mirror of
https://github.com/YosysHQ/yosys
synced 2025-08-13 14:40:57 +00:00
VS build currently failing with `error C2641: cannot deduce template arguments for 'std::array'`. Changing to `std::array<Cone, 2>` gives `error C2027: use of undefined type` instead.
535 lines
16 KiB
C++
535 lines
16 KiB
C++
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "kernel/yosys.h"
|
|
#include "kernel/satgen.h"
|
|
|
|
USING_YOSYS_NAMESPACE
|
|
PRIVATE_NAMESPACE_BEGIN
|
|
|
|
struct EquivSimpleWorker
|
|
{
|
|
Module *module;
|
|
const vector<Cell*> &equiv_cells;
|
|
const vector<Cell*> &assume_cells;
|
|
struct Cone {
|
|
pool<Cell*> cells;
|
|
pool<SigBit> bits;
|
|
void clear() {
|
|
cells.clear();
|
|
bits.clear();
|
|
}
|
|
};
|
|
|
|
struct DesignModel {
|
|
const SigMap &sigmap;
|
|
dict<SigBit, Cell*> &bit2driver;
|
|
};
|
|
DesignModel model;
|
|
|
|
ezSatPtr ez;
|
|
SatGen satgen;
|
|
|
|
struct Config {
|
|
bool verbose = false;
|
|
bool short_cones = false;
|
|
bool model_undef = false;
|
|
bool nogroup = false;
|
|
bool set_assumes = false;
|
|
int max_seq = 1;
|
|
};
|
|
Config cfg;
|
|
|
|
pool<pair<Cell*, int>> imported_cells_cache;
|
|
|
|
EquivSimpleWorker(const vector<Cell*> &equiv_cells, const vector<Cell*> &assume_cells, DesignModel model, Config cfg) :
|
|
module(equiv_cells.front()->module), equiv_cells(equiv_cells), assume_cells(assume_cells),
|
|
model(model), satgen(ez.get(), &model.sigmap), cfg(cfg)
|
|
{
|
|
satgen.model_undef = cfg.model_undef;
|
|
}
|
|
|
|
struct ConeFinder {
|
|
DesignModel model;
|
|
// Bits we should also analyze in a later iteration (flop inputs)
|
|
pool<SigBit> &next_seed;
|
|
// Cells and bits we've seen so far while traversing
|
|
Cone& cone;
|
|
// We're not allowed to traverse past cells and bits in `stop`
|
|
const Cone& stop;
|
|
// Input bits are bits that no longer can be traversed
|
|
// Tracking these is optional
|
|
pool<SigBit>* input_bits;
|
|
|
|
// Recursively traverses backwards from a cell to find all cells in its input cone
|
|
// Adds cell to cone.cells, stops at cells in 'stop' set
|
|
// Returns true if stopped on a stop cell
|
|
bool find_input_cone(Cell *cell)
|
|
{
|
|
if (cone.cells.count(cell))
|
|
return false;
|
|
|
|
cone.cells.insert(cell);
|
|
|
|
if (stop.cells.count(cell))
|
|
return true;
|
|
|
|
for (auto &conn : cell->connections())
|
|
if (yosys_celltypes.cell_input(cell->type, conn.first))
|
|
for (auto bit : model.sigmap(conn.second)) {
|
|
if (RTLIL::builtin_ff_cell_types().count(cell->type)) {
|
|
if (!conn.first.in(ID::CLK, ID::C))
|
|
next_seed.insert(bit);
|
|
} else
|
|
find_input_cone(bit);
|
|
}
|
|
return false;
|
|
}
|
|
void find_input_cone(SigBit bit)
|
|
{
|
|
if (cone.bits.count(bit))
|
|
return;
|
|
|
|
cone.bits.insert(bit);
|
|
|
|
if (stop.bits.count(bit)) {
|
|
if (input_bits != nullptr) input_bits->insert(bit);
|
|
return;
|
|
}
|
|
|
|
if (!model.bit2driver.count(bit))
|
|
return;
|
|
|
|
// If the input cone of the driver cell reaches a stop bit,
|
|
// then `bit` is an "input bit"
|
|
if (find_input_cone(model.bit2driver.at(bit)))
|
|
if (input_bits != nullptr) input_bits->insert(bit);
|
|
}
|
|
void find_input_cone(pool<SigBit> bits)
|
|
{
|
|
for (auto bit : bits)
|
|
find_input_cone(bit);
|
|
}
|
|
};
|
|
|
|
// Builds (full or short) input cones from the seeds
|
|
// Creates full cones (no stops) and optionally short cones (stop at other side's cone)
|
|
// Updates seed_a/seed_b with next iteration's FF inputs
|
|
// Returns input bits and cone structures for SAT problem construction
|
|
std::tuple<pool<SigBit>, Cone, Cone> init_iter(pool<SigBit>& seed_a, pool<SigBit>& seed_b) const
|
|
{
|
|
// Empty, never inserted to, to traverse full cones
|
|
const Cone no_stop;
|
|
Cone full_cone_a, full_cone_b;
|
|
|
|
// Values of seed_* for the next iteration
|
|
pool<SigBit> next_seed_a, next_seed_b;
|
|
|
|
{
|
|
ConeFinder finder_a {model, next_seed_a, full_cone_a, no_stop, nullptr};
|
|
finder_a.find_input_cone(seed_a);
|
|
|
|
ConeFinder finder_b {model, next_seed_b, full_cone_b, no_stop, nullptr};
|
|
finder_b.find_input_cone(seed_b);
|
|
}
|
|
|
|
Cone short_cone_a, short_cone_b;
|
|
pool<SigBit> input_bits;
|
|
|
|
if (cfg.short_cones)
|
|
{
|
|
// Rebuild cones with the knowledge of the full cones.
|
|
// Avoids stuffing overlaps in input cones into the solver
|
|
// e.g. for A by using the full B cone as stops
|
|
next_seed_a.clear();
|
|
ConeFinder short_finder_a = {model, next_seed_a, short_cone_a, short_cone_b, &input_bits};
|
|
short_finder_a.find_input_cone(seed_a);
|
|
next_seed_a.swap(seed_a);
|
|
|
|
next_seed_b.clear();
|
|
ConeFinder short_finder_b = {model, next_seed_b, short_cone_b, short_cone_a, &input_bits};
|
|
short_finder_b.find_input_cone(seed_b);
|
|
next_seed_b.swap(seed_b);
|
|
}
|
|
else
|
|
{
|
|
short_cone_a = full_cone_a;
|
|
next_seed_a.swap(seed_a);
|
|
|
|
short_cone_b = full_cone_b;
|
|
next_seed_b.swap(seed_b);
|
|
}
|
|
return std::make_tuple(input_bits, short_cone_a, short_cone_b);
|
|
}
|
|
|
|
void report_new_cells(const pool<Cell*>& cells, const Cone& cone_a, const Cone& cone_b) const
|
|
{
|
|
log(" Adding %d new cells to the problem (%d A, %d B, %d shared).\n",
|
|
GetSize(cells), GetSize(cone_a.cells), GetSize(cone_b.cells),
|
|
(GetSize(cone_a.cells) + GetSize(cone_b.cells)) - GetSize(cells));
|
|
#if 0
|
|
for (auto cell : short_cells_cone_a)
|
|
log(" A-side cell: %s\n", log_id(cell));
|
|
|
|
for (auto cell : short_cells_cone_b)
|
|
log(" B-side cell: %s\n", log_id(cell));
|
|
#endif
|
|
}
|
|
void report_new_assume_cells(const pool<Cell*>& extra_problem_cells, int old_size, const pool<Cell*>& problem_cells) const
|
|
{
|
|
if (cfg.verbose) {
|
|
log(" Adding %d new cells to check assumptions (and reusing %d).\n",
|
|
GetSize(problem_cells) - old_size,
|
|
old_size - (GetSize(problem_cells) - GetSize(extra_problem_cells)));
|
|
#if 0
|
|
for (auto cell : extra_problem_cells)
|
|
log(" cell: %s\n", log_id(cell));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Ensure the input cones of $assume cells get modelled by the problem
|
|
pool<Cell*> add_assumes_to_problem(const Cone& cone_a, const Cone& cone_b) const
|
|
{
|
|
pool<Cell*> extra_problem_cells;
|
|
for (auto assume : assume_cells) {
|
|
pool<SigBit> assume_seed, dummy_next_seed, overlap_bits;
|
|
assume_seed.insert(model.sigmap(assume->getPort(ID::A)).as_bit());
|
|
assume_seed.insert(model.sigmap(assume->getPort(ID::EN)).as_bit());
|
|
|
|
for (auto& cone : {cone_a, cone_b}) {
|
|
Cone assume_cone;
|
|
ConeFinder{model, dummy_next_seed, assume_cone, cone, &overlap_bits}
|
|
.find_input_cone(assume_seed);
|
|
if (GetSize(overlap_bits)) {
|
|
extra_problem_cells.insert(assume);
|
|
extra_problem_cells.insert(assume_cone.cells.begin(), assume_cone.cells.end());
|
|
overlap_bits.clear();
|
|
}
|
|
assume_cone.clear();
|
|
dummy_next_seed.clear();
|
|
}
|
|
}
|
|
return extra_problem_cells;
|
|
}
|
|
|
|
static void report_missing_model(Cell* cell)
|
|
{
|
|
if (RTLIL::builtin_ff_cell_types().count(cell->type))
|
|
log_cmd_error("No SAT model available for async FF cell %s (%s). Consider running `async2sync` or `clk2fflogic` first.\n", log_id(cell), log_id(cell->type));
|
|
else
|
|
log_cmd_error("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type));
|
|
}
|
|
|
|
void prepare_ezsat(int ez_context, SigBit bit_a, SigBit bit_b)
|
|
{
|
|
if (satgen.model_undef)
|
|
{
|
|
int ez_a = satgen.importSigBit(bit_a, cfg.max_seq+1);
|
|
int ez_b = satgen.importDefSigBit(bit_b, cfg.max_seq+1);
|
|
int ez_undef_a = satgen.importUndefSigBit(bit_a, cfg.max_seq+1);
|
|
|
|
ez->assume(ez->XOR(ez_a, ez_b), ez_context);
|
|
ez->assume(ez->NOT(ez_undef_a), ez_context);
|
|
}
|
|
else
|
|
{
|
|
int ez_a = satgen.importSigBit(bit_a, cfg.max_seq+1);
|
|
int ez_b = satgen.importSigBit(bit_b, cfg.max_seq+1);
|
|
ez->assume(ez->XOR(ez_a, ez_b), ez_context);
|
|
}
|
|
}
|
|
void construct_ezsat(const pool<SigBit>& input_bits, int step)
|
|
{
|
|
if (cfg.set_assumes) {
|
|
if (cfg.verbose && step == cfg.max_seq) {
|
|
RTLIL::SigSpec assumes_a, assumes_en;
|
|
satgen.getAssumes(assumes_a, assumes_en, step+1);
|
|
for (int i = 0; i < GetSize(assumes_a); i++)
|
|
log(" Import constraint from assume cell: %s when %s (%d).\n", log_signal(assumes_a[i]), log_signal(assumes_en[i]), step);
|
|
}
|
|
ez->assume(satgen.importAssumes(step+1));
|
|
}
|
|
|
|
if (satgen.model_undef) {
|
|
for (auto bit : input_bits)
|
|
ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step+1)));
|
|
}
|
|
|
|
if (cfg.verbose)
|
|
log(" Problem size at t=%d: %d literals, %d clauses\n", step, ez->numCnfVariables(), ez->numCnfClauses());
|
|
}
|
|
|
|
bool prove_equiv_cell(Cell* cell)
|
|
{
|
|
SigBit bit_a = model.sigmap(cell->getPort(ID::A)).as_bit();
|
|
SigBit bit_b = model.sigmap(cell->getPort(ID::B)).as_bit();
|
|
int ez_context = ez->frozen_literal();
|
|
|
|
prepare_ezsat(ez_context, bit_a, bit_b);
|
|
|
|
// Two bits, bit_a, and bit_b, have been marked equivalent in the design
|
|
// We will be traversing the input cones for each of them
|
|
// In the first iteration, we will using those as starting points
|
|
pool<SigBit> seed_a = { bit_a };
|
|
pool<SigBit> seed_b = { bit_b };
|
|
|
|
if (cfg.verbose) {
|
|
log(" Trying to prove $equiv cell %s:\n", log_id(cell));
|
|
log(" A = %s, B = %s, Y = %s\n", log_signal(bit_a), log_signal(bit_b), log_signal(cell->getPort(ID::Y)));
|
|
} else {
|
|
log(" Trying to prove $equiv for %s:", log_signal(cell->getPort(ID::Y)));
|
|
}
|
|
|
|
int step = cfg.max_seq;
|
|
while (1)
|
|
{
|
|
// Traverse input cones of seed_a and seed_b, potentially finding new seeds
|
|
auto [input_bits, cone_a, cone_b] = init_iter(seed_a, seed_b);
|
|
|
|
// Cells to model in SAT solver
|
|
pool<Cell*> problem_cells;
|
|
problem_cells.insert(cone_a.cells.begin(), cone_a.cells.end());
|
|
problem_cells.insert(cone_b.cells.begin(), cone_b.cells.end());
|
|
|
|
if (cfg.verbose)
|
|
report_new_cells(problem_cells, cone_a, cone_b);
|
|
|
|
if (cfg.set_assumes) {
|
|
auto extras = add_assumes_to_problem(cone_a, cone_b);
|
|
if (GetSize(extras)) {
|
|
auto old_size = GetSize(problem_cells);
|
|
problem_cells.insert(extras.begin(), extras.end());
|
|
report_new_assume_cells(extras, old_size, problem_cells);
|
|
}
|
|
}
|
|
|
|
for (auto cell : problem_cells) {
|
|
auto key = pair<Cell*, int>(cell, step+1);
|
|
if (!imported_cells_cache.count(key) && !satgen.importCell(cell, step+1)) {
|
|
report_missing_model(cell);
|
|
}
|
|
imported_cells_cache.insert(key);
|
|
}
|
|
|
|
construct_ezsat(input_bits, step);
|
|
|
|
if (!ez->solve(ez_context)) {
|
|
log(cfg.verbose ? " Proved equivalence! Marking $equiv cell as proven.\n" : " success!\n");
|
|
// Replace $equiv cell with a short
|
|
cell->setPort(ID::B, cell->getPort(ID::A));
|
|
ez->assume(ez->NOT(ez_context));
|
|
return true;
|
|
}
|
|
|
|
if (cfg.verbose)
|
|
log(" Failed to prove equivalence with sequence length %d.\n", cfg.max_seq - step);
|
|
|
|
if (--step < 0) {
|
|
if (cfg.verbose)
|
|
log(" Reached sequence limit.\n");
|
|
break;
|
|
}
|
|
|
|
if (seed_a.empty() && seed_b.empty()) {
|
|
if (cfg.verbose)
|
|
log(" No nets to continue in previous time step.\n");
|
|
break;
|
|
}
|
|
|
|
if (seed_a.empty()) {
|
|
if (cfg.verbose)
|
|
log(" No nets on A-side to continue in previous time step.\n");
|
|
break;
|
|
}
|
|
|
|
if (seed_b.empty()) {
|
|
if (cfg.verbose)
|
|
log(" No nets on B-side to continue in previous time step.\n");
|
|
break;
|
|
}
|
|
|
|
if (cfg.verbose) {
|
|
#if 0
|
|
log(" Continuing analysis in previous time step with the following nets:\n");
|
|
for (auto bit : seed_a)
|
|
log(" A: %s\n", log_signal(bit));
|
|
for (auto bit : seed_b)
|
|
log(" B: %s\n", log_signal(bit));
|
|
#else
|
|
log(" Continuing analysis in previous time step with %d A- and %d B-nets.\n", GetSize(seed_a), GetSize(seed_b));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (!cfg.verbose)
|
|
log(" failed.\n");
|
|
|
|
ez->assume(ez->NOT(ez_context));
|
|
return false;
|
|
}
|
|
|
|
int run()
|
|
{
|
|
if (GetSize(equiv_cells) > 1) {
|
|
SigSpec sig;
|
|
for (auto c : equiv_cells)
|
|
sig.append(model.sigmap(c->getPort(ID::Y)));
|
|
log(" Grouping SAT models for %s:\n", log_signal(sig));
|
|
}
|
|
|
|
int counter = 0;
|
|
for (auto c : equiv_cells) {
|
|
if (prove_equiv_cell(c))
|
|
counter++;
|
|
}
|
|
return counter;
|
|
}
|
|
|
|
};
|
|
|
|
struct EquivSimplePass : public Pass {
|
|
EquivSimplePass() : Pass("equiv_simple", "try proving simple $equiv instances") { }
|
|
void help() override
|
|
{
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
log("\n");
|
|
log(" equiv_simple [options] [selection]\n");
|
|
log("\n");
|
|
log("This command tries to prove $equiv cells using a simple direct SAT approach.\n");
|
|
log("\n");
|
|
log(" -v\n");
|
|
log(" verbose output\n");
|
|
log("\n");
|
|
log(" -undef\n");
|
|
log(" enable modelling of undef states\n");
|
|
log("\n");
|
|
log(" -short\n");
|
|
log(" create shorter input cones that stop at shared nodes. This yields\n");
|
|
log(" simpler SAT problems but sometimes fails to prove equivalence.\n");
|
|
log("\n");
|
|
log(" -nogroup\n");
|
|
log(" disabling grouping of $equiv cells by output wire\n");
|
|
log("\n");
|
|
log(" -seq <N>\n");
|
|
log(" the max. number of time steps to be considered (default = 1)\n");
|
|
log("\n");
|
|
log(" -set-assumes\n");
|
|
log(" set all assumptions provided via $assume cells\n");
|
|
log("\n");
|
|
}
|
|
void execute(std::vector<std::string> args, Design *design) override
|
|
{
|
|
EquivSimpleWorker::Config cfg = {};
|
|
int success_counter = 0;
|
|
|
|
log_header(design, "Executing EQUIV_SIMPLE pass.\n");
|
|
|
|
size_t argidx;
|
|
for (argidx = 1; argidx < args.size(); argidx++) {
|
|
if (args[argidx] == "-v") {
|
|
cfg.verbose = true;
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-short") {
|
|
cfg.short_cones = true;
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-undef") {
|
|
cfg.model_undef = true;
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-nogroup") {
|
|
cfg.nogroup = true;
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-seq" && argidx+1 < args.size()) {
|
|
cfg.max_seq = atoi(args[++argidx].c_str());
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-set-assumes") {
|
|
cfg.set_assumes = true;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
extra_args(args, argidx, design);
|
|
|
|
CellTypes ct;
|
|
ct.setup_internals();
|
|
ct.setup_stdcells();
|
|
ct.setup_internals_ff();
|
|
ct.setup_stdcells_mem();
|
|
|
|
for (auto module : design->selected_modules())
|
|
{
|
|
SigMap sigmap(module);
|
|
dict<SigBit, Cell*> bit2driver;
|
|
dict<SigBit, dict<SigBit, Cell*>> unproven_equiv_cells;
|
|
vector<Cell*> assumes;
|
|
int unproven_cells_counter = 0;
|
|
|
|
for (auto cell : module->selected_cells()) {
|
|
if (cell->type == ID($equiv) && cell->getPort(ID::A) != cell->getPort(ID::B)) {
|
|
auto bit = sigmap(cell->getPort(ID::Y).as_bit());
|
|
auto bit_group = bit;
|
|
if (!cfg.nogroup && bit_group.wire)
|
|
bit_group.offset = 0;
|
|
unproven_equiv_cells[bit_group][bit] = cell;
|
|
unproven_cells_counter++;
|
|
} else if (cell->type == ID($assume)) {
|
|
assumes.push_back(cell);
|
|
}
|
|
}
|
|
|
|
if (unproven_equiv_cells.empty())
|
|
continue;
|
|
|
|
log("Found %d unproven $equiv cells (%d groups) in %s:\n",
|
|
unproven_cells_counter, GetSize(unproven_equiv_cells), log_id(module));
|
|
|
|
for (auto cell : module->cells()) {
|
|
if (!ct.cell_known(cell->type))
|
|
continue;
|
|
for (auto &conn : cell->connections())
|
|
if (yosys_celltypes.cell_output(cell->type, conn.first))
|
|
for (auto bit : sigmap(conn.second))
|
|
bit2driver[bit] = cell;
|
|
}
|
|
|
|
unproven_equiv_cells.sort();
|
|
for (auto [_, d] : unproven_equiv_cells)
|
|
{
|
|
d.sort();
|
|
|
|
vector<Cell*> cells;
|
|
for (auto [_, cell] : d)
|
|
cells.push_back(cell);
|
|
|
|
EquivSimpleWorker::DesignModel model {sigmap, bit2driver};
|
|
EquivSimpleWorker worker(cells, assumes, model, cfg);
|
|
success_counter += worker.run();
|
|
}
|
|
}
|
|
|
|
log("Proved %d previously unproven $equiv cells.\n", success_counter);
|
|
}
|
|
} EquivSimplePass;
|
|
|
|
PRIVATE_NAMESPACE_END
|