqs_threshold()
|
||||
),
|
||||
m_look_for_fixed_vars_in_rows(false) {
|
||||
std::function<void (lp::explanation const& e, std::ostream & out)> de;
|
||||
de = [this](lp::explanation const& e, std::ostream& out) { m_core->print_explanation(e, out); };
|
||||
m_gc = de;
|
||||
}
|
||||
|
||||
void grobner::grobner_lemmas() {
|
||||
c().lp_settings().stats().m_grobner_calls++;
|
||||
init();
|
||||
ptr_vector<equation> eqs;
|
||||
ptr_vector<grobner_core::equation> eqs;
|
||||
TRACE("grobner", tout << "before:\n"; display(tout););
|
||||
compute_basis();
|
||||
TRACE("grobner", tout << "after:\n"; display(tout););
|
||||
}
|
||||
|
||||
bool grobner::internalize_gb_eq(equation* ) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
return false;
|
||||
void grobner::check_eq(grobner_core::equation* target) {
|
||||
if (m_intervals->check_nex(target->expr(), target->dep())) {
|
||||
TRACE("grobner", tout << "created a lemma for "; m_gc.display_equation(tout, *target) << "\n";
|
||||
tout << "vars = \n";
|
||||
for (lpvar j : get_vars_of_expr(target->expr())) {
|
||||
c().print_var(j, tout);
|
||||
}
|
||||
tout << "\ntarget->expr() val = " << get_nex_val(target->expr(), [this](unsigned j) { return c().val(j); }) << "\n";);
|
||||
register_report();
|
||||
}
|
||||
}
|
||||
|
||||
void grobner::add_var_and_its_factors_to_q_and_collect_new_rows(lpvar j, std::queue<lpvar> & q) {
|
||||
void grobner::register_report() {
|
||||
m_reported++;
|
||||
}
|
||||
|
||||
void grobner::compute_basis(){
|
||||
compute_basis_init();
|
||||
if (m_rows.size() < 2) {
|
||||
TRACE("nla_grobner", tout << "there are only " << m_rows.size() << " rows, exiting compute_basis()\n";);
|
||||
return;
|
||||
}
|
||||
m_gc.compute_basis_loop();
|
||||
|
||||
TRACE("grobner", display(tout););
|
||||
for (grobner_core::equation* e : m_gc.equations()) {
|
||||
check_eq(e);
|
||||
}
|
||||
}
|
||||
|
||||
void grobner::compute_basis_init(){
|
||||
c().lp_settings().stats().m_grobner_basis_computatins++;
|
||||
}
|
||||
|
||||
void grobner::add_var_and_its_factors_to_q_and_collect_new_rows(lpvar j, svector<lpvar> & q) {
|
||||
if (c().active_var_set_contains(j) || c().var_is_fixed(j)) return;
|
||||
TRACE("grobner", tout << "j = " << j << ", "; c().print_var(j, tout) << "\n";);
|
||||
const auto& matrix = c().m_lar_solver.A_r();
|
||||
|
@ -69,22 +102,22 @@ void grobner::add_var_and_its_factors_to_q_and_collect_new_rows(lpvar j, std::qu
|
|||
const monic& m = c().emons()[j];
|
||||
for (auto fcn : factorization_factory_imp(m, c())) {
|
||||
for (const factor& fc: fcn) {
|
||||
q.push(var(fc));
|
||||
q.push_back(var(fc));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void grobner::find_nl_cluster() {
|
||||
prepare_rows_and_active_vars();
|
||||
std::queue<lpvar> q;
|
||||
svector<lpvar> q;
|
||||
for (lpvar j : c().m_to_refine) {
|
||||
TRACE("grobner", c().print_monic(c().emons()[j], tout) << "\n";);
|
||||
q.push(j);
|
||||
q.push_back(j);
|
||||
}
|
||||
|
||||
|
||||
while (!q.empty()) {
|
||||
lpvar j = q.front();
|
||||
q.pop();
|
||||
lpvar j = q.back();
|
||||
q.pop_back();
|
||||
add_var_and_its_factors_to_q_and_collect_new_rows(j, q);
|
||||
}
|
||||
set_active_vars_weights();
|
||||
|
@ -97,6 +130,29 @@ void grobner::prepare_rows_and_active_vars() {
|
|||
c().clear_and_resize_active_var_set();
|
||||
}
|
||||
|
||||
|
||||
std::unordered_set<lpvar> grobner::get_vars_of_expr_with_opening_terms(const nex *e ) {
|
||||
auto ret = get_vars_of_expr(e);
|
||||
auto & ls = c().m_lar_solver;
|
||||
do {
|
||||
svector<lpvar> added;
|
||||
for (lpvar j : ret) {
|
||||
if (ls.column_corresponds_to_term(j)) {
|
||||
const auto & t = c().m_lar_solver.get_term(ls.local_to_external(j));
|
||||
for (auto p : t) {
|
||||
if (ret.find(p.var()) == ret.end())
|
||||
added.push_back(p.var());
|
||||
}
|
||||
}
|
||||
}
|
||||
if (added.size() == 0)
|
||||
return ret;
|
||||
for (lpvar j: added)
|
||||
ret.insert(j);
|
||||
added.clear();
|
||||
} while (true);
|
||||
}
|
||||
|
||||
void grobner::display_matrix(std::ostream & out) const {
|
||||
const auto& matrix = c().m_lar_solver.A_r();
|
||||
out << m_rows.size() << " rows" <<"\n";
|
||||
|
@ -107,56 +163,106 @@ void grobner::display_matrix(std::ostream & out) const {
|
|||
}
|
||||
}
|
||||
|
||||
std::ostream & grobner::display(std::ostream & out) const {
|
||||
display_equations(out, m_to_superpose, "m_to_superpose:");
|
||||
display_equations(out, m_to_simplify, "m_to_simplify:");
|
||||
return out;
|
||||
}
|
||||
|
||||
common::ci_dependency* grobner::dep_from_vector(svector<lp::constraint_index> & cs) {
|
||||
ci_dependency * d = nullptr;
|
||||
for (auto c : cs)
|
||||
d = m_dep_manager.mk_join(d, m_dep_manager.mk_leaf(c));
|
||||
return d;
|
||||
}
|
||||
|
||||
void grobner::add_row(unsigned i) {
|
||||
const auto& row = c().m_lar_solver.A_r().m_rows[i];
|
||||
TRACE("grobner", tout << "adding row to gb\n"; c().m_lar_solver.print_row(row, tout) << '\n';
|
||||
for (auto p : row) c().print_var(p.var(), tout) << "\n"; );
|
||||
nex_sum * ns = m_nex_creator.mk_sum();
|
||||
ci_dependency* dep = create_sum_from_row(row, m_nex_creator, *ns, m_look_for_fixed_vars_in_rows, &m_dep_manager);
|
||||
nex* e = m_nex_creator.simplify(ns);
|
||||
TRACE("grobner", tout << "e = " << *e << "\n";);
|
||||
assert_eq_0(e, dep);
|
||||
}
|
||||
|
||||
void grobner::init() {
|
||||
|
||||
m_reported = 0;
|
||||
del_equations(0);
|
||||
SASSERT(m_equations_to_delete.size() == 0);
|
||||
m_to_superpose.reset();
|
||||
m_to_simplify.reset();
|
||||
m_gc.reset();
|
||||
|
||||
m_reported = 0;
|
||||
find_nl_cluster();
|
||||
c().clear_and_resize_active_var_set();
|
||||
TRACE("grobner", tout << "m_rows.size() = " << m_rows.size() << "\n";);
|
||||
for (unsigned i : m_rows) {
|
||||
add_row(i);
|
||||
}
|
||||
for (equation* eq : m_to_simplify) {
|
||||
eq->expr() = m_nex_creator.simplify(eq->expr());
|
||||
}
|
||||
}
|
||||
|
||||
bool grobner::is_trivial(equation* eq) const {
|
||||
void grobner::add_row(unsigned i) {
|
||||
const auto& row = c().m_lar_solver.A_r().m_rows[i];
|
||||
TRACE("grobner", tout << "adding row to gb\n"; c().m_lar_solver.print_row(row, tout) << '\n';
|
||||
for (auto p : row) c().print_var(p.var(), tout) << "\n"; );
|
||||
nex_creator::sum_factory sf(m_nex_creator);
|
||||
ci_dependency* dep = create_sum_from_row(row, m_nex_creator, sf, m_look_for_fixed_vars_in_rows, &m_gc.dep());
|
||||
nex* e = m_nex_creator.simplify(sf.mk());
|
||||
TRACE("grobner", tout << "e = " << *e << "\n";);
|
||||
m_gc.assert_eq_0(e, dep);
|
||||
}
|
||||
|
||||
/// -------------------------------
|
||||
/// grobner_core
|
||||
|
||||
bool grobner_core::compute_basis_loop() {
|
||||
while (!done()) {
|
||||
if (compute_basis_step()) {
|
||||
TRACE("grobner", tout << "progress in compute_basis_step\n";);
|
||||
return true;
|
||||
}
|
||||
TRACE("grobner", tout << "continue compute_basis_loop\n";);
|
||||
}
|
||||
TRACE("grobner", tout << "return false from compute_basis_loop\n";);
|
||||
TRACE("grobner_stats", print_stats(tout););
|
||||
set_gb_exhausted();
|
||||
return false;
|
||||
}
|
||||
|
||||
// return true iff cannot pick_next()
|
||||
bool grobner_core::compute_basis_step() {
|
||||
equation* eq = pick_next();
|
||||
if (!eq) {
|
||||
TRACE("grobner", tout << "cannot pick an equation\n";);
|
||||
return true;
|
||||
}
|
||||
m_stats.m_compute_steps++;
|
||||
simplify_using_to_superpose(*eq);
|
||||
if (canceled()) return false;
|
||||
if (!simplify_to_superpose_with_eq(eq))
|
||||
return false;
|
||||
TRACE("grobner", tout << "eq = "; display_equation(tout, *eq););
|
||||
superpose(eq);
|
||||
insert_to_superpose(eq);
|
||||
simplify_m_to_simplify(eq);
|
||||
TRACE("grobner", tout << "end of iteration:\n"; display(tout););
|
||||
return false;
|
||||
}
|
||||
|
||||
grobner_core::equation* grobner_core::pick_next() {
|
||||
equation* r = nullptr;
|
||||
ptr_buffer<equation> to_delete;
|
||||
for (equation* curr : m_to_simplify) {
|
||||
if (is_trivial(curr))
|
||||
to_delete.push_back(curr);
|
||||
else if (is_simpler(curr, r)) {
|
||||
TRACE("grobner", tout << "preferring "; display_equation(tout, *curr););
|
||||
r = curr;
|
||||
}
|
||||
}
|
||||
for (equation* e : to_delete)
|
||||
del_equation(e);
|
||||
if (r)
|
||||
m_to_simplify.erase(r);
|
||||
TRACE("grobner", tout << "selected equation: "; if (!r) tout << "<null>\n"; else display_equation(tout, *r););
|
||||
return r;
|
||||
}
|
||||
grobner_core::equation_set const& grobner_core::equations() {
|
||||
m_all_eqs.reset();
|
||||
for (auto e : m_to_simplify) m_all_eqs.insert(e);
|
||||
for (auto e : m_to_superpose) m_all_eqs.insert(e);
|
||||
return m_all_eqs;
|
||||
}
|
||||
|
||||
void grobner_core::reset() {
|
||||
del_equations(0);
|
||||
SASSERT(m_equations_to_delete.size() == 0);
|
||||
m_to_superpose.reset();
|
||||
m_to_simplify.reset();
|
||||
m_stats.reset();
|
||||
}
|
||||
|
||||
bool grobner_core::is_trivial(equation* eq) const {
|
||||
SASSERT(m_nex_creator.is_simplified(*eq->expr()));
|
||||
return eq->expr()->size() == 0;
|
||||
}
|
||||
|
||||
// returns true if eq1 is simpler than eq2
|
||||
bool grobner::is_simpler(equation * eq1, equation * eq2) {
|
||||
bool grobner_core::is_simpler(equation * eq1, equation * eq2) {
|
||||
if (!eq2)
|
||||
return true;
|
||||
if (is_trivial(eq1))
|
||||
|
@ -166,7 +272,7 @@ bool grobner::is_simpler(equation * eq1, equation * eq2) {
|
|||
return m_nex_creator.gt(eq2->expr(), eq1->expr());
|
||||
}
|
||||
|
||||
void grobner::del_equation(equation * eq) {
|
||||
void grobner_core::del_equation(equation * eq) {
|
||||
m_to_superpose.erase(eq);
|
||||
m_to_simplify.erase(eq);
|
||||
SASSERT(m_equations_to_delete[eq->m_bidx] == eq);
|
||||
|
@ -174,56 +280,33 @@ void grobner::del_equation(equation * eq) {
|
|||
dealloc(eq);
|
||||
}
|
||||
|
||||
grobner::equation* grobner::pick_next() {
|
||||
equation * r = nullptr;
|
||||
ptr_buffer<equation> to_delete;
|
||||
for (equation * curr : m_to_simplify) {
|
||||
if (is_trivial(curr))
|
||||
to_delete.push_back(curr);
|
||||
else if (is_simpler(curr, r)) {
|
||||
TRACE("grobner", tout << "preferring "; display_equation(tout, *curr););
|
||||
r = curr;
|
||||
}
|
||||
}
|
||||
for (equation * e : to_delete)
|
||||
del_equation(e);
|
||||
if (r)
|
||||
m_to_simplify.erase(r);
|
||||
TRACE("grobner", tout << "selected equation: "; if (!r) tout << "<null>\n"; else display_equation(tout, *r););
|
||||
return r;
|
||||
}
|
||||
|
||||
grobner::equation* grobner::simplify_using_to_superpose(equation* eq) {
|
||||
void grobner_core::simplify_using_to_superpose(equation& eq) {
|
||||
bool result = false;
|
||||
bool simplified;
|
||||
TRACE("grobner", tout << "simplifying: "; display_equation(tout, *eq); tout << "using equalities of m_to_superpose of size " << m_to_superpose.size() << "\n";);
|
||||
TRACE("grobner", tout << "simplifying: "; display_equation(tout, eq); tout << "using equalities of m_to_superpose of size " << m_to_superpose.size() << "\n";);
|
||||
do {
|
||||
simplified = false;
|
||||
for (equation* p : m_to_superpose) {
|
||||
if (simplify_source_target(p, eq)) {
|
||||
if (simplify_source_target(p, &eq)) {
|
||||
result = true;
|
||||
simplified = true;
|
||||
}
|
||||
if (canceled()) {
|
||||
return nullptr;
|
||||
}
|
||||
if (eq->expr()->is_scalar()) {
|
||||
if (canceled() || eq.expr()->is_scalar()) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
while (simplified && !eq->expr()->is_scalar());
|
||||
while (simplified && !eq.expr()->is_scalar());
|
||||
|
||||
TRACE("grobner", tout << "simplification result: "; display_equation(tout, *eq););
|
||||
return result ? eq : nullptr;
|
||||
TRACE("grobner", tout << "simplification result: "; display_equation(tout, eq););
|
||||
}
|
||||
|
||||
const nex* grobner::get_highest_monomial(const nex* e) const {
|
||||
const nex* grobner_core::get_highest_monomial(const nex* e) const {
|
||||
switch (e->type()) {
|
||||
case expr_type::MUL:
|
||||
return to_mul(e);
|
||||
return e;
|
||||
case expr_type::SUM:
|
||||
return *(to_sum(e)->begin());
|
||||
return e->to_sum()[0];
|
||||
case expr_type::VAR:
|
||||
return e;
|
||||
default:
|
||||
|
@ -234,8 +317,8 @@ const nex* grobner::get_highest_monomial(const nex* e) const {
|
|||
// source 3f + k + l = 0, so f = (-k - l)/3
|
||||
// target 2fg + 3fp + e = 0
|
||||
// target is replaced by 2(-k/3 - l/3)g + 3(-k/3 - l/3)p + e = -2/3kg -2/3lg - kp -lp + e
|
||||
bool grobner::simplify_target_monomials(equation * source, equation * target) {
|
||||
auto * high_mon = get_highest_monomial(source->expr());
|
||||
bool grobner_core::simplify_target_monomials(equation * source, equation * target) {
|
||||
nex const* high_mon = get_highest_monomial(source->expr());
|
||||
if (high_mon == nullptr)
|
||||
return false;
|
||||
SASSERT(high_mon->all_factors_are_elementary());
|
||||
|
@ -252,26 +335,26 @@ bool grobner::simplify_target_monomials(equation * source, equation * target) {
|
|||
return false;
|
||||
}
|
||||
|
||||
return simplify_target_monomials_sum(source, target, targ_sum, high_mon);
|
||||
return simplify_target_monomials_sum(source, target, targ_sum, *high_mon);
|
||||
}
|
||||
|
||||
unsigned grobner::find_divisible(nex_sum* targ_sum, const nex* high_mon) const {
|
||||
unsigned grobner_core::find_divisible(nex_sum const& targ_sum, const nex& high_mon) const {
|
||||
unsigned j = 0;
|
||||
for (auto t : *targ_sum) {
|
||||
for (auto t : targ_sum) {
|
||||
if (divide_ignore_coeffs_check_only(t, high_mon)) {
|
||||
TRACE("grobner_d", tout << "yes div: " << *t << " / " << *high_mon << "\n";);
|
||||
TRACE("grobner_d", tout << "yes div: " << *t << " / " << high_mon << "\n";);
|
||||
return j;
|
||||
}
|
||||
++j;
|
||||
}
|
||||
TRACE("grobner_d", tout << "no div: " << *targ_sum << " / " << *high_mon << "\n";);
|
||||
TRACE("grobner_d", tout << "no div: " << targ_sum << " / " << high_mon << "\n";);
|
||||
return -1;
|
||||
}
|
||||
|
||||
bool grobner::simplify_target_monomials_sum(equation * source,
|
||||
bool grobner_core::simplify_target_monomials_sum(equation * source,
|
||||
equation * target, nex_sum* targ_sum,
|
||||
const nex* high_mon) {
|
||||
unsigned j = find_divisible(targ_sum, high_mon);
|
||||
const nex& high_mon) {
|
||||
unsigned j = find_divisible(*targ_sum, high_mon);
|
||||
if (j + 1 == 0)
|
||||
return false;
|
||||
m_changed_leading_term = (j == 0);
|
||||
|
@ -287,88 +370,93 @@ bool grobner::simplify_target_monomials_sum(equation * source,
|
|||
return true;
|
||||
}
|
||||
|
||||
bool grobner::divide_ignore_coeffs_check_only_nex_mul(nex_mul* t , const nex* h) const {
|
||||
TRACE("grobner_d", tout << "t = " << *t << ", h=" << *h << "\n";);
|
||||
SASSERT(m_nex_creator.is_simplified(*t) && m_nex_creator.is_simplified(*h));
|
||||
bool grobner_core::divide_ignore_coeffs_check_only_nex_mul(nex_mul const& t , const nex& h) const {
|
||||
TRACE("grobner_d", tout << "t = " << t << ", h=" << h << "\n";);
|
||||
SASSERT(m_nex_creator.is_simplified(t) && m_nex_creator.is_simplified(h));
|
||||
unsigned j = 0; // points to t
|
||||
for(unsigned k = 0; k < h->number_of_child_powers(); k++) {
|
||||
lpvar h_var = to_var(h->get_child_exp(k))->var();
|
||||
for(unsigned k = 0; k < h.number_of_child_powers(); k++) {
|
||||
lpvar h_var = h.get_child_exp(k)->to_var().var();
|
||||
bool p_swallowed = false;
|
||||
for (; j < t->size() && !p_swallowed; j++) {
|
||||
auto &tp = (*t)[j];
|
||||
for (; j < t.size() && !p_swallowed; j++) {
|
||||
const nex_pow& tp = t[j];
|
||||
if (tp.e()->to_var().var() == h_var) {
|
||||
if (tp.pow() >= h->get_child_pow(k)) {
|
||||
if (tp.pow() >= h.get_child_pow(k)) {
|
||||
p_swallowed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!p_swallowed) {
|
||||
TRACE("grobner_d", tout << "no div " << *t << " / " << *h << "\n";);
|
||||
TRACE("grobner_d", tout << "no div " << t << " / " << h << "\n";);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
TRACE("grobner_d", tout << "division " << *t << " / " << *h << "\n";);
|
||||
TRACE("grobner_d", tout << "division " << t << " / " << h << "\n";);
|
||||
return true;
|
||||
}
|
||||
|
||||
// return true if h divides t
|
||||
bool grobner::divide_ignore_coeffs_check_only(nex* n , const nex* h) const {
|
||||
bool grobner_core::divide_ignore_coeffs_check_only(nex const* n , const nex& h) const {
|
||||
if (n->is_mul())
|
||||
return divide_ignore_coeffs_check_only_nex_mul(to_mul(n), h);
|
||||
return divide_ignore_coeffs_check_only_nex_mul(n->to_mul(), h);
|
||||
if (!n->is_var())
|
||||
return false;
|
||||
|
||||
const nex_var * v = to_var(n);
|
||||
if (h->is_var()) {
|
||||
return v->var() == h->to_var().var();
|
||||
if (h.is_var()) {
|
||||
return v->var() == h.to_var().var();
|
||||
}
|
||||
|
||||
if (h->is_mul() || h->is_var()) {
|
||||
if (h->number_of_child_powers() > 1)
|
||||
if (h.is_mul()) {
|
||||
if (h.number_of_child_powers() > 1)
|
||||
return false;
|
||||
if (h->get_child_pow(0) != 1)
|
||||
if (h.get_child_pow(0) != 1)
|
||||
return false;
|
||||
const nex* e = h->get_child_exp(0);
|
||||
const nex* e = h.get_child_exp(0);
|
||||
return e->is_var() && e->to_var().var() == v->var();
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
nex_mul * grobner::divide_ignore_coeffs_perform_nex_mul(nex_mul* t, const nex* h) {
|
||||
nex_mul * r = m_nex_creator.mk_mul();
|
||||
nex_mul * grobner_core::divide_ignore_coeffs_perform_nex_mul(nex_mul const& t, const nex& h) {
|
||||
|
||||
m_nex_creator.m_mk_mul.reset();
|
||||
|
||||
unsigned j = 0; // j points to t and k runs over h
|
||||
for(unsigned k = 0; k < h->number_of_child_powers(); k++) {
|
||||
lpvar h_var = to_var(h->get_child_exp(k))->var();
|
||||
for (; j < t->size(); j++) {
|
||||
auto &tp = (*t)[j];
|
||||
for(unsigned k = 0; k < h.number_of_child_powers(); k++) {
|
||||
lpvar h_var = to_var(h.get_child_exp(k))->var();
|
||||
for (; j < t.size(); j++) {
|
||||
auto const &tp = t[j];
|
||||
if (tp.e()->to_var().var() == h_var) {
|
||||
unsigned h_pow = h->get_child_pow(k);
|
||||
unsigned h_pow = h.get_child_pow(k);
|
||||
SASSERT(tp.pow() >= h_pow);
|
||||
j++;
|
||||
if (tp.pow() > h_pow) {
|
||||
r->add_child_in_power(tp.e(), tp.pow() - h_pow);
|
||||
m_nex_creator.m_mk_mul *= nex_pow(tp.e(), tp.pow() - h_pow);
|
||||
}
|
||||
break;
|
||||
} else {
|
||||
r->add_child_in_power(tp);
|
||||
m_nex_creator.m_mk_mul *= tp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (; j < t->size(); j++) {
|
||||
r->add_child_in_power((*t)[j]);
|
||||
for (; j < t.size(); j++) {
|
||||
m_nex_creator.m_mk_mul *= t[j];
|
||||
}
|
||||
|
||||
nex_mul* r = m_nex_creator.m_mk_mul.mk();
|
||||
TRACE("grobner", tout << "r = " << *r << " = " << t << " / " << h << "\n";);
|
||||
|
||||
|
||||
TRACE("grobner_d", tout << "r = " << *r << " = " << *t << " / " << *h << "\n";);
|
||||
TRACE("grobner_d", tout << "r = " << *r << " = " << t << " / " << h << "\n";);
|
||||
return r;
|
||||
}
|
||||
|
||||
// perform the division t / h, but ignores the coefficients
|
||||
// h does not change
|
||||
nex_mul * grobner::divide_ignore_coeffs_perform(nex* e, const nex* h) {
|
||||
nex_mul * grobner_core::divide_ignore_coeffs_perform(nex* e, const nex& h) {
|
||||
if (e->is_mul())
|
||||
return divide_ignore_coeffs_perform_nex_mul(to_mul(e), h);
|
||||
return divide_ignore_coeffs_perform_nex_mul(e->to_mul(), h);
|
||||
SASSERT(e->is_var());
|
||||
return m_nex_creator.mk_mul(); // return the empty nex_mul
|
||||
}
|
||||
|
@ -377,9 +465,9 @@ nex_mul * grobner::divide_ignore_coeffs_perform(nex* e, const nex* h) {
|
|||
// and b*high_mon + e = 0, so high_mon = -e/b
|
||||
// then targ_sum->children()[j] = - (c/b) * e*p
|
||||
|
||||
void grobner::simplify_target_monomials_sum_j(equation * source, equation *target, nex_sum* targ_sum, const nex* high_mon, unsigned j, bool test_divisibility) {
|
||||
void grobner_core::simplify_target_monomials_sum_j(equation * source, equation *target, nex_sum* targ_sum, const nex& high_mon, unsigned j, bool test_divisibility) {
|
||||
nex * ej = (*targ_sum)[j];
|
||||
TRACE("grobner_d", tout << "high_mon = " << *high_mon << ", ej = " << *ej << "\n";);
|
||||
TRACE("grobner_d", tout << "high_mon = " << high_mon << ", ej = " << *ej << "\n";);
|
||||
if (test_divisibility && !divide_ignore_coeffs_check_only(ej, high_mon)) {
|
||||
TRACE("grobner_d", tout << "no div\n";);
|
||||
return;
|
||||
|
@ -388,15 +476,16 @@ void grobner::simplify_target_monomials_sum_j(equation * source, equation *targe
|
|||
TRACE("grobner_d", tout << "ej_over_high_mon = " << *ej_over_high_mon << "\n";);
|
||||
rational c = ej->is_mul()? to_mul(ej)->coeff() : rational(1);
|
||||
TRACE("grobner_d", tout << "c = " << c << "\n";);
|
||||
|
||||
nex_sum * ej_sum = m_nex_creator.mk_sum();
|
||||
(*targ_sum)[j] = ej_sum;
|
||||
add_mul_skip_first(ej_sum ,-c/high_mon->coeff(), source->expr(), ej_over_high_mon);
|
||||
|
||||
nex_creator::sum_factory sf(m_nex_creator);
|
||||
add_mul_skip_first(sf ,-c/high_mon.coeff(), source->expr(), ej_over_high_mon);
|
||||
|
||||
(*targ_sum)[j] = sf.mk();
|
||||
TRACE("grobner_d", tout << "targ_sum = " << *targ_sum << "\n";);
|
||||
}
|
||||
|
||||
// return true iff simplified
|
||||
bool grobner::simplify_source_target(equation * source, equation * target) {
|
||||
bool grobner_core::simplify_source_target(equation * source, equation * target) {
|
||||
TRACE("grobner", tout << "simplifying: "; display_equation(tout, *target); tout << "\nusing: "; display_equation(tout, *source););
|
||||
TRACE("grobner_d", tout << "simplifying: " << *(target->expr()) << " using " << *(source->expr()) << "\n";);
|
||||
SASSERT(m_nex_creator.is_simplified(*source->expr()));
|
||||
|
@ -418,7 +507,8 @@ bool grobner::simplify_source_target(equation * source, equation * target) {
|
|||
} else {
|
||||
break;
|
||||
}
|
||||
} while (!canceled());
|
||||
}
|
||||
while (!canceled());
|
||||
if (result) {
|
||||
target->dep() = m_dep_manager.mk_join(target->dep(), source->dep());
|
||||
update_stats_max_degree_and_size(target);
|
||||
|
@ -430,9 +520,7 @@ bool grobner::simplify_source_target(equation * source, equation * target) {
|
|||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void grobner::process_simplified_target(equation* target, ptr_buffer<equation>& to_remove) {
|
||||
void grobner_core::process_simplified_target(equation* target, ptr_buffer<equation>& to_remove) {
|
||||
if (is_trivial(target)) {
|
||||
to_remove.push_back(target);
|
||||
} else if (m_changed_leading_term) {
|
||||
|
@ -441,19 +529,8 @@ void grobner::process_simplified_target(equation* target, ptr_buffer<equation>&
|
|||
}
|
||||
}
|
||||
|
||||
void grobner::check_eq(equation* target) {
|
||||
if (m_intervals->check_nex(target->expr(), target->dep())) {
|
||||
TRACE("grobner", tout << "created a lemma for "; display_equation(tout, *target) << "\n";
|
||||
tout << "vars = \n";
|
||||
for (lpvar j : get_vars_of_expr(target->expr())) {
|
||||
c().print_var(j, tout);
|
||||
}
|
||||
tout << "\ntarget->expr() val = " << get_nex_val(target->expr(), [this](unsigned j) { return c().val(j); }) << "\n";);
|
||||
register_report();
|
||||
}
|
||||
}
|
||||
|
||||
bool grobner::simplify_to_superpose_with_eq(equation* eq) {
|
||||
bool grobner_core::simplify_to_superpose_with_eq(equation* eq) {
|
||||
TRACE("grobner_d", tout << "eq->exp " << *(eq->expr()) << "\n";);
|
||||
|
||||
ptr_buffer<equation> to_insert;
|
||||
|
@ -486,7 +563,7 @@ bool grobner::simplify_to_superpose_with_eq(equation* eq) {
|
|||
/*
|
||||
Use the given equation to simplify m_to_simplify equations
|
||||
*/
|
||||
void grobner::simplify_m_to_simplify(equation* eq) {
|
||||
void grobner_core::simplify_m_to_simplify(equation* eq) {
|
||||
TRACE("grobner_d", tout << "eq->exp " << *(eq->expr()) << "\n";);
|
||||
ptr_buffer<equation> to_delete;
|
||||
for (equation* target : m_to_simplify) {
|
||||
|
@ -500,13 +577,12 @@ void grobner::simplify_m_to_simplify(equation* eq) {
|
|||
// if e is the sum then add to r all children of e multiplied by beta, except the first one
|
||||
// which corresponds to the highest monomial,
|
||||
// otherwise do nothing
|
||||
void grobner::add_mul_skip_first(nex_sum* r, const rational& beta, nex *e, nex_mul* c) {
|
||||
void grobner_core::add_mul_skip_first(nex_creator::sum_factory& sf, const rational& beta, nex *e, nex_mul* c) {
|
||||
if (e->is_sum()) {
|
||||
nex_sum *es = to_sum(e);
|
||||
for (unsigned j = 1; j < es->size(); j++) {
|
||||
r->add_child(m_nex_creator.mk_mul(beta, (*es)[j], c));
|
||||
nex_sum & es = e->to_sum();
|
||||
for (unsigned j = 1; j < es.size(); j++) {
|
||||
sf += m_nex_creator.mk_mul(beta, es[j], c);
|
||||
}
|
||||
TRACE("grobner_d", tout << "r = " << *r << "\n";);
|
||||
} else {
|
||||
TRACE("grobner_d", tout << "e = " << *e << "\n";);
|
||||
}
|
||||
|
@ -514,23 +590,23 @@ void grobner::add_mul_skip_first(nex_sum* r, const rational& beta, nex *e, nex_m
|
|||
|
||||
|
||||
// let e1: alpha*ab+q=0, and e2: beta*ac+e=0, then beta*qc - alpha*eb = 0
|
||||
nex * grobner::expr_superpose(nex* e1, nex* e2, const nex* ab, const nex* ac, nex_mul* b, nex_mul* c) {
|
||||
nex * grobner_core::expr_superpose(nex* e1, nex* e2, const nex* ab, const nex* ac, nex_mul* b, nex_mul* c) {
|
||||
TRACE("grobner", tout << "e1 = " << *e1 << "\ne2 = " << *e2 <<"\n";);
|
||||
nex_sum * r = m_nex_creator.mk_sum();
|
||||
nex_creator::sum_factory sf(m_nex_creator);
|
||||
rational alpha = - ab->coeff();
|
||||
TRACE("grobner", tout << "e2 *= " << alpha << "*(" << *b << ")\n";);
|
||||
add_mul_skip_first(r, alpha, e2, b);
|
||||
add_mul_skip_first(sf, alpha, e2, b);
|
||||
rational beta = ac->coeff();
|
||||
TRACE("grobner", tout << "e1 *= " << beta << "*(" << *c << ")\n";);
|
||||
add_mul_skip_first(r, beta, e1, c);
|
||||
nex * ret = m_nex_creator.simplify(r);
|
||||
add_mul_skip_first(sf, beta, e1, c);
|
||||
nex * ret = m_nex_creator.simplify(sf.mk());
|
||||
TRACE("grobner", tout << "e1 = " << *e1 << "\ne2 = " << *e2 <<"\nsuperpose = " << *ret << "\n";);
|
||||
CTRACE("grobner", ret->is_scalar(), tout << "\n";);
|
||||
return ret;
|
||||
}
|
||||
|
||||
// let eq1: ab+q=0, and eq2: ac+e=0, then qc - eb = 0
|
||||
void grobner::superpose(equation * eq1, equation * eq2) {
|
||||
void grobner_core::superpose(equation * eq1, equation * eq2) {
|
||||
TRACE("grobner", tout << "eq1="; display_equation(tout, *eq1) << "eq2="; display_equation(tout, *eq2););
|
||||
const nex * ab = get_highest_monomial(eq1->expr());
|
||||
const nex * ac = get_highest_monomial(eq2->expr());
|
||||
|
@ -545,18 +621,18 @@ void grobner::superpose(equation * eq1, equation * eq2) {
|
|||
init_equation(eq, expr_superpose( eq1->expr(), eq2->expr(), ab, ac, b, c), m_dep_manager.mk_join(eq1->dep(), eq2->dep()));
|
||||
m_stats.m_superposed++;
|
||||
update_stats_max_degree_and_size(eq);
|
||||
eq->expr() = m_nex_creator.simplify(eq->expr());
|
||||
insert_to_simplify(eq);
|
||||
}
|
||||
|
||||
void grobner::register_report() {
|
||||
m_reported++;
|
||||
}
|
||||
|
||||
|
||||
// Let a be the greatest common divider of ab and bc,
|
||||
// then ab/a is stored in b, and ac/a is stored in c
|
||||
bool grobner::find_b_c(const nex* ab, const nex* ac, nex_mul*& b, nex_mul*& c) {
|
||||
bool grobner_core::find_b_c(const nex* ab, const nex* ac, nex_mul*& b, nex_mul*& c) {
|
||||
if (!find_b_c_check_only(ab, ac))
|
||||
return false;
|
||||
b = m_nex_creator.mk_mul(); c = m_nex_creator.mk_mul();
|
||||
nex_creator::mul_factory fb(m_nex_creator), fc(m_nex_creator);
|
||||
unsigned ab_size = ab->number_of_child_powers();
|
||||
unsigned ac_size = ac->number_of_child_powers();
|
||||
unsigned i = 0, j = 0;
|
||||
|
@ -564,20 +640,20 @@ bool grobner::find_b_c(const nex* ab, const nex* ac, nex_mul*& b, nex_mul*& c) {
|
|||
const nex* m = ab->get_child_exp(i);
|
||||
const nex* n = ac->get_child_exp(j);
|
||||
if (m_nex_creator.gt(m, n)) {
|
||||
b->add_child_in_power(const_cast<nex*>(m), ab->get_child_pow(i));
|
||||
fb *= (nex_pow(const_cast<nex*>(m), ab->get_child_pow(i)));
|
||||
if (++i == ab_size)
|
||||
break;
|
||||
} else if (m_nex_creator.gt(n, m)) {
|
||||
c->add_child_in_power(const_cast<nex*>(n), ac->get_child_pow(j));
|
||||
fc *= (nex_pow(const_cast<nex*>(n), ac->get_child_pow(j)));
|
||||
if (++j == ac_size)
|
||||
break;
|
||||
} else {
|
||||
unsigned b_pow = ab->get_child_pow(i);
|
||||
unsigned c_pow = ac->get_child_pow(j);
|
||||
if (b_pow > c_pow) {
|
||||
b->add_child_in_power(const_cast<nex*>(m), b_pow - c_pow);
|
||||
fb *= (nex_pow(const_cast<nex*>(m), b_pow - c_pow));
|
||||
} else if (c_pow > b_pow) {
|
||||
c->add_child_in_power(const_cast<nex*>(n), c_pow - b_pow);
|
||||
fc *= (nex_pow(const_cast<nex*>(n), c_pow - b_pow));
|
||||
} // otherwise the power are equal and no child added to either b or c
|
||||
i++; j++;
|
||||
|
||||
|
@ -587,16 +663,18 @@ bool grobner::find_b_c(const nex* ab, const nex* ac, nex_mul*& b, nex_mul*& c) {
|
|||
}
|
||||
}
|
||||
while (i != ab_size) {
|
||||
b->add_child_in_power(const_cast<nex*>(ab->get_child_exp(i)), ab->get_child_pow(i));
|
||||
fb *= (nex_pow(const_cast<nex*>(ab->get_child_exp(i)), ab->get_child_pow(i)));
|
||||
i++;
|
||||
}
|
||||
while (j != ac_size) {
|
||||
c->add_child_in_power(const_cast<nex*>(ac->get_child_exp(j)), ac->get_child_pow(j));
|
||||
fc *= (nex_pow(const_cast<nex*>(ac->get_child_exp(j)), ac->get_child_pow(j)));
|
||||
j++;
|
||||
}
|
||||
b = fb.mk();
|
||||
c = fc.mk();
|
||||
TRACE("nla_grobner", tout << "b=" << *b << ", c=" <<*c << "\n";);
|
||||
// debug region
|
||||
nex_mul *a = divide_ignore_coeffs_perform(m_nex_creator.clone(ab), b);
|
||||
nex_mul *a = divide_ignore_coeffs_perform(m_nex_creator.clone(ab), *b);
|
||||
SASSERT(ab->get_degree() == a->get_degree() + b->get_degree());
|
||||
SASSERT(ac->get_degree() == a->get_degree() + c->get_degree());
|
||||
SASSERT(test_find_b_c(ab, ac, b, c));
|
||||
|
@ -604,7 +682,7 @@ bool grobner::find_b_c(const nex* ab, const nex* ac, nex_mul*& b, nex_mul*& c) {
|
|||
}
|
||||
|
||||
// Finds out if ab and bc have a non-trivial common divider
|
||||
bool grobner::find_b_c_check_only(const nex* ab, const nex* ac) const {
|
||||
bool grobner_core::find_b_c_check_only(const nex* ab, const nex* ac) const {
|
||||
if (ab == nullptr || ac == nullptr)
|
||||
return false;
|
||||
SASSERT(m_nex_creator.is_simplified(*ab) && m_nex_creator.is_simplified(*ac));
|
||||
|
@ -630,94 +708,25 @@ bool grobner::find_b_c_check_only(const nex* ab, const nex* ac) const {
|
|||
return false;
|
||||
}
|
||||
|
||||
void grobner::superpose(equation * eq) {
|
||||
void grobner_core::superpose(equation * eq) {
|
||||
for (equation * target : m_to_superpose) {
|
||||
superpose(eq, target);
|
||||
}
|
||||
}
|
||||
|
||||
// return true iff cannot pick_next()
|
||||
bool grobner::compute_basis_step() {
|
||||
equation * eq = pick_next();
|
||||
if (!eq) {
|
||||
TRACE("grobner", tout << "cannot pick an equation\n";);
|
||||
return true;
|
||||
}
|
||||
m_stats.m_compute_steps++;
|
||||
equation * new_eq = simplify_using_to_superpose(eq);
|
||||
if (new_eq != nullptr && eq != new_eq) {
|
||||
// equation was updated using non destructive updates
|
||||
eq = new_eq;
|
||||
}
|
||||
if (canceled()) return false;
|
||||
if (!simplify_to_superpose_with_eq(eq))
|
||||
return false;
|
||||
TRACE("grobner", tout << "eq = "; display_equation(tout, *eq););
|
||||
superpose(eq);
|
||||
insert_to_superpose(eq);
|
||||
simplify_m_to_simplify(eq);
|
||||
TRACE("grobner", tout << "end of iteration:\n"; display(tout););
|
||||
return false;
|
||||
bool grobner_core::canceled() {
|
||||
return m_limit.get_cancel_flag();
|
||||
}
|
||||
|
||||
void grobner::compute_basis(){
|
||||
compute_basis_init();
|
||||
if (m_rows.size() < 2) {
|
||||
TRACE("nla_grobner", tout << "there are only " << m_rows.size() << " rows, exiting compute_basis()\n";);
|
||||
return;
|
||||
}
|
||||
if (!compute_basis_loop()) {
|
||||
TRACE("grobner", tout << "false from compute_basis_loop\n";);
|
||||
set_gb_exhausted();
|
||||
} else {
|
||||
TRACE("grobner", display(tout););
|
||||
for (equation* e : m_to_simplify) {
|
||||
check_eq(e);
|
||||
}
|
||||
for (equation* e : m_to_superpose) {
|
||||
check_eq(e);
|
||||
}
|
||||
}
|
||||
}
|
||||
void grobner::compute_basis_init(){
|
||||
c().lp_settings().stats().m_grobner_basis_computatins++;
|
||||
m_stats.reset();
|
||||
}
|
||||
|
||||
bool grobner::canceled() const {
|
||||
return c().lp_settings().get_cancel_flag();
|
||||
bool grobner_core::done() {
|
||||
return num_of_equations() >= m_grobner_eqs_threshold || canceled();
|
||||
}
|
||||
|
||||
bool grobner::done() const {
|
||||
CTRACE("grobner", (num_of_equations() >= c().m_nla_settings.grobner_eqs_threshold()),
|
||||
tout << "m_num_of_equations = " << num_of_equations() << "\n";);
|
||||
CTRACE("grobner", canceled(), tout << "canceled\n";);
|
||||
CTRACE("grobner", m_reported > 0, tout << "m_reported = " << m_reported;);
|
||||
return
|
||||
num_of_equations() >= c().m_nla_settings.grobner_eqs_threshold() ||
|
||||
canceled() || m_reported > 0;
|
||||
}
|
||||
|
||||
|
||||
bool grobner::compute_basis_loop(){
|
||||
while (!done()) {
|
||||
if (compute_basis_step()) {
|
||||
TRACE("grobner", tout << "progress in compute_basis_step\n";);
|
||||
return true;
|
||||
}
|
||||
TRACE("grobner", tout << "continue compute_basis_loop\n";);
|
||||
}
|
||||
TRACE("grobner", tout << "return false from compute_basis_loop\n";);
|
||||
TRACE("grobner_stats", print_stats(tout););
|
||||
return false;
|
||||
}
|
||||
|
||||
void grobner::set_gb_exhausted(){
|
||||
void grobner_core::set_gb_exhausted(){
|
||||
m_nl_gb_exhausted = true;
|
||||
}
|
||||
|
||||
|
||||
void grobner:: del_equations(unsigned old_size) {
|
||||
void grobner_core::del_equations(unsigned old_size) {
|
||||
TRACE("grobner", );
|
||||
SASSERT(m_equations_to_delete.size() >= old_size);
|
||||
equation_vector::iterator it = m_equations_to_delete.begin();
|
||||
|
@ -731,53 +740,36 @@ void grobner:: del_equations(unsigned old_size) {
|
|||
m_equations_to_delete.shrink(old_size);
|
||||
}
|
||||
|
||||
std::ostream& grobner::print_stats(std::ostream & out) const {
|
||||
std::ostream& grobner_core::print_stats(std::ostream & out) const {
|
||||
return out << "stats:\nsteps = " << m_stats.m_compute_steps << "\nsimplified: " <<
|
||||
m_stats.m_simplified << "\nsuperposed: " <<
|
||||
m_stats.m_superposed << "\nexpr degree: " << m_stats.m_max_expr_degree <<
|
||||
"\nexpr size: " << m_stats.m_max_expr_size << "\n";
|
||||
}
|
||||
|
||||
void grobner::update_stats_max_degree_and_size(const equation *e) {
|
||||
void grobner_core::update_stats_max_degree_and_size(const equation *e) {
|
||||
m_stats.m_max_expr_size = std::max(m_stats.m_max_expr_size, e->expr()->size());
|
||||
m_stats.m_max_expr_degree = std::max(m_stats.m_max_expr_degree, e->expr()->get_degree());
|
||||
}
|
||||
|
||||
void grobner::display_equations(std::ostream & out, equation_set const & v, char const * header) const {
|
||||
void grobner_core::display_equations(std::ostream & out, equation_set const & v, char const * header) const {
|
||||
out << header << "\n";
|
||||
for (const equation* e : v)
|
||||
display_equation(out, *e);
|
||||
}
|
||||
|
||||
std::ostream& grobner::display_equation(std::ostream & out, const equation & eq) const {
|
||||
std::ostream& grobner_core::display_equation(std::ostream & out, const equation & eq) const {
|
||||
out << "expr = " << *eq.expr() << "\n";
|
||||
display_dependency(out, eq.dep());
|
||||
return display_dependency(out, eq.dep());
|
||||
}
|
||||
|
||||
std::ostream& grobner_core::display(std::ostream& out) const {
|
||||
display_equations(out, m_to_superpose, "m_to_superpose:");
|
||||
display_equations(out, m_to_simplify, "m_to_simplify:");
|
||||
return out;
|
||||
}
|
||||
|
||||
std::unordered_set<lpvar> grobner::get_vars_of_expr_with_opening_terms(const nex *e ) {
|
||||
auto ret = get_vars_of_expr(e);
|
||||
auto & ls = c().m_lar_solver;
|
||||
do {
|
||||
svector<lpvar> added;
|
||||
for (lpvar j : ret) {
|
||||
if (ls.column_corresponds_to_term(j)) {
|
||||
const auto & t = c().m_lar_solver.get_term(ls.local_to_external(j));
|
||||
for (auto p : t) {
|
||||
if (ret.find(p.var()) == ret.end())
|
||||
added.push_back(p.var());
|
||||
}
|
||||
}
|
||||
}
|
||||
if (added.size() == 0)
|
||||
return ret;
|
||||
for (lpvar j: added)
|
||||
ret.insert(j);
|
||||
added.clear();
|
||||
} while (true);
|
||||
}
|
||||
|
||||
void grobner::assert_eq_0(nex* e, ci_dependency * dep) {
|
||||
void grobner_core::assert_eq_0(nex* e, common::ci_dependency * dep) {
|
||||
if (e == nullptr || is_zero_scalar(e))
|
||||
return;
|
||||
m_tmp_var_set.clear();
|
||||
|
@ -785,14 +777,14 @@ void grobner::assert_eq_0(nex* e, ci_dependency * dep) {
|
|||
init_equation(eq, e, dep);
|
||||
TRACE("grobner",
|
||||
display_equation(tout, *eq);
|
||||
tout << "\nvars\n";
|
||||
/*tout << "\nvars\n";
|
||||
for (unsigned j : get_vars_of_expr_with_opening_terms(e)) {
|
||||
c().print_var(j, tout << "(") << ")\n";
|
||||
});
|
||||
} */);
|
||||
insert_to_simplify(eq);
|
||||
}
|
||||
|
||||
void grobner::init_equation(equation* eq, nex*e, ci_dependency * dep) {
|
||||
void grobner_core::init_equation(equation* eq, nex*e, common::ci_dependency * dep) {
|
||||
eq->m_bidx = m_equations_to_delete.size();
|
||||
eq->dep() = dep;
|
||||
eq->expr() = e;
|
||||
|
@ -800,17 +792,17 @@ void grobner::init_equation(equation* eq, nex*e, ci_dependency * dep) {
|
|||
SASSERT(m_equations_to_delete[eq->m_bidx] == eq);
|
||||
}
|
||||
|
||||
grobner::~grobner() {
|
||||
grobner_core::~grobner_core() {
|
||||
del_equations(0);
|
||||
}
|
||||
|
||||
std::ostream& grobner::display_dependency(std::ostream& out, ci_dependency* dep) const {
|
||||
std::ostream& grobner_core::display_dependency(std::ostream& out, common::ci_dependency* dep) const {
|
||||
svector<lp::constraint_index> expl;
|
||||
m_dep_manager.linearize(dep, expl);
|
||||
lp::explanation e(expl);
|
||||
if (!expl.empty()) {
|
||||
out << "constraints\n";
|
||||
m_core->print_explanation(e, out);
|
||||
m_print_explanation(e, out);
|
||||
out << "\n";
|
||||
} else {
|
||||
out << "no deps\n";
|
||||
|
@ -818,17 +810,17 @@ std::ostream& grobner::display_dependency(std::ostream& out, ci_dependency* dep)
|
|||
return out;
|
||||
}
|
||||
#ifdef Z3DEBUG
|
||||
bool grobner::test_find_b(const nex* ab, const nex_mul* b) {
|
||||
bool grobner_core::test_find_b(const nex* ab, const nex_mul* b) {
|
||||
nex_mul& ab_clone = m_nex_creator.clone(ab)->to_mul();
|
||||
nex_mul * a= divide_ignore_coeffs_perform(&ab_clone, b);
|
||||
ab_clone.coeff() = rational(1);
|
||||
nex_mul * a= divide_ignore_coeffs_perform(&ab_clone, *b);
|
||||
ab_clone.m_coeff = rational(1);
|
||||
SASSERT(b->coeff().is_one());
|
||||
nex * m = m_nex_creator.mk_mul(a, m_nex_creator.clone(b));
|
||||
m = m_nex_creator.simplify(m);
|
||||
return m_nex_creator.equal(m, &ab_clone);
|
||||
}
|
||||
|
||||
bool grobner::test_find_b_c(const nex* ab, const nex* ac, const nex_mul* b, const nex_mul* c) {
|
||||
bool grobner_core::test_find_b_c(const nex* ab, const nex* ac, const nex_mul* b, const nex_mul* c) {
|
||||
return test_find_b(ab, b) && test_find_b(ac, c);
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue