3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-08-13 14:40:57 +00:00
yosys/passes/equiv/equiv_simple.cc
Krystine Sherwin e02f4469c0
equiv_simple: Avoid std::array
VS build currently failing with `error C2641: cannot deduce template arguments for 'std::array'`.
Changing to `std::array<Cone, 2>` gives `error C2027: use of undefined type` instead.
2025-08-08 12:37:38 +12:00

535 lines
16 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/satgen.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct EquivSimpleWorker
{
Module *module;
const vector<Cell*> &equiv_cells;
const vector<Cell*> &assume_cells;
struct Cone {
pool<Cell*> cells;
pool<SigBit> bits;
void clear() {
cells.clear();
bits.clear();
}
};
struct DesignModel {
const SigMap &sigmap;
dict<SigBit, Cell*> &bit2driver;
};
DesignModel model;
ezSatPtr ez;
SatGen satgen;
struct Config {
bool verbose = false;
bool short_cones = false;
bool model_undef = false;
bool nogroup = false;
bool set_assumes = false;
int max_seq = 1;
};
Config cfg;
pool<pair<Cell*, int>> imported_cells_cache;
EquivSimpleWorker(const vector<Cell*> &equiv_cells, const vector<Cell*> &assume_cells, DesignModel model, Config cfg) :
module(equiv_cells.front()->module), equiv_cells(equiv_cells), assume_cells(assume_cells),
model(model), satgen(ez.get(), &model.sigmap), cfg(cfg)
{
satgen.model_undef = cfg.model_undef;
}
struct ConeFinder {
DesignModel model;
// Bits we should also analyze in a later iteration (flop inputs)
pool<SigBit> &next_seed;
// Cells and bits we've seen so far while traversing
Cone& cone;
// We're not allowed to traverse past cells and bits in `stop`
const Cone& stop;
// Input bits are bits that no longer can be traversed
// Tracking these is optional
pool<SigBit>* input_bits;
// Recursively traverses backwards from a cell to find all cells in its input cone
// Adds cell to cone.cells, stops at cells in 'stop' set
// Returns true if stopped on a stop cell
bool find_input_cone(Cell *cell)
{
if (cone.cells.count(cell))
return false;
cone.cells.insert(cell);
if (stop.cells.count(cell))
return true;
for (auto &conn : cell->connections())
if (yosys_celltypes.cell_input(cell->type, conn.first))
for (auto bit : model.sigmap(conn.second)) {
if (RTLIL::builtin_ff_cell_types().count(cell->type)) {
if (!conn.first.in(ID::CLK, ID::C))
next_seed.insert(bit);
} else
find_input_cone(bit);
}
return false;
}
void find_input_cone(SigBit bit)
{
if (cone.bits.count(bit))
return;
cone.bits.insert(bit);
if (stop.bits.count(bit)) {
if (input_bits != nullptr) input_bits->insert(bit);
return;
}
if (!model.bit2driver.count(bit))
return;
// If the input cone of the driver cell reaches a stop bit,
// then `bit` is an "input bit"
if (find_input_cone(model.bit2driver.at(bit)))
if (input_bits != nullptr) input_bits->insert(bit);
}
void find_input_cone(pool<SigBit> bits)
{
for (auto bit : bits)
find_input_cone(bit);
}
};
// Builds (full or short) input cones from the seeds
// Creates full cones (no stops) and optionally short cones (stop at other side's cone)
// Updates seed_a/seed_b with next iteration's FF inputs
// Returns input bits and cone structures for SAT problem construction
std::tuple<pool<SigBit>, Cone, Cone> init_iter(pool<SigBit>& seed_a, pool<SigBit>& seed_b) const
{
// Empty, never inserted to, to traverse full cones
const Cone no_stop;
Cone full_cone_a, full_cone_b;
// Values of seed_* for the next iteration
pool<SigBit> next_seed_a, next_seed_b;
{
ConeFinder finder_a {model, next_seed_a, full_cone_a, no_stop, nullptr};
finder_a.find_input_cone(seed_a);
ConeFinder finder_b {model, next_seed_b, full_cone_b, no_stop, nullptr};
finder_b.find_input_cone(seed_b);
}
Cone short_cone_a, short_cone_b;
pool<SigBit> input_bits;
if (cfg.short_cones)
{
// Rebuild cones with the knowledge of the full cones.
// Avoids stuffing overlaps in input cones into the solver
// e.g. for A by using the full B cone as stops
next_seed_a.clear();
ConeFinder short_finder_a = {model, next_seed_a, short_cone_a, short_cone_b, &input_bits};
short_finder_a.find_input_cone(seed_a);
next_seed_a.swap(seed_a);
next_seed_b.clear();
ConeFinder short_finder_b = {model, next_seed_b, short_cone_b, short_cone_a, &input_bits};
short_finder_b.find_input_cone(seed_b);
next_seed_b.swap(seed_b);
}
else
{
short_cone_a = full_cone_a;
next_seed_a.swap(seed_a);
short_cone_b = full_cone_b;
next_seed_b.swap(seed_b);
}
return std::make_tuple(input_bits, short_cone_a, short_cone_b);
}
void report_new_cells(const pool<Cell*>& cells, const Cone& cone_a, const Cone& cone_b) const
{
log(" Adding %d new cells to the problem (%d A, %d B, %d shared).\n",
GetSize(cells), GetSize(cone_a.cells), GetSize(cone_b.cells),
(GetSize(cone_a.cells) + GetSize(cone_b.cells)) - GetSize(cells));
#if 0
for (auto cell : short_cells_cone_a)
log(" A-side cell: %s\n", log_id(cell));
for (auto cell : short_cells_cone_b)
log(" B-side cell: %s\n", log_id(cell));
#endif
}
void report_new_assume_cells(const pool<Cell*>& extra_problem_cells, int old_size, const pool<Cell*>& problem_cells) const
{
if (cfg.verbose) {
log(" Adding %d new cells to check assumptions (and reusing %d).\n",
GetSize(problem_cells) - old_size,
old_size - (GetSize(problem_cells) - GetSize(extra_problem_cells)));
#if 0
for (auto cell : extra_problem_cells)
log(" cell: %s\n", log_id(cell));
#endif
}
}
// Ensure the input cones of $assume cells get modelled by the problem
pool<Cell*> add_assumes_to_problem(const Cone& cone_a, const Cone& cone_b) const
{
pool<Cell*> extra_problem_cells;
for (auto assume : assume_cells) {
pool<SigBit> assume_seed, dummy_next_seed, overlap_bits;
assume_seed.insert(model.sigmap(assume->getPort(ID::A)).as_bit());
assume_seed.insert(model.sigmap(assume->getPort(ID::EN)).as_bit());
for (auto& cone : {cone_a, cone_b}) {
Cone assume_cone;
ConeFinder{model, dummy_next_seed, assume_cone, cone, &overlap_bits}
.find_input_cone(assume_seed);
if (GetSize(overlap_bits)) {
extra_problem_cells.insert(assume);
extra_problem_cells.insert(assume_cone.cells.begin(), assume_cone.cells.end());
overlap_bits.clear();
}
assume_cone.clear();
dummy_next_seed.clear();
}
}
return extra_problem_cells;
}
static void report_missing_model(Cell* cell)
{
if (RTLIL::builtin_ff_cell_types().count(cell->type))
log_cmd_error("No SAT model available for async FF cell %s (%s). Consider running `async2sync` or `clk2fflogic` first.\n", log_id(cell), log_id(cell->type));
else
log_cmd_error("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type));
}
void prepare_ezsat(int ez_context, SigBit bit_a, SigBit bit_b)
{
if (satgen.model_undef)
{
int ez_a = satgen.importSigBit(bit_a, cfg.max_seq+1);
int ez_b = satgen.importDefSigBit(bit_b, cfg.max_seq+1);
int ez_undef_a = satgen.importUndefSigBit(bit_a, cfg.max_seq+1);
ez->assume(ez->XOR(ez_a, ez_b), ez_context);
ez->assume(ez->NOT(ez_undef_a), ez_context);
}
else
{
int ez_a = satgen.importSigBit(bit_a, cfg.max_seq+1);
int ez_b = satgen.importSigBit(bit_b, cfg.max_seq+1);
ez->assume(ez->XOR(ez_a, ez_b), ez_context);
}
}
void construct_ezsat(const pool<SigBit>& input_bits, int step)
{
if (cfg.set_assumes) {
if (cfg.verbose && step == cfg.max_seq) {
RTLIL::SigSpec assumes_a, assumes_en;
satgen.getAssumes(assumes_a, assumes_en, step+1);
for (int i = 0; i < GetSize(assumes_a); i++)
log(" Import constraint from assume cell: %s when %s (%d).\n", log_signal(assumes_a[i]), log_signal(assumes_en[i]), step);
}
ez->assume(satgen.importAssumes(step+1));
}
if (satgen.model_undef) {
for (auto bit : input_bits)
ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step+1)));
}
if (cfg.verbose)
log(" Problem size at t=%d: %d literals, %d clauses\n", step, ez->numCnfVariables(), ez->numCnfClauses());
}
bool prove_equiv_cell(Cell* cell)
{
SigBit bit_a = model.sigmap(cell->getPort(ID::A)).as_bit();
SigBit bit_b = model.sigmap(cell->getPort(ID::B)).as_bit();
int ez_context = ez->frozen_literal();
prepare_ezsat(ez_context, bit_a, bit_b);
// Two bits, bit_a, and bit_b, have been marked equivalent in the design
// We will be traversing the input cones for each of them
// In the first iteration, we will using those as starting points
pool<SigBit> seed_a = { bit_a };
pool<SigBit> seed_b = { bit_b };
if (cfg.verbose) {
log(" Trying to prove $equiv cell %s:\n", log_id(cell));
log(" A = %s, B = %s, Y = %s\n", log_signal(bit_a), log_signal(bit_b), log_signal(cell->getPort(ID::Y)));
} else {
log(" Trying to prove $equiv for %s:", log_signal(cell->getPort(ID::Y)));
}
int step = cfg.max_seq;
while (1)
{
// Traverse input cones of seed_a and seed_b, potentially finding new seeds
auto [input_bits, cone_a, cone_b] = init_iter(seed_a, seed_b);
// Cells to model in SAT solver
pool<Cell*> problem_cells;
problem_cells.insert(cone_a.cells.begin(), cone_a.cells.end());
problem_cells.insert(cone_b.cells.begin(), cone_b.cells.end());
if (cfg.verbose)
report_new_cells(problem_cells, cone_a, cone_b);
if (cfg.set_assumes) {
auto extras = add_assumes_to_problem(cone_a, cone_b);
if (GetSize(extras)) {
auto old_size = GetSize(problem_cells);
problem_cells.insert(extras.begin(), extras.end());
report_new_assume_cells(extras, old_size, problem_cells);
}
}
for (auto cell : problem_cells) {
auto key = pair<Cell*, int>(cell, step+1);
if (!imported_cells_cache.count(key) && !satgen.importCell(cell, step+1)) {
report_missing_model(cell);
}
imported_cells_cache.insert(key);
}
construct_ezsat(input_bits, step);
if (!ez->solve(ez_context)) {
log(cfg.verbose ? " Proved equivalence! Marking $equiv cell as proven.\n" : " success!\n");
// Replace $equiv cell with a short
cell->setPort(ID::B, cell->getPort(ID::A));
ez->assume(ez->NOT(ez_context));
return true;
}
if (cfg.verbose)
log(" Failed to prove equivalence with sequence length %d.\n", cfg.max_seq - step);
if (--step < 0) {
if (cfg.verbose)
log(" Reached sequence limit.\n");
break;
}
if (seed_a.empty() && seed_b.empty()) {
if (cfg.verbose)
log(" No nets to continue in previous time step.\n");
break;
}
if (seed_a.empty()) {
if (cfg.verbose)
log(" No nets on A-side to continue in previous time step.\n");
break;
}
if (seed_b.empty()) {
if (cfg.verbose)
log(" No nets on B-side to continue in previous time step.\n");
break;
}
if (cfg.verbose) {
#if 0
log(" Continuing analysis in previous time step with the following nets:\n");
for (auto bit : seed_a)
log(" A: %s\n", log_signal(bit));
for (auto bit : seed_b)
log(" B: %s\n", log_signal(bit));
#else
log(" Continuing analysis in previous time step with %d A- and %d B-nets.\n", GetSize(seed_a), GetSize(seed_b));
#endif
}
}
if (!cfg.verbose)
log(" failed.\n");
ez->assume(ez->NOT(ez_context));
return false;
}
int run()
{
if (GetSize(equiv_cells) > 1) {
SigSpec sig;
for (auto c : equiv_cells)
sig.append(model.sigmap(c->getPort(ID::Y)));
log(" Grouping SAT models for %s:\n", log_signal(sig));
}
int counter = 0;
for (auto c : equiv_cells) {
if (prove_equiv_cell(c))
counter++;
}
return counter;
}
};
struct EquivSimplePass : public Pass {
EquivSimplePass() : Pass("equiv_simple", "try proving simple $equiv instances") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" equiv_simple [options] [selection]\n");
log("\n");
log("This command tries to prove $equiv cells using a simple direct SAT approach.\n");
log("\n");
log(" -v\n");
log(" verbose output\n");
log("\n");
log(" -undef\n");
log(" enable modelling of undef states\n");
log("\n");
log(" -short\n");
log(" create shorter input cones that stop at shared nodes. This yields\n");
log(" simpler SAT problems but sometimes fails to prove equivalence.\n");
log("\n");
log(" -nogroup\n");
log(" disabling grouping of $equiv cells by output wire\n");
log("\n");
log(" -seq <N>\n");
log(" the max. number of time steps to be considered (default = 1)\n");
log("\n");
log(" -set-assumes\n");
log(" set all assumptions provided via $assume cells\n");
log("\n");
}
void execute(std::vector<std::string> args, Design *design) override
{
EquivSimpleWorker::Config cfg = {};
int success_counter = 0;
log_header(design, "Executing EQUIV_SIMPLE pass.\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-v") {
cfg.verbose = true;
continue;
}
if (args[argidx] == "-short") {
cfg.short_cones = true;
continue;
}
if (args[argidx] == "-undef") {
cfg.model_undef = true;
continue;
}
if (args[argidx] == "-nogroup") {
cfg.nogroup = true;
continue;
}
if (args[argidx] == "-seq" && argidx+1 < args.size()) {
cfg.max_seq = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-set-assumes") {
cfg.set_assumes = true;
continue;
}
break;
}
extra_args(args, argidx, design);
CellTypes ct;
ct.setup_internals();
ct.setup_stdcells();
ct.setup_internals_ff();
ct.setup_stdcells_mem();
for (auto module : design->selected_modules())
{
SigMap sigmap(module);
dict<SigBit, Cell*> bit2driver;
dict<SigBit, dict<SigBit, Cell*>> unproven_equiv_cells;
vector<Cell*> assumes;
int unproven_cells_counter = 0;
for (auto cell : module->selected_cells()) {
if (cell->type == ID($equiv) && cell->getPort(ID::A) != cell->getPort(ID::B)) {
auto bit = sigmap(cell->getPort(ID::Y).as_bit());
auto bit_group = bit;
if (!cfg.nogroup && bit_group.wire)
bit_group.offset = 0;
unproven_equiv_cells[bit_group][bit] = cell;
unproven_cells_counter++;
} else if (cell->type == ID($assume)) {
assumes.push_back(cell);
}
}
if (unproven_equiv_cells.empty())
continue;
log("Found %d unproven $equiv cells (%d groups) in %s:\n",
unproven_cells_counter, GetSize(unproven_equiv_cells), log_id(module));
for (auto cell : module->cells()) {
if (!ct.cell_known(cell->type))
continue;
for (auto &conn : cell->connections())
if (yosys_celltypes.cell_output(cell->type, conn.first))
for (auto bit : sigmap(conn.second))
bit2driver[bit] = cell;
}
unproven_equiv_cells.sort();
for (auto [_, d] : unproven_equiv_cells)
{
d.sort();
vector<Cell*> cells;
for (auto [_, cell] : d)
cells.push_back(cell);
EquivSimpleWorker::DesignModel model {sigmap, bit2driver};
EquivSimpleWorker worker(cells, assumes, model, cfg);
success_counter += worker.run();
}
}
log("Proved %d previously unproven $equiv cells.\n", success_counter);
}
} EquivSimplePass;
PRIVATE_NAMESPACE_END