3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2026-02-14 12:51:48 +00:00
yosys/passes/opt/opt_clean.cc

1027 lines
32 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/log.h"
#include "kernel/celltypes.h"
#include "kernel/ffinit.h"
#include "kernel/threading.h"
#include <stdlib.h>
#include <stdio.h>
#include <set>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
using RTLIL::id2cstr;
struct keep_cache_t
{
dict<Module*, bool> keep_modules;
bool purge_mode;
keep_cache_t(bool purge_mode, ParallelDispatchThreadPool &thread_pool, const std::vector<RTLIL::Module *> &selected_modules)
: purge_mode(purge_mode) {
std::vector<RTLIL::Module *> scan_modules_worklist;
dict<RTLIL::Module *, std::vector<RTLIL::Module*>> dependents;
std::vector<RTLIL::Module *> propagate_kept_modules_worklist;
for (RTLIL::Module *module : selected_modules) {
if (keep_modules.count(module))
continue;
bool keep = scan_module(module, thread_pool, dependents, ALL_CELLS, scan_modules_worklist);
keep_modules[module] = keep;
if (keep)
propagate_kept_modules_worklist.push_back(module);
}
while (!scan_modules_worklist.empty()) {
RTLIL::Module *module = scan_modules_worklist.back();
scan_modules_worklist.pop_back();
if (keep_modules.count(module))
continue;
bool keep = scan_module(module, thread_pool, dependents, MINIMUM_CELLS, scan_modules_worklist);
keep_modules[module] = keep;
if (keep)
propagate_kept_modules_worklist.push_back(module);
}
while (!propagate_kept_modules_worklist.empty()) {
RTLIL::Module *module = propagate_kept_modules_worklist.back();
propagate_kept_modules_worklist.pop_back();
for (RTLIL::Module *dependent : dependents[module]) {
if (keep_modules[dependent])
continue;
keep_modules[dependent] = true;
propagate_kept_modules_worklist.push_back(dependent);
}
}
}
bool query(Cell *cell) const
{
if (keep_cell(cell, purge_mode))
return true;
if (cell->type.in(ID($specify2), ID($specify3), ID($specrule)))
return true;
if (cell->module && cell->module->design) {
RTLIL::Module *cell_module = cell->module->design->module(cell->type);
return cell_module != nullptr && keep_modules.at(cell_module);
}
return false;
}
private:
enum ScanCells {
// Scan every cell to see if it uses a module that is kept.
ALL_CELLS,
// Stop scanning cells if we determine early that this module is kept.
MINIMUM_CELLS,
};
bool scan_module(Module *module, ParallelDispatchThreadPool &thread_pool, dict<RTLIL::Module *, std::vector<RTLIL::Module*>> &dependents,
ScanCells scan_cells, std::vector<Module*> &worklist) const
{
MonotonicFlag keep_module;
if (module->get_bool_attribute(ID::keep)) {
if (scan_cells == MINIMUM_CELLS)
return true;
keep_module.set();
}
ParallelDispatchThreadPool::Subpool subpool(thread_pool, ThreadPool::work_pool_size(0, module->cells_size(), 1000));
ShardedVector<Module*> deps(subpool);
const RTLIL::Module *const_module = module;
bool purge_mode = this->purge_mode;
subpool.run([purge_mode, const_module, scan_cells, &deps, &keep_module](const ParallelDispatchThreadPool::RunCtx &ctx) {
bool keep = false;
for (int i : ctx.item_range(const_module->cells_size())) {
Cell *cell = const_module->cell_at(i);
if (keep_cell(cell, purge_mode)) {
if (scan_cells == MINIMUM_CELLS) {
keep_module.set();
return;
}
keep = true;
}
if (const_module->design) {
RTLIL::Module *cell_module = const_module->design->module(cell->type);
if (cell_module != nullptr)
deps.insert(ctx, cell_module);
}
}
if (keep) {
keep_module.set();
return;
}
for (int i : ctx.item_range(const_module->wires_size())) {
Wire *wire = const_module->wire_at(i);
if (wire->get_bool_attribute(ID::keep)) {
keep_module.set();
return;
}
}
});
if (scan_cells == MINIMUM_CELLS && keep_module.load())
return true;
for (Module *dep : deps) {
dependents[dep].push_back(module);
worklist.push_back(dep);
}
return keep_module.load();
}
static bool keep_cell(Cell *cell, bool purge_mode)
{
if (cell->type.in(ID($assert), ID($assume), ID($live), ID($fair), ID($cover)))
return true;
if (cell->type.in(ID($overwrite_tag)))
return true;
if (cell->type == ID($print) || cell->type == ID($check))
return true;
if (cell->has_keep_attr())
return true;
if (!purge_mode && cell->type == ID($scopeinfo))
return true;
return false;
}
};
CellTypes ct_reg, ct_all;
struct RmStats {
int count_rm_cells = 0;
int count_rm_wires = 0;
void log()
{
if (count_rm_cells > 0 || count_rm_wires > 0)
YOSYS_NAMESPACE_PREFIX log("Removed %d unused cells and %d unused wires.\n", count_rm_cells, count_rm_wires);
}
};
unsigned int hash_bit(const SigBit &bit) {
return static_cast<unsigned int>(hash_ops<SigBit>::hash(bit).yield());
}
void rmunused_module_cells(Module *module, ParallelDispatchThreadPool::Subpool &subpool, bool verbose, RmStats &stats, keep_cache_t &keep_cache)
{
SigMap sigmap(module);
FfInitVals ffinit;
ffinit.set_parallel(&sigmap, subpool.thread_pool(), module);
SigMap raw_sigmap;
for (auto &it : module->connections_) {
for (int i = 0; i < GetSize(it.second); i++) {
if (it.second[i].wire != nullptr)
raw_sigmap.add(it.first[i], it.second[i]);
}
}
struct WireDrivers;
struct WireDriver {
using Accumulated = WireDrivers;
SigBit bit;
int driver_cell;
};
struct WireDrivers {
WireDrivers() : driver_cell(0) {}
WireDrivers(WireDriver driver) : bit(driver.bit), driver_cell(driver.driver_cell) {}
WireDrivers(SigBit bit) : bit(bit), driver_cell(0) {}
WireDrivers(WireDrivers &&other) = default;
class const_iterator {
public:
const_iterator(const WireDrivers &drivers, bool end)
: driver_cell(drivers.driver_cell), in_extra_cells(end) {
if (drivers.extra_driver_cells) {
if (end) {
extra_it = drivers.extra_driver_cells->end();
} else {
extra_it = drivers.extra_driver_cells->begin();
}
}
}
int operator*() const {
if (in_extra_cells)
return **extra_it;
return driver_cell;
}
const_iterator& operator++() {
if (in_extra_cells)
++*extra_it;
else
in_extra_cells = true;
return *this;
}
bool operator!=(const const_iterator &other) const {
return !(*this == other);
}
bool operator==(const const_iterator &other) const {
return in_extra_cells == other.in_extra_cells &&
extra_it == other.extra_it;
}
private:
std::optional<pool<int>::iterator> extra_it;
int driver_cell;
bool in_extra_cells;
};
const_iterator begin() const { return const_iterator(*this, false); }
const_iterator end() const { return const_iterator(*this, true); }
SigBit bit;
int driver_cell;
std::unique_ptr<pool<int>> extra_driver_cells;
};
struct WireDriversKeyEquality {
bool operator()(const WireDrivers &a, const WireDrivers &b) const {
return a.bit == b.bit;
}
};
struct WireDriversCollisionHandler {
void operator()(WireDrivers &incumbent, WireDrivers &new_value) const {
log_assert(new_value.extra_driver_cells == nullptr);
if (!incumbent.extra_driver_cells)
incumbent.extra_driver_cells.reset(new pool<int>());
incumbent.extra_driver_cells->insert(new_value.driver_cell);
}
};
using Wire2Drivers = ShardedHashSet<WireDriver, WireDriversKeyEquality, WireDriversCollisionHandler>;
Wire2Drivers::Builder wire2driver_builder(subpool);
ShardedVector<std::pair<std::string, int>> mem2cells_vector(subpool);
ShardedVector<std::pair<SigBit, std::string>> driver_driver_logs(subpool);
ShardedVector<Wire*> keep_wires(subpool);
const RTLIL::Module *const_module = module;
int num_threads = subpool.num_threads();
ConcurrentWorkQueue<int> cell_queue(num_threads);
std::vector<std::atomic<bool>> unused(const_module->cells_size());
subpool.run([&sigmap, &raw_sigmap, &keep_cache, const_module, &mem2cells_vector, &driver_driver_logs, &keep_wires, &cell_queue, &wire2driver_builder, &unused](const ParallelDispatchThreadPool::RunCtx &ctx) {
for (int i : ctx.item_range(const_module->cells_size())) {
Cell *cell = const_module->cell_at(i);
if (cell->type.in(ID($memwr), ID($memwr_v2), ID($meminit), ID($meminit_v2)))
mem2cells_vector.insert(ctx, {cell->getParam(ID::MEMID).decode_string(), i});
for (auto &it2 : cell->connections()) {
if (ct_all.cell_known(cell->type) && !ct_all.cell_output(cell->type, it2.first))
continue;
for (auto raw_bit : it2.second) {
if (raw_bit.wire == nullptr)
continue;
auto bit = sigmap(raw_bit);
if (bit.wire == nullptr && ct_all.cell_known(cell->type)) {
std::string msg = stringf("Driver-driver conflict "
"for %s between cell %s.%s and constant %s in %s: Resolved using constant.",
log_signal(raw_bit), cell->name.unescape(), it2.first.unescape(), log_signal(bit), const_module->name.unescape());
driver_driver_logs.insert(ctx, {raw_sigmap(raw_bit), msg});
}
if (bit.wire != nullptr)
wire2driver_builder.insert(ctx, {{bit, i}, hash_bit(bit)});
}
}
bool keep = keep_cache.query(cell);
unused[i].store(!keep, std::memory_order_relaxed);
if (keep)
cell_queue.push(ctx, i);
}
for (int i : ctx.item_range(const_module->wires_size())) {
Wire *wire = const_module->wire_at(i);
if (wire->port_output || wire->get_bool_attribute(ID::keep))
keep_wires.insert(ctx, wire);
}
});
subpool.run([&wire2driver_builder](const ParallelDispatchThreadPool::RunCtx &ctx) {
wire2driver_builder.process(ctx);
});
Wire2Drivers wire2driver(wire2driver_builder);
dict<std::string, pool<int>> mem2cells;
for (std::pair<std::string, int> &mem2cell : mem2cells_vector)
mem2cells[mem2cell.first].insert(mem2cell.second);
pool<SigBit> used_raw_bits;
int i = 0;
for (Wire *wire : keep_wires) {
for (auto bit : sigmap(wire)) {
const WireDrivers *drivers = wire2driver.find({{bit}, hash_bit(bit)});
if (drivers != nullptr)
for (int cell_index : *drivers)
if (unused[cell_index].exchange(false, std::memory_order_relaxed)) {
ThreadIndex fake_thread_index = {i++ % num_threads};
cell_queue.push(fake_thread_index, cell_index);
}
}
for (auto raw_bit : SigSpec(wire))
used_raw_bits.insert(raw_sigmap(raw_bit));
}
std::vector<std::atomic<bool>> mem_unused(module->memories.size());
dict<std::string, int> mem_indices;
for (int i = 0; i < GetSize(module->memories); ++i) {
mem_indices[module->memories.element(i)->first.str()] = i;
mem_unused[i].store(true, std::memory_order_relaxed);
}
subpool.run([const_module, &sigmap, &wire2driver, &mem2cells, &unused, &cell_queue, &mem_indices, &mem_unused](const ParallelDispatchThreadPool::RunCtx &ctx) {
pool<SigBit> bits;
pool<std::string> mems;
while (true) {
std::vector<int> cell_indices = cell_queue.pop_batch(ctx);
if (cell_indices.empty())
return;
for (auto cell_index : cell_indices) {
Cell *cell = const_module->cell_at(cell_index);
for (auto &it : cell->connections())
if (!ct_all.cell_known(cell->type) || ct_all.cell_input(cell->type, it.first))
for (auto bit : sigmap(it.second))
bits.insert(bit);
if (cell->type.in(ID($memrd), ID($memrd_v2))) {
std::string mem_id = cell->getParam(ID::MEMID).decode_string();
if (mem_indices.count(mem_id)) {
int mem_index = mem_indices[mem_id];
if (mem_unused[mem_index].exchange(false, std::memory_order_relaxed))
mems.insert(mem_id);
}
}
}
for (auto bit : bits) {
const WireDrivers *drivers = wire2driver.find({{bit}, hash_bit(bit)});
if (drivers != nullptr)
for (int cell_index : *drivers)
if (unused[cell_index].exchange(false, std::memory_order_relaxed))
cell_queue.push(ctx, cell_index);
}
bits.clear();
for (auto mem : mems) {
if (mem2cells.count(mem) == 0)
continue;
for (int cell_index : mem2cells.at(mem))
if (unused[cell_index].exchange(false, std::memory_order_relaxed))
cell_queue.push(ctx, cell_index);
}
mems.clear();
}
});
ShardedVector<int> sharded_unused_cells(subpool);
subpool.run([const_module, &unused, &sharded_unused_cells, &wire2driver](const ParallelDispatchThreadPool::RunCtx &ctx) {
// Parallel destruction of `wire2driver`
wire2driver.clear(ctx);
for (int i : ctx.item_range(const_module->cells_size()))
if (unused[i].load(std::memory_order_relaxed))
sharded_unused_cells.insert(ctx, i);
});
pool<Cell*> unused_cells;
for (int cell_index : sharded_unused_cells)
unused_cells.insert(const_module->cell_at(cell_index));
unused_cells.sort(RTLIL::sort_by_name_id<RTLIL::Cell>());
for (auto cell : unused_cells) {
if (verbose)
log_debug(" removing unused `%s' cell `%s'.\n", cell->type, cell->name);
module->design->scratchpad_set_bool("opt.did_something", true);
if (cell->is_builtin_ff())
ffinit.remove_init(cell->getPort(ID::Q));
module->remove(cell);
stats.count_rm_cells++;
}
for (const auto &it : mem_indices) {
if (!mem_unused[it.second].load(std::memory_order_relaxed))
continue;
RTLIL::IdString id(it.first);
if (verbose)
log_debug(" removing unused memory `%s'.\n", id.unescape());
delete module->memories.at(id);
module->memories.erase(id);
}
if (!driver_driver_logs.empty()) {
// We could do this in parallel but hopefully this is rare.
for (auto &it : module->cells_) {
Cell *cell = it.second;
for (auto &it2 : cell->connections()) {
if (ct_all.cell_known(cell->type) && !ct_all.cell_input(cell->type, it2.first))
continue;
for (auto raw_bit : raw_sigmap(it2.second))
used_raw_bits.insert(raw_bit);
}
}
for (std::pair<SigBit, std::string> &it : driver_driver_logs) {
if (used_raw_bits.count(it.first))
log_warning("%s\n", it.second);
}
}
}
int count_nontrivial_wire_attrs(RTLIL::Wire *w)
{
int count = w->attributes.size();
count -= w->attributes.count(ID::src);
count -= w->attributes.count(ID::hdlname);
count -= w->attributes.count(ID(scopename));
count -= w->attributes.count(ID::unused_bits);
return count;
}
// Should we pick `s2` over `s1` to represent a signal?
bool compare_signals(RTLIL::SigBit &s1, RTLIL::SigBit &s2, SigPool &regs, SigPool &conns, pool<RTLIL::Wire*> &direct_wires)
{
RTLIL::Wire *w1 = s1.wire;
RTLIL::Wire *w2 = s2.wire;
if (w1 == NULL || w2 == NULL)
return w2 == NULL;
if (w1->port_input != w2->port_input)
return w2->port_input;
if ((w1->port_input && w1->port_output) != (w2->port_input && w2->port_output))
return !(w2->port_input && w2->port_output);
if (w1->name.isPublic() && w2->name.isPublic()) {
if (regs.check(s1) != regs.check(s2))
return regs.check(s2);
if (direct_wires.count(w1) != direct_wires.count(w2))
return direct_wires.count(w2) != 0;
if (conns.check_any(s1) != conns.check_any(s2))
return conns.check_any(s2);
}
if (w1 == w2)
return s2.offset < s1.offset;
if (w1->port_output != w2->port_output)
return w2->port_output;
if (w1->name[0] != w2->name[0])
return w2->name.isPublic();
int attrs1 = count_nontrivial_wire_attrs(w1);
int attrs2 = count_nontrivial_wire_attrs(w2);
if (attrs1 != attrs2)
return attrs2 > attrs1;
return w2->name.lt_by_name(w1->name);
}
bool check_public_name(RTLIL::IdString id)
{
if (id.begins_with("$"))
return false;
const std::string &id_str = id.str();
if (id.begins_with("\\_") && (id.ends_with("_") || id_str.find("_[") != std::string::npos))
return false;
if (id_str.find(".$") != std::string::npos)
return false;
return true;
}
bool rmunused_module_signals(RTLIL::Module *module, bool purge_mode, bool verbose, RmStats &stats)
{
// `register_signals` and `connected_signals` will help us decide later on
// on picking representatives out of groups of connected signals
SigPool register_signals;
SigPool connected_signals;
if (!purge_mode)
for (auto &it : module->cells_) {
RTLIL::Cell *cell = it.second;
if (ct_reg.cell_known(cell->type)) {
bool clk2fflogic = cell->get_bool_attribute(ID(clk2fflogic));
for (auto &it2 : cell->connections())
if (clk2fflogic ? it2.first == ID::D : ct_reg.cell_output(cell->type, it2.first))
register_signals.add(it2.second);
}
for (auto &it2 : cell->connections())
connected_signals.add(it2.second);
}
SigMap assign_map(module);
// construct a pool of wires which are directly driven by a known celltype,
// this will influence our choice of representatives
pool<RTLIL::Wire*> direct_wires;
{
pool<RTLIL::SigSpec> direct_sigs;
for (auto &it : module->cells_) {
RTLIL::Cell *cell = it.second;
if (ct_all.cell_known(cell->type))
for (auto &it2 : cell->connections())
if (ct_all.cell_output(cell->type, it2.first))
direct_sigs.insert(assign_map(it2.second));
}
for (auto &it : module->wires_) {
if (direct_sigs.count(assign_map(it.second)) || it.second->port_input)
direct_wires.insert(it.second);
}
}
// weight all options for representatives with `compare_signals`,
// the one that wins will be what `assign_map` maps to
for (auto &it : module->wires_) {
RTLIL::Wire *wire = it.second;
for (int i = 0; i < wire->width; i++) {
RTLIL::SigBit s1 = RTLIL::SigBit(wire, i), s2 = assign_map(s1);
if (compare_signals(s2, s1, register_signals, connected_signals, direct_wires))
assign_map.add(s1);
}
}
// we are removing all connections
module->connections_.clear();
// used signals sigmapped
SigPool used_signals;
// used signals pre-sigmapped
SigPool raw_used_signals;
// used signals sigmapped, ignoring drivers (we keep track of this to set `unused_bits`)
SigPool used_signals_nodrivers;
// gather the usage information for cells
for (auto &it : module->cells_) {
RTLIL::Cell *cell = it.second;
for (auto &it2 : cell->connections_) {
assign_map.apply(it2.second); // modify the cell connection in place
raw_used_signals.add(it2.second);
used_signals.add(it2.second);
if (!ct_all.cell_output(cell->type, it2.first))
used_signals_nodrivers.add(it2.second);
}
}
// gather the usage information for ports, wires with `keep`,
// also gather init bits
dict<RTLIL::SigBit, RTLIL::State> init_bits;
for (auto &it : module->wires_) {
RTLIL::Wire *wire = it.second;
if (wire->port_id > 0) {
RTLIL::SigSpec sig = RTLIL::SigSpec(wire);
raw_used_signals.add(sig);
assign_map.apply(sig);
used_signals.add(sig);
if (!wire->port_input)
used_signals_nodrivers.add(sig);
}
if (wire->get_bool_attribute(ID::keep)) {
RTLIL::SigSpec sig = RTLIL::SigSpec(wire);
assign_map.apply(sig);
used_signals.add(sig);
}
auto it2 = wire->attributes.find(ID::init);
if (it2 != wire->attributes.end()) {
RTLIL::Const &val = it2->second;
SigSpec sig = assign_map(wire);
for (int i = 0; i < GetSize(val) && i < GetSize(sig); i++)
if (val[i] != State::Sx)
init_bits[sig[i]] = val[i];
wire->attributes.erase(it2);
}
}
// set init attributes on all wires of a connected group
for (auto wire : module->wires()) {
bool found = false;
Const val(State::Sx, wire->width);
for (int i = 0; i < wire->width; i++) {
auto it = init_bits.find(RTLIL::SigBit(wire, i));
if (it != init_bits.end()) {
val.set(i, it->second);
found = true;
}
}
if (found)
wire->attributes[ID::init] = val;
}
// now decide for each wire if we should be deleting it
pool<RTLIL::Wire*> del_wires_queue;
for (auto wire : module->wires())
{
SigSpec s1 = SigSpec(wire), s2 = assign_map(s1);
log_assert(GetSize(s1) == GetSize(s2));
Const initval;
if (wire->attributes.count(ID::init))
initval = wire->attributes.at(ID::init);
if (GetSize(initval) != GetSize(wire))
initval.resize(GetSize(wire), State::Sx);
if (initval.is_fully_undef())
wire->attributes.erase(ID::init);
if (GetSize(wire) == 0) {
// delete zero-width wires, unless they are module ports
if (wire->port_id == 0)
goto delete_this_wire;
} else
if (wire->port_id != 0 || wire->get_bool_attribute(ID::keep) || !initval.is_fully_undef()) {
// do not delete anything with "keep" or module ports or initialized wires
} else
if (!purge_mode && check_public_name(wire->name) && (raw_used_signals.check_any(s1) || used_signals.check_any(s2) || s1 != s2)) {
// do not get rid of public names unless in purge mode or if the wire is entirely unused, not even aliased
} else
if (!raw_used_signals.check_any(s1)) {
// delete wires that aren't used by anything directly
goto delete_this_wire;
}
if (0)
{
delete_this_wire:
del_wires_queue.insert(wire);
}
else
{
RTLIL::SigSig new_conn;
for (int i = 0; i < GetSize(s1); i++)
if (s1[i] != s2[i]) {
if (s2[i] == State::Sx && (initval[i] == State::S0 || initval[i] == State::S1)) {
s2[i] = initval[i];
initval.set(i, State::Sx);
}
new_conn.first.append(s1[i]);
new_conn.second.append(s2[i]);
}
if (new_conn.first.size() > 0) {
if (initval.is_fully_undef())
wire->attributes.erase(ID::init);
else
wire->attributes.at(ID::init) = initval;
module->connect(new_conn);
}
if (!used_signals_nodrivers.check_all(s2)) {
std::string unused_bits;
for (int i = 0; i < GetSize(s2); i++) {
if (s2[i].wire == NULL)
continue;
if (!used_signals_nodrivers.check(s2[i])) {
if (!unused_bits.empty())
unused_bits += " ";
unused_bits += stringf("%d", i);
}
}
if (unused_bits.empty() || wire->port_id != 0)
wire->attributes.erase(ID::unused_bits);
else
wire->attributes[ID::unused_bits] = RTLIL::Const(unused_bits);
} else {
wire->attributes.erase(ID::unused_bits);
}
}
}
int del_temp_wires_count = 0;
for (auto wire : del_wires_queue) {
if (ys_debug() || (check_public_name(wire->name) && verbose))
log_debug(" removing unused non-port wire %s.\n", wire->name);
else
del_temp_wires_count++;
}
module->remove(del_wires_queue);
stats.count_rm_wires += GetSize(del_wires_queue);
if (verbose && del_temp_wires_count)
log_debug(" removed %d unused temporary wires.\n", del_temp_wires_count);
if (!del_wires_queue.empty())
module->design->scratchpad_set_bool("opt.did_something", true);
return !del_wires_queue.empty();
}
bool rmunused_module_init(RTLIL::Module *module, ParallelDispatchThreadPool::Subpool &subpool, bool verbose)
{
CellTypes fftypes;
fftypes.setup_internals_mem();
SigMap sigmap(module);
const Module *const_module = module;
ShardedVector<std::pair<SigBit, State>> results(subpool);
subpool.run([const_module, &fftypes, &results](const ParallelDispatchThreadPool::RunCtx &ctx) {
for (int i : ctx.item_range(const_module->cells_size())) {
RTLIL::Cell *cell = const_module->cell_at(i);
if (fftypes.cell_known(cell->type) && cell->hasPort(ID::Q))
{
SigSpec sig = cell->getPort(ID::Q);
for (int i = 0; i < GetSize(sig); i++)
{
SigBit bit = sig[i];
if (bit.wire == nullptr || bit.wire->attributes.count(ID::init) == 0)
continue;
Const init = bit.wire->attributes.at(ID::init);
if (i >= GetSize(init) || init[i] == State::Sx || init[i] == State::Sz)
continue;
results.insert(ctx, {bit, init[i]});
}
}
}
});
dict<SigBit, State> qbits;
for (std::pair<SigBit, State> &p : results) {
sigmap.add(p.first);
qbits[p.first] = p.second;
}
ShardedVector<RTLIL::Wire*> wire_results(subpool);
subpool.run([const_module, &sigmap, &qbits, &wire_results](const ParallelDispatchThreadPool::RunCtx &ctx) {
for (int j : ctx.item_range(const_module->wires_size())) {
RTLIL::Wire *wire = const_module->wire_at(j);
if (wire->attributes.count(ID::init) == 0)
continue;
Const init = wire->attributes.at(ID::init);
for (int i = 0; i < GetSize(wire) && i < GetSize(init); i++)
{
if (init[i] == State::Sx || init[i] == State::Sz)
continue;
SigBit wire_bit = SigBit(wire, i);
SigBit mapped_wire_bit = sigmap(wire_bit);
if (wire_bit == mapped_wire_bit)
goto next_wire;
if (mapped_wire_bit.wire) {
if (qbits.count(mapped_wire_bit) == 0)
goto next_wire;
if (qbits.at(mapped_wire_bit) != init[i])
goto next_wire;
}
else {
if (mapped_wire_bit == State::Sx || mapped_wire_bit == State::Sz)
goto next_wire;
if (mapped_wire_bit != init[i]) {
log_warning("Initial value conflict for %s resolving to %s but with init %s.\n", log_signal(wire_bit), log_signal(mapped_wire_bit), log_signal(init[i]));
goto next_wire;
}
}
}
wire_results.insert(ctx, wire);
next_wire:;
}
});
bool did_something = false;
for (RTLIL::Wire *wire : wire_results) {
if (verbose)
log_debug(" removing redundant init attribute on %s.\n", log_id(wire));
wire->attributes.erase(ID::init);
did_something = true;
}
if (did_something)
module->design->scratchpad_set_bool("opt.did_something", true);
return did_something;
}
void remove_temporary_cells(RTLIL::Module *module, ParallelDispatchThreadPool::Subpool &subpool, bool verbose)
{
ShardedVector<RTLIL::Cell*> delcells(subpool);
ShardedVector<RTLIL::SigSig> new_connections(subpool);
const RTLIL::Module *const_module = module;
subpool.run([const_module, &delcells, &new_connections](const ParallelDispatchThreadPool::RunCtx &ctx) {
for (int i : ctx.item_range(const_module->cells_size())) {
RTLIL::Cell *cell = const_module->cell_at(i);
if (cell->type.in(ID($pos), ID($_BUF_), ID($buf)) && !cell->has_keep_attr()) {
bool is_signed = cell->type == ID($pos) && cell->getParam(ID::A_SIGNED).as_bool();
RTLIL::SigSpec a = cell->getPort(ID::A);
RTLIL::SigSpec y = cell->getPort(ID::Y);
a.extend_u0(GetSize(y), is_signed);
if (a.has_const(State::Sz)) {
RTLIL::SigSpec new_a;
RTLIL::SigSpec new_y;
for (int i = 0; i < GetSize(a); ++i) {
RTLIL::SigBit b = a[i];
if (b == State::Sz)
continue;
new_a.append(b);
new_y.append(y[i]);
}
a = std::move(new_a);
y = std::move(new_y);
}
if (!y.empty())
new_connections.insert(ctx, {y, a});
delcells.insert(ctx, cell);
} else if (cell->type.in(ID($connect)) && !cell->has_keep_attr()) {
RTLIL::SigSpec a = cell->getPort(ID::A);
RTLIL::SigSpec b = cell->getPort(ID::B);
if (a.has_const() && !b.has_const())
std::swap(a, b);
new_connections.insert(ctx, {a, b});
delcells.insert(ctx, cell);
} else if (cell->type.in(ID($input_port)) && !cell->has_keep_attr()) {
delcells.insert(ctx, cell);
}
}
});
bool did_something = false;
for (RTLIL::SigSig &connection : new_connections) {
module->connect(connection);
}
for (RTLIL::Cell *cell : delcells) {
if (verbose) {
if (cell->type == ID($connect))
log_debug(" removing connect cell `%s': %s <-> %s\n", cell->name,
log_signal(cell->getPort(ID::A)), log_signal(cell->getPort(ID::B)));
else if (cell->type == ID($input_port))
log_debug(" removing input port marker cell `%s': %s\n", cell->name,
log_signal(cell->getPort(ID::Y)));
else
log_debug(" removing buffer cell `%s': %s = %s\n", cell->name,
log_signal(cell->getPort(ID::Y)), log_signal(cell->getPort(ID::A)));
}
module->remove(cell);
did_something = true;
}
if (did_something)
module->design->scratchpad_set_bool("opt.did_something", true);
}
void rmunused_module(RTLIL::Module *module, ParallelDispatchThreadPool &thread_pool, bool purge_mode, bool verbose, bool rminit, RmStats &stats, keep_cache_t &keep_cache)
{
if (verbose)
log("Finding unused cells or wires in module %s..\n", module->name);
// Use no more than one worker per thousand cells, rounded down, so
// we only start multithreading with at least 2000 cells.
int num_worker_threads = ThreadPool::work_pool_size(0, module->cells_size(), 1000);
ParallelDispatchThreadPool::Subpool subpool(thread_pool, num_worker_threads);
remove_temporary_cells(module, subpool, verbose);
rmunused_module_cells(module, subpool, verbose, stats, keep_cache);
while (rmunused_module_signals(module, purge_mode, verbose, stats)) { }
if (rminit && rmunused_module_init(module, subpool, verbose))
while (rmunused_module_signals(module, purge_mode, verbose, stats)) { }
}
struct OptCleanPass : public Pass {
OptCleanPass() : Pass("opt_clean", "remove unused cells and wires") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" opt_clean [options] [selection]\n");
log("\n");
log("This pass identifies wires and cells that are unused and removes them. Other\n");
log("passes often remove cells but leave the wires in the design or reconnect the\n");
log("wires but leave the old cells in the design. This pass can be used to clean up\n");
log("after the passes that do the actual work.\n");
log("\n");
log("This pass only operates on completely selected modules without processes.\n");
log("\n");
log(" -purge\n");
log(" also remove internal nets if they have a public name\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
bool purge_mode = false;
log_header(design, "Executing OPT_CLEAN pass (remove unused cells and wires).\n");
log_push();
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-purge") {
purge_mode = true;
continue;
}
break;
}
extra_args(args, argidx, design);
std::vector<RTLIL::Module*> selected_modules;
for (auto module : design->selected_whole_modules_warn())
if (!module->has_processes_warn())
selected_modules.push_back(module);
int thread_pool_size = 0;
for (RTLIL::Module *m : selected_modules)
thread_pool_size = std::max(thread_pool_size, ThreadPool::work_pool_size(0, m->cells_size(), 1000));
ParallelDispatchThreadPool thread_pool(thread_pool_size);
keep_cache_t keep_cache(purge_mode, thread_pool, selected_modules);
ct_reg.setup_internals_mem();
ct_reg.setup_internals_anyinit();
ct_reg.setup_stdcells_mem();
ct_all.setup(design);
RmStats stats;
for (auto module : selected_modules)
rmunused_module(module, thread_pool, purge_mode, true, true, stats, keep_cache);
stats.log();
design->optimize();
design->check();
ct_reg.clear();
ct_all.clear();
log_pop();
request_garbage_collection();
}
} OptCleanPass;
struct CleanPass : public Pass {
CleanPass() : Pass("clean", "remove unused cells and wires") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" clean [options] [selection]\n");
log("\n");
log("This is identical to 'opt_clean', but less verbose.\n");
log("\n");
log("When commands are separated using the ';;' token, this command will be executed\n");
log("between the commands.\n");
log("\n");
log("When commands are separated using the ';;;' token, this command will be executed\n");
log("in -purge mode between the commands.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
bool purge_mode = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-purge") {
purge_mode = true;
continue;
}
break;
}
extra_args(args, argidx, design);
std::vector<RTLIL::Module*> selected_modules;
for (auto module : design->selected_unboxed_whole_modules())
if (!module->has_processes())
selected_modules.push_back(module);
int thread_pool_size = 0;
for (RTLIL::Module *m : selected_modules)
thread_pool_size = std::max(thread_pool_size, ThreadPool::work_pool_size(0, m->cells_size(), 1000));
ParallelDispatchThreadPool thread_pool(thread_pool_size);
keep_cache_t keep_cache(purge_mode, thread_pool, selected_modules);
ct_reg.setup_internals_mem();
ct_reg.setup_internals_anyinit();
ct_reg.setup_stdcells_mem();
ct_all.setup(design);
RmStats stats;
for (auto module : selected_modules)
rmunused_module(module, thread_pool, purge_mode, ys_debug(), true, stats, keep_cache);
log_suppressed();
stats.log();
design->optimize();
design->check();
ct_reg.clear();
ct_all.clear();
request_garbage_collection();
}
} CleanPass;
PRIVATE_NAMESPACE_END