3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 12:28:44 +00:00

rename lt to gt in nex_creator etc. to clarify the semantics

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2019-12-10 11:33:20 -10:00
parent 9ecae4abad
commit 03f7c96c5a
4 changed files with 67 additions and 66 deletions

View file

@ -125,7 +125,7 @@ void nex_creator::simplify_children_of_mul(vector<nex_pow> & children, rational&
TRACE("grobner_d", print_vector(children, tout););
}
bool nex_creator:: less_than_on_powers_mul_same_degree(const vector<nex_pow>& a, const nex_mul& b) const {
bool nex_creator:: gt_on_powers_mul_same_degree(const vector<nex_pow>& a, const nex_mul& b) const {
bool inside_a_p = false; // inside_a_p is true means we still compare the old position of it_a
bool inside_b_p = false; // inside_b_p is true means we still compare the old position of it_b
auto it_a = a.begin();
@ -137,11 +137,11 @@ bool nex_creator:: less_than_on_powers_mul_same_degree(const vector<nex_pow>& a,
while (true) {
if (!inside_a_p) { a_pow = it_a->pow(); }
if (!inside_b_p) { b_pow = it_b->pow(); }
if (lt(it_a->e(), it_b->e())){
if (gt(it_a->e(), it_b->e())){
ret = l_true;
break;
}
if (lt(it_b->e(), it_a->e())) {
if (gt(it_b->e(), it_a->e())) {
ret = l_false;
break;
}
@ -184,7 +184,7 @@ bool nex_creator:: less_than_on_powers_mul_same_degree(const vector<nex_pow>& a,
return ret != l_false;
}
bool nex_creator::less_than_on_mul_mul_same_degree(const nex_mul& a, const nex_mul& b) const {
bool nex_creator::gt_on_mul_mul_same_degree(const nex_mul& a, const nex_mul& b) const {
bool inside_a_p = false; // inside_a_p is true means we still compare the old position of it_a
bool inside_b_p = false; // inside_b_p is true means we still compare the old position of it_b
auto it_a = a.begin();
@ -196,11 +196,11 @@ bool nex_creator::less_than_on_mul_mul_same_degree(const nex_mul& a, const nex_m
while (true) {
if (!inside_a_p) { a_pow = it_a->pow(); }
if (!inside_b_p) { b_pow = it_b->pow(); }
if (lt(it_a->e(), it_b->e())){
if (gt(it_a->e(), it_b->e())){
ret = l_true;
break;
}
if (lt(it_b->e(), it_a->e())) {
if (gt(it_b->e(), it_a->e())) {
ret = l_false;
break;
}
@ -255,40 +255,40 @@ bool nex_creator::children_are_simplified(const vector<nex_pow>& children) const
return true;
}
bool nex_creator::less_than_on_powers_mul(const vector<nex_pow>& children, const nex_mul& b) const {
bool nex_creator::gt_on_powers_mul(const vector<nex_pow>& children, const nex_mul& b) const {
TRACE("nex_less", tout << "children = "; print_vector(children, tout) << " , b = " << b << "\n";);
SASSERT(children_are_simplified(children) && is_simplified(&b));
unsigned a_deg = get_degree_children(children);
unsigned b_deg = b.get_degree();
return a_deg == b_deg ? less_than_on_powers_mul_same_degree(children, b) : a_deg > b_deg;
return a_deg == b_deg ? gt_on_powers_mul_same_degree(children, b) : a_deg > b_deg;
}
bool nex_creator::less_than_on_mul_mul(const nex_mul& a, const nex_mul& b) const {
bool nex_creator::gt_on_mul_mul(const nex_mul& a, const nex_mul& b) const {
TRACE("grobner_d", tout << "a = " << a << " , b = " << b << "\n";);
SASSERT(is_simplified(&a) && is_simplified(&b));
unsigned a_deg = a.get_degree();
unsigned b_deg = b.get_degree();
return a_deg == b_deg ? less_than_on_mul_mul_same_degree(a, b) : a_deg > b_deg;
return a_deg == b_deg ? gt_on_mul_mul_same_degree(a, b) : a_deg > b_deg;
}
bool nex_creator::less_than_on_var_nex(const nex_var* a, const nex* b) const {
bool nex_creator::gt_on_var_nex(const nex_var* a, const nex* b) const {
switch (b->type()) {
case expr_type::SCALAR:
return true;
case expr_type::VAR:
return less_than(a->var() , to_var(b)->var());
return gt(a->var() , to_var(b)->var());
case expr_type::MUL:
return b->get_degree() <= 1 && less_than_on_var_nex(a, (*to_mul(b))[0].e());
return b->get_degree() <= 1 && gt_on_var_nex(a, (*to_mul(b))[0].e());
case expr_type::SUM:
return !lt((*to_sum(b))[0], a);
return !gt((*to_sum(b))[0], a);
default:
UNREACHABLE();
return false;
}
}
bool nex_creator::lt_nex_powers(const vector<nex_pow>& children, const nex* b) const {
bool nex_creator::gt_nex_powers(const vector<nex_pow>& children, const nex* b) const {
switch (b->type()) {
case expr_type::SCALAR:
return false;
@ -299,19 +299,19 @@ bool nex_creator::lt_nex_powers(const vector<nex_pow>& children, const nex* b) c
SASSERT(c.pow() == 1);
const nex * f = c.e();
SASSERT(!f->is_scalar());
return lt(f, b);
return gt(f, b);
}
case expr_type::MUL:
return less_than_on_powers_mul(children, *to_mul(b));
return gt_on_powers_mul(children, *to_mul(b));
case expr_type::SUM:
return lt_nex_powers(children, (*to_sum(b))[0]);
return gt_nex_powers(children, (*to_sum(b))[0]);
default:
UNREACHABLE();
return false;
}
}
bool nex_creator::less_than_on_mul_nex(const nex_mul* a, const nex* b) const {
bool nex_creator::gt_on_mul_nex(const nex_mul* a, const nex* b) const {
switch (b->type()) {
case expr_type::SCALAR:
return false;
@ -322,39 +322,39 @@ bool nex_creator::less_than_on_mul_nex(const nex_mul* a, const nex* b) const {
SASSERT(c.pow() == 1);
const nex * f = c.e();
SASSERT(!f->is_scalar());
return lt(f, b);
return gt(f, b);
}
case expr_type::MUL:
return less_than_on_mul_mul(*a, *to_mul(b));
return gt_on_mul_mul(*a, *to_mul(b));
case expr_type::SUM:
return lt(a, (*to_sum(b))[0]);
return gt(a, (*to_sum(b))[0]);
default:
UNREACHABLE();
return false;
}
}
bool nex_creator::less_than_on_sum_sum(const nex_sum* a, const nex_sum* b) const {
bool nex_creator::gt_on_sum_sum(const nex_sum* a, const nex_sum* b) const {
unsigned size = std::min(a->size(), b->size());
for (unsigned j = 0; j < size; j++) {
if (lt((*a)[j], (*b)[j]))
if (gt((*a)[j], (*b)[j]))
return true;
if (lt((*b)[j], (*a)[j]))
if (gt((*b)[j], (*a)[j]))
return false;
}
return size > b->size();
}
// the only difference with lt() that it disregards the coefficient in nex_mul
bool nex_creator::lt_for_sort_join_sum(const nex* a, const nex* b) const {
// the only difference with gt() that it disregards the coefficient in nex_mul
bool nex_creator::gt_for_sort_join_sum(const nex* a, const nex* b) const {
TRACE("grobner_d_", tout << *a << " ? " << *b << "\n";);
if (a == b)
return false;
bool ret;
switch (a->type()) {
case expr_type::VAR:
ret = less_than_on_var_nex(to_var(a), b);
ret = gt_on_var_nex(to_var(a), b);
break;
case expr_type::SCALAR:
if (b->is_scalar())
@ -363,12 +363,12 @@ bool nex_creator::lt_for_sort_join_sum(const nex* a, const nex* b) const {
ret = false; // the scalars are the largest
break;
case expr_type::MUL:
ret = lt_nex_powers(to_mul(a)->children(), b);
ret = gt_nex_powers(to_mul(a)->children(), b);
break;
case expr_type::SUM:
if (b->is_sum())
return less_than_on_sum_sum(to_sum(a), to_sum(b));
return lt((*to_sum(a))[0], b);
return gt_on_sum_sum(to_sum(a), to_sum(b));
return gt((*to_sum(a))[0], b);
default:
UNREACHABLE();
return false;
@ -377,26 +377,26 @@ bool nex_creator::lt_for_sort_join_sum(const nex* a, const nex* b) const {
return ret;
}
bool nex_creator::lt(const nex* a, const nex* b) const {
bool nex_creator::gt(const nex* a, const nex* b) const {
TRACE("grobner_d_", tout << *a << " ? " << *b << "\n";);
if (a == b)
return false;
bool ret;
switch (a->type()) {
case expr_type::VAR:
ret = less_than_on_var_nex(to_var(a), b);
ret = gt_on_var_nex(to_var(a), b);
break;
case expr_type::SCALAR:
ret = b->is_scalar() && to_scalar(a)->value() > to_scalar(b)->value();
// the scalars are the largest
break;
case expr_type::MUL:
ret = less_than_on_mul_nex(to_mul(a), b);
ret = gt_on_mul_nex(to_mul(a), b);
break;
case expr_type::SUM:
if (b->is_sum())
return less_than_on_sum_sum(to_sum(a), to_sum(b));
return lt((*to_sum(a))[0], b);
return gt_on_sum_sum(to_sum(a), to_sum(b));
return gt((*to_sum(a))[0], b);
default:
UNREACHABLE();
return false;
@ -407,7 +407,7 @@ bool nex_creator::lt(const nex* a, const nex* b) const {
bool nex_creator::is_sorted(const nex_mul* e) const {
for (unsigned j = 0; j < e->size() - 1; j++) {
if (!(less_than_on_nex_pow((*e)[j], (*e)[j+1]))) {
if (!(gt_on_nex_pow((*e)[j], (*e)[j+1]))) {
TRACE("grobner_d", tout << "not sorted e " << * e << "\norder is incorrect " <<
(*e)[j] << " >= " << (*e)[j + 1]<< "\n";);
@ -427,7 +427,7 @@ bool nex_creator::mul_is_simplified(const nex_mul* e) const {
TRACE("nla_cn", );
return false;
}
std::set<const nex*, nex_lt> s([this](const nex* a, const nex* b) {return lt(a, b); });
std::set<const nex*, nex_lt> s([this](const nex* a, const nex* b) {return gt(a, b); });
for (const auto &p : *e) {
const nex* ee = p.e();
if (p.pow() == 0) {
@ -516,7 +516,7 @@ bool nex_creator::sum_is_simplified(const nex_sum* e) const {
}
void nex_creator::mul_to_powers(vector<nex_pow>& children) {
std::map<nex*, int, nex_lt> m([this](const nex* a, const nex* b) { return lt(a, b); });
std::map<nex*, int, nex_lt> m([this](const nex* a, const nex* b) { return gt(a, b); });
for (auto & p : children) {
auto it = m.find(p.e());
@ -532,7 +532,7 @@ void nex_creator::mul_to_powers(vector<nex_pow>& children) {
}
std::sort(children.begin(), children.end(), [this](const nex_pow& a, const nex_pow& b) {
return less_than_on_nex_pow(a, b);
return gt_on_nex_pow(a, b);
});
}
@ -561,7 +561,7 @@ nex* nex_creator::create_child_from_nex_and_coeff(nex *e,
}
em->add_child(mk_scalar(coeff));
std::sort(em->begin(), em->end(), [this](const nex_pow& a,
const nex_pow& b) {return less_than_on_nex_pow(a, b); });
const nex_pow& b) {return gt_on_nex_pow(a, b); });
return em;
}
case expr_type::SUM:
@ -620,7 +620,7 @@ bool nex_creator::fill_join_map_for_sum(
void nex_creator::sort_join_sum(ptr_vector<nex> & children) {
TRACE("grobner_d", print_vector_of_ptrs(children, tout););
std::map<nex*, rational, nex_lt> map([this](const nex *a , const nex *b)
{ return lt_for_sort_join_sum(a, b); });
{ return gt_for_sort_join_sum(a, b); });
std::unordered_set<nex*> allocated_nexs; // handling (nex*) as numbers
nex_scalar * common_scalar;
fill_join_map_for_sum(children, map, allocated_nexs, common_scalar);
@ -888,7 +888,7 @@ bool nex_creator::equal(const nex* a, const nex* b) {
nex * cb = cn.canonize(b);
TRACE("grobner_d", tout << "a = " << *a << ", canonized a = " << *ca << "\n";);
TRACE("grobner_d", tout << "b = " << *b << ", canonized b = " << *cb << "\n";);
return !(cn.lt(ca, cb) || cn.lt(cb, ca));
return !(cn.gt(ca, cb) || cn.gt(cb, ca));
}
#endif

View file

@ -81,14 +81,14 @@ private:
public:
nex* simplify(nex* e);
bool less_than(lpvar j, lpvar k) const{
bool gt(lpvar j, lpvar k) const{
unsigned wj = m_active_vars_weights[j];
unsigned wk = m_active_vars_weights[k];
return wj != wk ? wj > wk : j > k;
}
bool less_than_on_nex_pow(const nex_pow & a, const nex_pow& b) const {
return (a.pow() > b.pow()) || (a.pow() == b.pow() && lt(a.e(), b.e()));
bool gt_on_nex_pow(const nex_pow & a, const nex_pow& b) const {
return (a.pow() > b.pow()) || (a.pow() == b.pow() && gt(a.e(), b.e()));
}
void simplify_children_of_mul(vector<nex_pow> & children, rational&);
@ -239,19 +239,19 @@ public:
void simplify_children_of_sum(ptr_vector<nex> & children);
bool eat_scalar_pow(rational& r, const nex_pow& p, unsigned);
void simplify_children_of_mul(vector<nex_pow> & children, lt_on_vars lt, std::function<nex_scalar*()> mk_scalar);
void simplify_children_of_mul(vector<nex_pow> & children, lt_on_vars, std::function<nex_scalar*()> mk_scalar);
bool children_are_simplified(const vector<nex_pow>& children) const;
bool lt(const nex* a, const nex* b) const;
bool lt_nex_powers(const vector<nex_pow>&, const nex* b) const;
bool less_than_on_powers_mul(const vector<nex_pow>&, const nex_mul& b) const;
bool less_than_on_powers_mul_same_degree(const vector<nex_pow>&, const nex_mul& b) const;
bool lt_for_sort_join_sum(const nex* a, const nex* b) const;
bool less_than_on_mul_mul(const nex_mul& a, const nex_mul& b) const;
bool less_than_on_mul_mul_same_degree(const nex_mul& a, const nex_mul& b) const;
bool less_than_on_var_nex(const nex_var* a, const nex* b) const;
bool less_than_on_mul_nex(const nex_mul* a, const nex* b) const;
bool less_than_on_sum_sum(const nex_sum* a, const nex_sum* b) const;
bool gt(const nex* a, const nex* b) const;
bool gt_nex_powers(const vector<nex_pow>&, const nex* b) const;
bool gt_on_powers_mul(const vector<nex_pow>&, const nex_mul& b) const;
bool gt_on_powers_mul_same_degree(const vector<nex_pow>&, const nex_mul& b) const;
bool gt_for_sort_join_sum(const nex* a, const nex* b) const;
bool gt_on_mul_mul(const nex_mul& a, const nex_mul& b) const;
bool gt_on_mul_mul_same_degree(const nex_mul& a, const nex_mul& b) const;
bool gt_on_var_nex(const nex_var* a, const nex* b) const;
bool gt_on_mul_nex(const nex_mul* a, const nex* b) const;
bool gt_on_sum_sum(const nex_sum* a, const nex_sum* b) const;
void fill_map_with_children(std::map<nex*, rational, nex_lt> & m, ptr_vector<nex> & children);
void process_map_pair(nex *e, const rational& coeff, ptr_vector<nex> & children, std::unordered_set<nex*>&);
#ifdef Z3DEBUG

View file

@ -164,14 +164,15 @@ bool nla_grobner::is_trivial(equation* eq) const {
return eq->expr()->size() == 0;
}
bool nla_grobner::is_better_choice(equation * eq1, equation * eq2) {
// returns true if eq1 is simpler than eq2
bool nla_grobner::is_simpler(equation * eq1, equation * eq2) {
if (!eq2)
return true;
if (is_trivial(eq1))
return true;
if (is_trivial(eq2))
return false;
return m_nex_creator.lt(eq2->expr(), eq1->expr());
return m_nex_creator.gt(eq2->expr(), eq1->expr());
}
void nla_grobner::del_equation(equation * eq) {
@ -188,7 +189,7 @@ nla_grobner::equation* nla_grobner::pick_next() {
for (equation * curr : m_to_simplify) {
if (is_trivial(curr))
to_delete.push_back(curr);
else if (is_better_choice(curr, r)) {
else if (is_simpler(curr, r)) {
TRACE("grobner", tout << "preferring "; display_equation(tout, *curr););
r = curr;
}
@ -554,7 +555,7 @@ void nla_grobner::superpose(equation * eq1, equation * eq2) {
}
equation* eq = alloc(equation);
init_equation(eq, expr_superpose( eq1->expr(), eq2->expr(), ab, ac, b, c), m_dep_manager.mk_join(eq1->dep(), eq2->dep()));
if (m_nex_creator.lt(eq->expr(), eq1->expr()) || m_nex_creator.lt(eq->expr(), eq2->expr())) {
if (m_nex_creator.gt(eq->expr(), eq1->expr()) || m_nex_creator.gt(eq->expr(), eq2->expr())) {
TRACE("grobner", display_equation(tout, *eq) << " is too complex: deleting it\n;";);
del_equation(eq);
} else {
@ -580,11 +581,11 @@ bool nla_grobner::find_b_c(const nex* ab, const nex* ac, nex_mul*& b, nex_mul*&
for (;;) {
const nex* m = ab->get_child_exp(i);
const nex* n = ac->get_child_exp(j);
if (m_nex_creator.lt(m, n)) {
if (m_nex_creator.gt(m, n)) {
b->add_child_in_power(const_cast<nex*>(m), ab->get_child_pow(i));
if (++i == ab_size)
break;
} else if (m_nex_creator.lt(n, m)) {
} else if (m_nex_creator.gt(n, m)) {
c->add_child_in_power(const_cast<nex*>(n), ac->get_child_pow(j));
if (++j == ac_size)
break;
@ -624,11 +625,11 @@ bool nla_grobner::find_b_c_check_only(const nex* ab, const nex* ac) const {
for (;;) {
const nex* m = ab->get_child_exp(i);
const nex* n = ac->get_child_exp(j);
if (m_nex_creator.lt(m , n)) {
if (m_nex_creator.gt(m , n)) {
i++;
if (i == ab->number_of_child_powers())
return false;
} else if (m_nex_creator.lt(n, m)) {
} else if (m_nex_creator.gt(n, m)) {
j++;
if (j == ac->number_of_child_powers())
return false;

View file

@ -125,7 +125,7 @@ private:
bool find_b_c(const nex *ab, const nex* ac, nex_mul*& b, nex_mul*& c);
bool find_b_c_check_only(const nex* ab, const nex* ac) const;
bool is_trivial(equation* ) const;
bool is_better_choice(equation * eq1, equation * eq2);
bool is_simpler(equation * eq1, equation * eq2);
void del_equations(unsigned old_size);
void del_equation(equation * eq);
void display_equations(std::ostream & out, equation_set const & v, char const * header) const;