3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-08-26 13:06:12 +00:00
yosys/passes/opt/opt_muxtree.cc
2025-08-25 16:36:07 +02:00

622 lines
19 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/log.h"
#include "kernel/celltypes.h"
#include <stdlib.h>
#include <stdio.h>
#include <unordered_map>
#include <unordered_set>
#include <set>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
/**
* TERMINOLOGY
*
* A multiplexer tree (mux tree) is a tree composed exclusively of muxes.
* By mux, I mean $mux or $pmux. By port, I usually mean input port.
* The children of a node are all the muxes driving its input ports (A, B).
* It must be rooted in a "root mux", a mux which has multiple mux users
* or any number of non-mux users. Only the root and leaf nodes can be
* root muxes, not the internal nodes. Leaf nodes that are root muxes
* are roots of "input trees".
*
* OPERATING PRINCIPLE
*
* This pass traverses mux trees, learning port activations and making
* assumptions about them as it goes. When valid, ports are replaced
* with constants, or removed if they can never be activated.
* When valid, muxes are replaced with shorts from port to output,
* or removed if their outputs are found to be no longer observable.
*
* Input trees can be recursed into if limits_t::recursions_left allows.
* Otherwise, the input tree is queued for a re-run with a fresh knowledge_t.
* At any point, if glob_evals_left goes to 0, the pass terminates.
*
* Unlike share, this pass doesn't use SAT to learn things about logic
* driving the mux control signals, and traverses mux regions from users
* to drivers.
*/
struct OptMuxtreeWorker
{
RTLIL::Design *design;
RTLIL::Module *module;
SigMap assign_map;
int removed_count;
int glob_evals_left = 100000;
struct bitinfo_t {
// Is bit directly used by non-mux cells or ports?
bool seen_non_mux;
pool<int> mux_users;
pool<int> mux_drivers;
};
idict<SigBit> bit2num;
vector<bitinfo_t> bit2info;
struct portinfo_t {
int ctrl_sig = -1; // No associated control signal by default
pool<int> input_sigs = {};
pool<int> input_muxes = {};
bool const_activated = false;
bool const_deactivated = false;
// Is the port reachable from inputs of a mux tree?
bool observable = false;
};
struct muxinfo_t {
RTLIL::Cell *cell;
vector<portinfo_t> ports;
};
vector<muxinfo_t> mux2info;
vector<bool> root_muxes;
vector<bool> root_enable_muxes;
pool<int> root_mux_rerun;
portinfo_t used_port_bit(RTLIL::SigSpec& sig, int mux_idx) {
portinfo_t portinfo = {};
for (int bit_idx : sig2bits(sig)) {
bit2info[bit_idx].mux_users.insert(mux_idx);
portinfo.input_sigs.insert(bit_idx);
}
return portinfo;
}
void track_mux(Cell* cell) {
// Populate bit2info[]:
// .seen_non_mux
// .mux_users
// .mux_drivers
// Populate mux2info[].ports[]:
// .ctrl_sig
// .input_sigs
// .const_activated
// .const_deactivated
RTLIL::SigSpec sig_a = cell->getPort(ID::A);
RTLIL::SigSpec sig_b = cell->getPort(ID::B);
RTLIL::SigSpec sig_s = cell->getPort(ID::S);
RTLIL::SigSpec sig_y = cell->getPort(ID::Y);
muxinfo_t muxinfo;
muxinfo.cell = cell;
int this_mux_idx = GetSize(mux2info);
// Analyze port B
// In case of $pmux, port B is multiple slices, concatenated, one per bit of port S
for (int i = 0; i < GetSize(sig_s); i++) {
RTLIL::SigSpec sig = sig_b.extract(i*GetSize(sig_a), GetSize(sig_a));
RTLIL::SigSpec ctrl_sig = assign_map(sig_s.extract(i, 1));
portinfo_t portinfo = used_port_bit(sig, this_mux_idx);
portinfo.ctrl_sig = sig2bits(ctrl_sig, false).front();
portinfo.const_activated = ctrl_sig.is_fully_const() && ctrl_sig.as_bool();
portinfo.const_deactivated = ctrl_sig.is_fully_const() && !ctrl_sig.as_bool();
muxinfo.ports.push_back(portinfo);
}
// Analyze port A
muxinfo.ports.push_back(used_port_bit(sig_a, this_mux_idx));
for (int idx : sig2bits(sig_y))
bit2info[idx].mux_drivers.insert(this_mux_idx);
for (int idx : sig2bits(sig_s))
bit2info[idx].seen_non_mux = true;
mux2info.push_back(muxinfo);
}
void see_non_mux_cell(Cell* cell) {
for (auto &it : cell->connections()) {
for (int idx : sig2bits(it.second))
bit2info[idx].seen_non_mux = true;
}
}
void see_non_mux_wires() {
for (auto wire : module->wires()) {
if (wire->port_output || wire->get_bool_attribute(ID::keep))
for (int idx : sig2bits(RTLIL::SigSpec(wire)))
bit2info[idx].seen_non_mux = true;
}
}
// Populate mux2info[].ports[]:
// .input_muxes
void fixup_input_muxes() {
// bit2info knows the mux users and mux drivers of bits
// use this to tell mux2info ports about what muxes are driven by it
for (int i = 0; i < GetSize(bit2info); i++)
for (int j : bit2info[i].mux_users)
for (auto &p : mux2info[j].ports) {
if (p.input_sigs.count(i))
for (int k : bit2info[i].mux_drivers)
p.input_muxes.insert(k);
}
}
void populate_roots() {
// mux_to_users[i] means "set of muxes using output of mux i"
dict<int, pool<int>> mux_to_users;
// Pure root muxes (outputs seen by non-muxes)
root_enable_muxes.resize(GetSize(mux2info));
// All root muxes (outputs seen by non-muxes or multiple muxes)
root_muxes.resize(GetSize(mux2info));
for (auto &bi : bit2info) {
for (int i : bi.mux_drivers)
for (int j : bi.mux_users)
mux_to_users[i].insert(j);
if (!bi.seen_non_mux)
continue;
for (int mux_idx : bi.mux_drivers) {
root_muxes.at(mux_idx) = true;
root_enable_muxes.at(mux_idx) = true;
}
}
for (auto &[driving_mux, user_muxes] : mux_to_users)
if (GetSize(user_muxes) > 1)
root_muxes.at(driving_mux) = true;
}
OptMuxtreeWorker(RTLIL::Design *design, RTLIL::Module *module) :
design(design), module(module), assign_map(module), removed_count(0)
{
log("Running muxtree optimizer on module %s..\n", module->name.c_str());
log(" Creating internal representation of mux trees.\n");
for (auto cell : module->cells())
{
if (cell->type.in(ID($mux), ID($pmux)))
track_mux(cell);
else
see_non_mux_cell(cell);
}
see_non_mux_wires();
if (mux2info.empty()) {
log(" No muxes found in this module.\n");
return;
}
fixup_input_muxes();
log(" Evaluating internal representation of mux trees.\n");
populate_roots();
for (int mux_idx = 0; mux_idx < GetSize(root_muxes); mux_idx++)
if (root_muxes.at(mux_idx)) {
log_debug(" Root of a mux tree: %s%s\n", log_id(mux2info[mux_idx].cell), root_enable_muxes.at(mux_idx) ? " (pure)" : "");
root_mux_rerun.erase(mux_idx);
eval_root_mux(mux_idx);
if (glob_evals_left == 0) {
log(" Giving up (too many iterations)\n");
return;
}
}
while (!root_mux_rerun.empty()) {
int mux_idx = *root_mux_rerun.begin();
log_debug(" Root of a mux tree: %s (rerun as non-pure)\n", log_id(mux2info[mux_idx].cell));
log_assert(root_enable_muxes.at(mux_idx));
root_mux_rerun.erase(mux_idx);
eval_root_mux(mux_idx);
if (glob_evals_left == 0) {
log(" Giving up (too many iterations)\n");
return;
}
}
log(" Analyzing evaluation results.\n");
log_assert(glob_evals_left > 0);
for (auto &mi : mux2info)
{
vector<int> live_ports;
for (int port_idx = 0; port_idx < GetSize(mi.ports); port_idx++) {
portinfo_t &pi = mi.ports[port_idx];
if (pi.observable) {
live_ports.push_back(port_idx);
} else {
log(" dead port %d/%d on %s %s.\n", port_idx+1, GetSize(mi.ports),
mi.cell->type.c_str(), mi.cell->name.c_str());
removed_count++;
}
}
if (GetSize(live_ports) == GetSize(mi.ports))
continue;
if (live_ports.empty()) {
module->remove(mi.cell);
continue;
}
RTLIL::SigSpec sig_a = mi.cell->getPort(ID::A);
RTLIL::SigSpec sig_b = mi.cell->getPort(ID::B);
RTLIL::SigSpec sig_s = mi.cell->getPort(ID::S);
RTLIL::SigSpec sig_y = mi.cell->getPort(ID::Y);
RTLIL::SigSpec sig_ports = sig_b;
sig_ports.append(sig_a);
if (GetSize(live_ports) == 1)
{
RTLIL::SigSpec sig_in = sig_ports.extract(live_ports[0]*GetSize(sig_a), GetSize(sig_a));
module->connect(RTLIL::SigSig(sig_y, sig_in));
module->remove(mi.cell);
}
else
{
RTLIL::SigSpec new_sig_a, new_sig_b, new_sig_s;
for (int i = 0; i < GetSize(live_ports); i++) {
RTLIL::SigSpec sig_in = sig_ports.extract(live_ports[i]*GetSize(sig_a), GetSize(sig_a));
if (i == GetSize(live_ports)-1) {
new_sig_a = sig_in;
} else {
new_sig_b.append(sig_in);
new_sig_s.append(sig_s.extract(live_ports[i], 1));
}
}
mi.cell->setPort(ID::A, new_sig_a);
mi.cell->setPort(ID::B, new_sig_b);
mi.cell->setPort(ID::S, new_sig_s);
if (GetSize(new_sig_s) == 1) {
mi.cell->type = ID($mux);
mi.cell->parameters.erase(ID::S_WIDTH);
} else {
mi.cell->parameters[ID::S_WIDTH] = RTLIL::Const(GetSize(new_sig_s));
}
}
}
}
vector<int> sig2bits(RTLIL::SigSpec sig, bool skip_non_wires = true)
{
vector<int> results;
assign_map.apply(sig);
for (auto &bit : sig)
if (bit.wire != NULL) {
if (bit2num.count(bit) == 0) {
bitinfo_t info;
info.seen_non_mux = false;
bit2num.expect(bit, GetSize(bit2info));
bit2info.push_back(info);
}
results.push_back(bit2num.at(bit));
} else if (!skip_non_wires)
results.push_back(-1);
return results;
}
struct knowledge_t
{
// Known inactive signals
// The payload is a reference counter used to manage the list
// When it is non-zero, the signal in known to be inactive
// When it reaches zero, the map element is removed
std::unordered_map<int, int> known_inactive;
// database of known active signals
std::unordered_map<int, int> known_active;
// this is just used to keep track of visited muxes in order to prohibit
// endless recursion in mux loops
std::unordered_set<int> visited_muxes;
};
static void activate_port(knowledge_t &knowledge, int port_idx, const muxinfo_t &muxinfo) {
// First, mark all other ports inactive
for (int i = 0; i < GetSize(muxinfo.ports); i++) {
if (i == port_idx)
continue;
if (muxinfo.ports[i].ctrl_sig >= 0)
++knowledge.known_inactive[muxinfo.ports[i].ctrl_sig];
}
// Mark port active unless it's the last one
if (port_idx < GetSize(muxinfo.ports)-1 && !muxinfo.ports[port_idx].const_activated)
++knowledge.known_active[muxinfo.ports[port_idx].ctrl_sig];
}
static void deactivate_port(knowledge_t &knowledge, int port_idx, const muxinfo_t &muxinfo) {
auto unlearn = [](std::unordered_map<int, int>& knowns, int i) {
auto it = knowns.find(i);
if (it != knowns.end())
if (--it->second == 0)
knowns.erase(it);
};
if (port_idx < GetSize(muxinfo.ports)-1 && !muxinfo.ports[port_idx].const_activated)
unlearn(knowledge.known_active, muxinfo.ports[port_idx].ctrl_sig);
// Undo inactivity assumptions for other ports
for (int i = 0; i < GetSize(muxinfo.ports); i++) {
if (i == port_idx)
continue;
if (muxinfo.ports[i].ctrl_sig >= 0)
unlearn(knowledge.known_inactive, muxinfo.ports[i].ctrl_sig);
}
}
struct limits_t {
// Are we allowed to replace inputs with constants?
// True if knowledge doesn't contain assumptions
bool do_replace_known = true;
// Are we allowed to mark ports as observable?
// True if we're recursing from a pure root mux
bool do_mark_ports_observable = true;
// How many more subtree recursions into input trees can we take?
// Then shalt thou count to three, no more, no less. Three shall be the number thou shalt count, and the number of the counting shall be three.
int recursions_left = 3;
limits_t subtree() const {
limits_t ret = *this;
log_assert(ret.recursions_left > 0);
ret.recursions_left--;
return ret;
}
};
void eval_mux_port(knowledge_t &knowledge, int mux_idx, int port_idx, limits_t limits)
{
if (glob_evals_left == 0)
return;
muxinfo_t &muxinfo = mux2info[mux_idx];
if (limits.do_mark_ports_observable)
muxinfo.ports[port_idx].observable = true;
// For the purposes of recursion, we assume the port is active,
// meaning all other ports are inactive
activate_port(knowledge, port_idx, muxinfo);
vector<int> input_mux_queue;
for (int m : muxinfo.ports[port_idx].input_muxes) {
if (knowledge.visited_muxes.count(m))
continue;
knowledge.visited_muxes.insert(m);
input_mux_queue.push_back(m);
}
for (int m : input_mux_queue) {
if (root_enable_muxes.at(m))
continue;
else if (root_muxes.at(m)) {
// This leaf node of the current tree
// is the root of an input tree of the current tree
if (limits.recursions_left == 0) {
// Ran out of subtree depth, re-eval this input tree in the next re-run
root_mux_rerun.insert(m);
root_enable_muxes.at(m) = true;
log_debug(" Removing pure flag from root mux %s.\n", log_id(mux2info[m].cell));
} else {
auto new_limits = limits.subtree();
// Since our knowledge includes assumption,
// we can't generally allow replacing in an input tree based on it
new_limits.do_replace_known = false;
eval_mux(knowledge, m, new_limits);
}
} else {
// This non-root input mux has only this mux as a user,
// so here we are allowed to pass along do_replace_known
eval_mux(knowledge, m, limits);
}
if (glob_evals_left == 0)
return;
}
// Allow revisiting input muxes, since evaluating other ports should
// revisit these input muxes with different activation assumptions
for (int m : input_mux_queue)
knowledge.visited_muxes.erase(m);
// Undo our assumptions that the port is active
deactivate_port(knowledge, port_idx, muxinfo);
}
void replace_known(knowledge_t &knowledge, muxinfo_t &muxinfo, IdString portname)
{
SigSpec sig = muxinfo.cell->getPort(portname);
bool did_something = false;
int width_if_b = 0;
idict<int> ctrl_bits;
if (portname == ID::B)
width_if_b = GetSize(muxinfo.cell->getPort(ID::A));
for (int bit : sig2bits(muxinfo.cell->getPort(ID::S), false))
ctrl_bits(bit);
int slice_idx = 0, slice_off = 0;
vector<int> bits = sig2bits(sig, false);
for (int i = 0; i < GetSize(bits); i++) {
if (bits[i] >= 0) {
if (knowledge.known_inactive.count(bits[i]) > 0) {
sig[i] = State::S0;
did_something = true;
} else
if (knowledge.known_active.count(bits[i]) > 0) {
sig[i] = State::S1;
did_something = true;
}
if (ctrl_bits.count(bits[i])) {
if (!width_if_b) {
// Single-bit $mux example
// mux: S ? B : A = Y
// A=S
// 0 ? B : 0 = 0
// 1 ? B : 1 = B
// rewrite to A=0
// 0 ? B : 0 = 0
// 1 ? B : 0 = B
// which is equivalent
sig[i] = State::S0;
} else {
// "Sliced" $pmux example
// B[i]=S[j]
// i == j => B[i] activated only when B[i] is high, safe to rewrite to 1
// i != j => B[i] activated only when B[i] is low, safe to rewrite to 0
sig[i] = ctrl_bits.at(bits[i]) == slice_idx ? State::S1 : State::S0;
}
did_something = true;
}
}
if (width_if_b) {
// Roll over into next slice
if (++slice_off == width_if_b)
slice_idx++, slice_off=0;
}
}
if (did_something) {
log(" Replacing known input bits on port %s of cell %s: %s -> %s\n", log_id(portname),
log_id(muxinfo.cell), log_signal(muxinfo.cell->getPort(portname)), log_signal(sig));
muxinfo.cell->setPort(portname, sig);
}
}
void eval_mux(knowledge_t &knowledge, int mux_idx, limits_t limits)
{
if (glob_evals_left == 0)
return;
glob_evals_left--;
muxinfo_t &muxinfo = mux2info[mux_idx];
log_debug("\t\teval %s (replace %d enable %d)\n", log_id(muxinfo.cell), limits.do_replace_known, limits.do_mark_ports_observable);
// set input ports to constants if we find known active or inactive signals
if (limits.do_replace_known) {
replace_known(knowledge, muxinfo, ID::A);
replace_known(knowledge, muxinfo, ID::B);
}
// if there is a constant activated port we just use it
for (int port_idx = 0; port_idx < GetSize(muxinfo.ports); port_idx++)
{
portinfo_t &portinfo = muxinfo.ports[port_idx];
if (portinfo.const_activated) {
eval_mux_port(knowledge, mux_idx, port_idx, limits);
return;
}
}
// Compare ports with known active control signals. if we find a match,
// only this port can be active. Do not include the last port,
// it's the default port without an associated control signal
for (int port_idx = 0; port_idx < GetSize(muxinfo.ports)-1; port_idx++)
{
portinfo_t &portinfo = muxinfo.ports[port_idx];
if (portinfo.const_deactivated)
continue;
if (knowledge.known_active.count(portinfo.ctrl_sig) > 0) {
eval_mux_port(knowledge, mux_idx, port_idx, limits);
return;
}
}
// eval all ports that could be activated (control signal is not in
// known_inactive or const_deactivated).
for (int port_idx = 0; port_idx < GetSize(muxinfo.ports); port_idx++)
{
portinfo_t &portinfo = muxinfo.ports[port_idx];
if (portinfo.const_deactivated)
continue;
if (port_idx < GetSize(muxinfo.ports)-1)
if (knowledge.known_inactive.count(portinfo.ctrl_sig) > 0)
continue;
eval_mux_port(knowledge, mux_idx, port_idx, limits);
if (glob_evals_left == 0)
return;
}
}
void eval_root_mux(int mux_idx)
{
log_assert(glob_evals_left > 0);
knowledge_t knowledge;
knowledge.visited_muxes.insert(mux_idx);
limits_t limits = {};
limits.do_mark_ports_observable = root_enable_muxes.at(mux_idx);
eval_mux(knowledge, mux_idx, limits);
}
};
struct OptMuxtreePass : public Pass {
OptMuxtreePass() : Pass("opt_muxtree", "eliminate dead trees in multiplexer trees") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" opt_muxtree [selection]\n");
log("\n");
log("This pass analyzes the control signals for the multiplexer trees in the design\n");
log("and identifies inputs that can never be active. It then removes this dead\n");
log("branches from the multiplexer trees.\n");
log("\n");
log("This pass only operates on completely selected modules without processes.\n");
log("\n");
}
void execute(vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing OPT_MUXTREE pass (detect dead branches in mux trees).\n");
extra_args(args, 1, design);
int total_count = 0;
for (auto module : design->selected_whole_modules_warn()) {
if (module->has_processes_warn())
continue;
OptMuxtreeWorker worker(design, module);
total_count += worker.removed_count;
}
if (total_count)
design->scratchpad_set_bool("opt.did_something", true);
log("Removed %d multiplexer ports.\n", total_count);
}
} OptMuxtreePass;
PRIVATE_NAMESPACE_END