/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/satgen.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct EquivSimpleWorker { Module *module; const vector &equiv_cells; const vector &assume_cells; struct Cone { pool cells; pool bits; void clear() { cells.clear(); bits.clear(); } }; struct DesignModel { const SigMap &sigmap; dict &bit2driver; }; DesignModel model; ezSatPtr ez; SatGen satgen; struct Config { bool verbose = false; bool short_cones = false; bool model_undef = false; bool nogroup = false; bool set_assumes = false; int max_seq = 1; }; Config cfg; pool> imported_cells_cache; EquivSimpleWorker(const vector &equiv_cells, const vector &assume_cells, DesignModel model, Config cfg) : module(equiv_cells.front()->module), equiv_cells(equiv_cells), assume_cells(assume_cells), model(model), satgen(ez.get(), &model.sigmap), cfg(cfg) { satgen.model_undef = cfg.model_undef; } struct ConeFinder { DesignModel model; // Bits we should also analyze in a later iteration (flop inputs) pool &next_seed; // Cells and bits we've seen so far while traversing Cone& cone; // We're not allowed to traverse past cells and bits in `stop` const Cone& stop; // Input bits are bits that no longer can be traversed // Tracking these is optional pool* input_bits; // Recursively traverses backwards from a cell to find all cells in its input cone // Adds cell to cone.cells, stops at cells in 'stop' set // Returns true if stopped on a stop cell bool find_input_cone(Cell *cell) { if (cone.cells.count(cell)) return false; cone.cells.insert(cell); if (stop.cells.count(cell)) return true; for (auto &conn : cell->connections()) if (yosys_celltypes.cell_input(cell->type, conn.first)) for (auto bit : model.sigmap(conn.second)) { if (RTLIL::builtin_ff_cell_types().count(cell->type)) { if (!conn.first.in(ID::CLK, ID::C)) next_seed.insert(bit); } else find_input_cone(bit); } return false; } void find_input_cone(SigBit bit) { if (cone.bits.count(bit)) return; cone.bits.insert(bit); if (stop.bits.count(bit)) { if (input_bits != nullptr) input_bits->insert(bit); return; } if (!model.bit2driver.count(bit)) return; // If the input cone of the driver cell reaches a stop bit, // then `bit` is an "input bit" if (find_input_cone(model.bit2driver.at(bit))) if (input_bits != nullptr) input_bits->insert(bit); } void find_input_cone(pool bits) { for (auto bit : bits) find_input_cone(bit); } }; // Builds (full or short) input cones from the seeds // Creates full cones (no stops) and optionally short cones (stop at other side's cone) // Updates seed_a/seed_b with next iteration's FF inputs // Returns input bits and cone structures for SAT problem construction std::tuple, Cone, Cone> init_iter(pool& seed_a, pool& seed_b) const { // Empty, never inserted to, to traverse full cones const Cone no_stop; Cone full_cone_a, full_cone_b; // Values of seed_* for the next iteration pool next_seed_a, next_seed_b; { ConeFinder finder_a {model, next_seed_a, full_cone_a, no_stop, nullptr}; finder_a.find_input_cone(seed_a); ConeFinder finder_b {model, next_seed_b, full_cone_b, no_stop, nullptr}; finder_b.find_input_cone(seed_b); } Cone short_cone_a, short_cone_b; pool input_bits; if (cfg.short_cones) { // Rebuild cones with the knowledge of the full cones. // Avoids stuffing overlaps in input cones into the solver // e.g. for A by using the full B cone as stops next_seed_a.clear(); ConeFinder short_finder_a = {model, next_seed_a, short_cone_a, short_cone_b, &input_bits}; short_finder_a.find_input_cone(seed_a); next_seed_a.swap(seed_a); next_seed_b.clear(); ConeFinder short_finder_b = {model, next_seed_b, short_cone_b, short_cone_a, &input_bits}; short_finder_b.find_input_cone(seed_b); next_seed_b.swap(seed_b); } else { short_cone_a = full_cone_a; next_seed_a.swap(seed_a); short_cone_b = full_cone_b; next_seed_b.swap(seed_b); } return std::make_tuple(input_bits, short_cone_a, short_cone_b); } void report_new_cells(const pool& cells, const Cone& cone_a, const Cone& cone_b) const { log(" Adding %d new cells to the problem (%d A, %d B, %d shared).\n", GetSize(cells), GetSize(cone_a.cells), GetSize(cone_b.cells), (GetSize(cone_a.cells) + GetSize(cone_b.cells)) - GetSize(cells)); #if 0 for (auto cell : short_cells_cone_a) log(" A-side cell: %s\n", log_id(cell)); for (auto cell : short_cells_cone_b) log(" B-side cell: %s\n", log_id(cell)); #endif } void report_new_assume_cells(const pool& extra_problem_cells, int old_size, const pool& problem_cells) const { if (cfg.verbose) { log(" Adding %d new cells to check assumptions (and reusing %d).\n", GetSize(problem_cells) - old_size, old_size - (GetSize(problem_cells) - GetSize(extra_problem_cells))); #if 0 for (auto cell : extra_problem_cells) log(" cell: %s\n", log_id(cell)); #endif } } // Ensure the input cones of $assume cells get modelled by the problem pool add_assumes_to_problem(const Cone& cone_a, const Cone& cone_b) const { pool extra_problem_cells; for (auto assume : assume_cells) { pool assume_seed, dummy_next_seed, overlap_bits; assume_seed.insert(model.sigmap(assume->getPort(ID::A)).as_bit()); assume_seed.insert(model.sigmap(assume->getPort(ID::EN)).as_bit()); for (auto& cone : {cone_a, cone_b}) { Cone assume_cone; ConeFinder{model, dummy_next_seed, assume_cone, cone, &overlap_bits} .find_input_cone(assume_seed); if (GetSize(overlap_bits)) { extra_problem_cells.insert(assume); extra_problem_cells.insert(assume_cone.cells.begin(), assume_cone.cells.end()); overlap_bits.clear(); } assume_cone.clear(); dummy_next_seed.clear(); } } return extra_problem_cells; } static void report_missing_model(Cell* cell) { if (RTLIL::builtin_ff_cell_types().count(cell->type)) log_cmd_error("No SAT model available for async FF cell %s (%s). Consider running `async2sync` or `clk2fflogic` first.\n", log_id(cell), log_id(cell->type)); else log_cmd_error("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type)); } void prepare_ezsat(int ez_context, SigBit bit_a, SigBit bit_b) { if (satgen.model_undef) { int ez_a = satgen.importSigBit(bit_a, cfg.max_seq+1); int ez_b = satgen.importDefSigBit(bit_b, cfg.max_seq+1); int ez_undef_a = satgen.importUndefSigBit(bit_a, cfg.max_seq+1); ez->assume(ez->XOR(ez_a, ez_b), ez_context); ez->assume(ez->NOT(ez_undef_a), ez_context); } else { int ez_a = satgen.importSigBit(bit_a, cfg.max_seq+1); int ez_b = satgen.importSigBit(bit_b, cfg.max_seq+1); ez->assume(ez->XOR(ez_a, ez_b), ez_context); } } void construct_ezsat(const pool& input_bits, int step) { if (cfg.set_assumes) { if (cfg.verbose && step == cfg.max_seq) { RTLIL::SigSpec assumes_a, assumes_en; satgen.getAssumes(assumes_a, assumes_en, step+1); for (int i = 0; i < GetSize(assumes_a); i++) log(" Import constraint from assume cell: %s when %s (%d).\n", log_signal(assumes_a[i]), log_signal(assumes_en[i]), step); } ez->assume(satgen.importAssumes(step+1)); } if (satgen.model_undef) { for (auto bit : input_bits) ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step+1))); } if (cfg.verbose) log(" Problem size at t=%d: %d literals, %d clauses\n", step, ez->numCnfVariables(), ez->numCnfClauses()); } bool prove_equiv_cell(Cell* cell) { SigBit bit_a = model.sigmap(cell->getPort(ID::A)).as_bit(); SigBit bit_b = model.sigmap(cell->getPort(ID::B)).as_bit(); int ez_context = ez->frozen_literal(); prepare_ezsat(ez_context, bit_a, bit_b); // Two bits, bit_a, and bit_b, have been marked equivalent in the design // We will be traversing the input cones for each of them // In the first iteration, we will using those as starting points pool seed_a = { bit_a }; pool seed_b = { bit_b }; if (cfg.verbose) { log(" Trying to prove $equiv cell %s:\n", log_id(cell)); log(" A = %s, B = %s, Y = %s\n", log_signal(bit_a), log_signal(bit_b), log_signal(cell->getPort(ID::Y))); } else { log(" Trying to prove $equiv for %s:", log_signal(cell->getPort(ID::Y))); } int step = cfg.max_seq; while (1) { // Traverse input cones of seed_a and seed_b, potentially finding new seeds auto [input_bits, cone_a, cone_b] = init_iter(seed_a, seed_b); // Cells to model in SAT solver pool problem_cells; problem_cells.insert(cone_a.cells.begin(), cone_a.cells.end()); problem_cells.insert(cone_b.cells.begin(), cone_b.cells.end()); if (cfg.verbose) report_new_cells(problem_cells, cone_a, cone_b); if (cfg.set_assumes) { auto extras = add_assumes_to_problem(cone_a, cone_b); if (GetSize(extras)) { auto old_size = GetSize(problem_cells); problem_cells.insert(extras.begin(), extras.end()); report_new_assume_cells(extras, old_size, problem_cells); } } for (auto cell : problem_cells) { auto key = pair(cell, step+1); if (!imported_cells_cache.count(key) && !satgen.importCell(cell, step+1)) { report_missing_model(cell); } imported_cells_cache.insert(key); } construct_ezsat(input_bits, step); if (!ez->solve(ez_context)) { log(cfg.verbose ? " Proved equivalence! Marking $equiv cell as proven.\n" : " success!\n"); // Replace $equiv cell with a short cell->setPort(ID::B, cell->getPort(ID::A)); ez->assume(ez->NOT(ez_context)); return true; } if (cfg.verbose) log(" Failed to prove equivalence with sequence length %d.\n", cfg.max_seq - step); if (--step < 0) { if (cfg.verbose) log(" Reached sequence limit.\n"); break; } if (seed_a.empty() && seed_b.empty()) { if (cfg.verbose) log(" No nets to continue in previous time step.\n"); break; } if (seed_a.empty()) { if (cfg.verbose) log(" No nets on A-side to continue in previous time step.\n"); break; } if (seed_b.empty()) { if (cfg.verbose) log(" No nets on B-side to continue in previous time step.\n"); break; } if (cfg.verbose) { #if 0 log(" Continuing analysis in previous time step with the following nets:\n"); for (auto bit : seed_a) log(" A: %s\n", log_signal(bit)); for (auto bit : seed_b) log(" B: %s\n", log_signal(bit)); #else log(" Continuing analysis in previous time step with %d A- and %d B-nets.\n", GetSize(seed_a), GetSize(seed_b)); #endif } } if (!cfg.verbose) log(" failed.\n"); ez->assume(ez->NOT(ez_context)); return false; } int run() { if (GetSize(equiv_cells) > 1) { SigSpec sig; for (auto c : equiv_cells) sig.append(model.sigmap(c->getPort(ID::Y))); log(" Grouping SAT models for %s:\n", log_signal(sig)); } int counter = 0; for (auto c : equiv_cells) { if (prove_equiv_cell(c)) counter++; } return counter; } }; struct EquivSimplePass : public Pass { EquivSimplePass() : Pass("equiv_simple", "try proving simple $equiv instances") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" equiv_simple [options] [selection]\n"); log("\n"); log("This command tries to prove $equiv cells using a simple direct SAT approach.\n"); log("\n"); log(" -v\n"); log(" verbose output\n"); log("\n"); log(" -undef\n"); log(" enable modelling of undef states\n"); log("\n"); log(" -short\n"); log(" create shorter input cones that stop at shared nodes. This yields\n"); log(" simpler SAT problems but sometimes fails to prove equivalence.\n"); log("\n"); log(" -nogroup\n"); log(" disabling grouping of $equiv cells by output wire\n"); log("\n"); log(" -seq \n"); log(" the max. number of time steps to be considered (default = 1)\n"); log("\n"); log(" -set-assumes\n"); log(" set all assumptions provided via $assume cells\n"); log("\n"); } void execute(std::vector args, Design *design) override { EquivSimpleWorker::Config cfg = {}; int success_counter = 0; log_header(design, "Executing EQUIV_SIMPLE pass.\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-v") { cfg.verbose = true; continue; } if (args[argidx] == "-short") { cfg.short_cones = true; continue; } if (args[argidx] == "-undef") { cfg.model_undef = true; continue; } if (args[argidx] == "-nogroup") { cfg.nogroup = true; continue; } if (args[argidx] == "-seq" && argidx+1 < args.size()) { cfg.max_seq = atoi(args[++argidx].c_str()); continue; } if (args[argidx] == "-set-assumes") { cfg.set_assumes = true; continue; } break; } extra_args(args, argidx, design); CellTypes ct; ct.setup_internals(); ct.setup_stdcells(); ct.setup_internals_ff(); ct.setup_stdcells_mem(); for (auto module : design->selected_modules()) { SigMap sigmap(module); dict bit2driver; dict> unproven_equiv_cells; vector assumes; int unproven_cells_counter = 0; for (auto cell : module->selected_cells()) { if (cell->type == ID($equiv) && cell->getPort(ID::A) != cell->getPort(ID::B)) { auto bit = sigmap(cell->getPort(ID::Y).as_bit()); auto bit_group = bit; if (!cfg.nogroup && bit_group.wire) bit_group.offset = 0; unproven_equiv_cells[bit_group][bit] = cell; unproven_cells_counter++; } else if (cell->type == ID($assume)) { assumes.push_back(cell); } } if (unproven_equiv_cells.empty()) continue; log("Found %d unproven $equiv cells (%d groups) in %s:\n", unproven_cells_counter, GetSize(unproven_equiv_cells), log_id(module)); for (auto cell : module->cells()) { if (!ct.cell_known(cell->type)) continue; for (auto &conn : cell->connections()) if (yosys_celltypes.cell_output(cell->type, conn.first)) for (auto bit : sigmap(conn.second)) bit2driver[bit] = cell; } unproven_equiv_cells.sort(); for (auto [_, d] : unproven_equiv_cells) { d.sort(); vector cells; for (auto [_, cell] : d) cells.push_back(cell); EquivSimpleWorker::DesignModel model {sigmap, bit2driver}; EquivSimpleWorker worker(cells, assumes, model, cfg); success_counter += worker.run(); } } log("Proved %d previously unproven $equiv cells.\n", success_counter); } } EquivSimplePass; PRIVATE_NAMESPACE_END