/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/log.h" #include "kernel/celltypes.h" #include #include #include #include #include USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN /** * TERMINOLOGY * * A multiplexer tree (mux tree) is a tree composed exclusively of muxes. * By mux, I mean $mux or $pmux. By port, I usually mean input port. * The children of a node are all the muxes driving its input ports (A, B). * It must be rooted in a "root mux", a mux which has multiple mux users * or any number of non-mux users. Only the root and leaf nodes can be * root muxes, not the internal nodes. Leaf nodes that are root muxes * are roots of "input trees". * * OPERATING PRINCIPLE * * This pass traverses mux trees, learning port activations and making * assumptions about them as it goes. When valid, ports are replaced * with constants, or removed if they can never be activated. * When valid, muxes are replaced with shorts from port to output, * or removed if their outputs are found to be no longer observable. * * Input trees can be recursed into if limits_t::recursions_left allows. * Otherwise, the input tree is queued for a re-run with a fresh knowledge_t. * At any point, if glob_evals_left goes to 0, the pass terminates. * * Unlike share, this pass doesn't use SAT to learn things about logic * driving the mux control signals, and traverses mux regions from users * to drivers. */ struct OptMuxtreeWorker { RTLIL::Design *design; RTLIL::Module *module; SigMap assign_map; int removed_count; int glob_evals_left = 100000; struct bitinfo_t { // Is bit directly used by non-mux cells or ports? bool seen_non_mux; pool mux_users; pool mux_drivers; }; idict bit2num; vector bit2info; struct portinfo_t { int ctrl_sig = -1; // No associated control signal by default pool input_sigs = {}; pool input_muxes = {}; bool const_activated = false; bool const_deactivated = false; // Is the port reachable from inputs of a mux tree? bool observable = false; }; struct muxinfo_t { RTLIL::Cell *cell; vector ports; }; vector mux2info; vector root_muxes; vector root_enable_muxes; pool root_mux_rerun; portinfo_t used_port_bit(RTLIL::SigSpec& sig, int mux_idx) { portinfo_t portinfo = {}; for (int bit_idx : sig2bits(sig)) { bit2info[bit_idx].mux_users.insert(mux_idx); portinfo.input_sigs.insert(bit_idx); } return portinfo; } void track_mux(Cell* cell) { // Populate bit2info[]: // .seen_non_mux // .mux_users // .mux_drivers // Populate mux2info[].ports[]: // .ctrl_sig // .input_sigs // .const_activated // .const_deactivated RTLIL::SigSpec sig_a = cell->getPort(ID::A); RTLIL::SigSpec sig_b = cell->getPort(ID::B); RTLIL::SigSpec sig_s = cell->getPort(ID::S); RTLIL::SigSpec sig_y = cell->getPort(ID::Y); muxinfo_t muxinfo; muxinfo.cell = cell; int this_mux_idx = GetSize(mux2info); // Analyze port B // In case of $pmux, port B is multiple slices, concatenated, one per bit of port S for (int i = 0; i < GetSize(sig_s); i++) { RTLIL::SigSpec sig = sig_b.extract(i*GetSize(sig_a), GetSize(sig_a)); RTLIL::SigSpec ctrl_sig = assign_map(sig_s.extract(i, 1)); portinfo_t portinfo = used_port_bit(sig, this_mux_idx); portinfo.ctrl_sig = sig2bits(ctrl_sig, false).front(); portinfo.const_activated = ctrl_sig.is_fully_const() && ctrl_sig.as_bool(); portinfo.const_deactivated = ctrl_sig.is_fully_const() && !ctrl_sig.as_bool(); muxinfo.ports.push_back(portinfo); } // Analyze port A muxinfo.ports.push_back(used_port_bit(sig_a, this_mux_idx)); for (int idx : sig2bits(sig_y)) bit2info[idx].mux_drivers.insert(this_mux_idx); for (int idx : sig2bits(sig_s)) bit2info[idx].seen_non_mux = true; mux2info.push_back(muxinfo); } void see_non_mux_cell(Cell* cell) { for (auto &it : cell->connections()) { for (int idx : sig2bits(it.second)) bit2info[idx].seen_non_mux = true; } } void see_non_mux_wires() { for (auto wire : module->wires()) { if (wire->port_output || wire->get_bool_attribute(ID::keep)) for (int idx : sig2bits(RTLIL::SigSpec(wire))) bit2info[idx].seen_non_mux = true; } } // Populate mux2info[].ports[]: // .input_muxes void fixup_input_muxes() { // bit2info knows the mux users and mux drivers of bits // use this to tell mux2info ports about what muxes are driven by it for (int i = 0; i < GetSize(bit2info); i++) for (int j : bit2info[i].mux_users) for (auto &p : mux2info[j].ports) { if (p.input_sigs.count(i)) for (int k : bit2info[i].mux_drivers) p.input_muxes.insert(k); } } void populate_roots() { // mux_to_users[i] means "set of muxes using output of mux i" dict> mux_to_users; // Pure root muxes (outputs seen by non-muxes) root_enable_muxes.resize(GetSize(mux2info)); // All root muxes (outputs seen by non-muxes or multiple muxes) root_muxes.resize(GetSize(mux2info)); for (auto &bi : bit2info) { for (int i : bi.mux_drivers) for (int j : bi.mux_users) mux_to_users[i].insert(j); if (!bi.seen_non_mux) continue; for (int mux_idx : bi.mux_drivers) { root_muxes.at(mux_idx) = true; root_enable_muxes.at(mux_idx) = true; } } for (auto &[driving_mux, user_muxes] : mux_to_users) if (GetSize(user_muxes) > 1) root_muxes.at(driving_mux) = true; } OptMuxtreeWorker(RTLIL::Design *design, RTLIL::Module *module) : design(design), module(module), assign_map(module), removed_count(0) { log("Running muxtree optimizer on module %s..\n", module->name.c_str()); log(" Creating internal representation of mux trees.\n"); for (auto cell : module->cells()) { if (cell->type.in(ID($mux), ID($pmux))) track_mux(cell); else see_non_mux_cell(cell); } see_non_mux_wires(); if (mux2info.empty()) { log(" No muxes found in this module.\n"); return; } fixup_input_muxes(); log(" Evaluating internal representation of mux trees.\n"); populate_roots(); for (int mux_idx = 0; mux_idx < GetSize(root_muxes); mux_idx++) if (root_muxes.at(mux_idx)) { log_debug(" Root of a mux tree: %s%s\n", log_id(mux2info[mux_idx].cell), root_enable_muxes.at(mux_idx) ? " (pure)" : ""); root_mux_rerun.erase(mux_idx); eval_root_mux(mux_idx); if (glob_evals_left == 0) { log(" Giving up (too many iterations)\n"); return; } } while (!root_mux_rerun.empty()) { int mux_idx = *root_mux_rerun.begin(); log_debug(" Root of a mux tree: %s (rerun as non-pure)\n", log_id(mux2info[mux_idx].cell)); log_assert(root_enable_muxes.at(mux_idx)); root_mux_rerun.erase(mux_idx); eval_root_mux(mux_idx); if (glob_evals_left == 0) { log(" Giving up (too many iterations)\n"); return; } } log(" Analyzing evaluation results.\n"); log_assert(glob_evals_left > 0); for (auto &mi : mux2info) { vector live_ports; for (int port_idx = 0; port_idx < GetSize(mi.ports); port_idx++) { portinfo_t &pi = mi.ports[port_idx]; if (pi.observable) { live_ports.push_back(port_idx); } else { log(" dead port %d/%d on %s %s.\n", port_idx+1, GetSize(mi.ports), mi.cell->type.c_str(), mi.cell->name.c_str()); removed_count++; } } if (GetSize(live_ports) == GetSize(mi.ports)) continue; if (live_ports.empty()) { module->remove(mi.cell); continue; } RTLIL::SigSpec sig_a = mi.cell->getPort(ID::A); RTLIL::SigSpec sig_b = mi.cell->getPort(ID::B); RTLIL::SigSpec sig_s = mi.cell->getPort(ID::S); RTLIL::SigSpec sig_y = mi.cell->getPort(ID::Y); RTLIL::SigSpec sig_ports = sig_b; sig_ports.append(sig_a); if (GetSize(live_ports) == 1) { RTLIL::SigSpec sig_in = sig_ports.extract(live_ports[0]*GetSize(sig_a), GetSize(sig_a)); module->connect(RTLIL::SigSig(sig_y, sig_in)); module->remove(mi.cell); } else { RTLIL::SigSpec new_sig_a, new_sig_b, new_sig_s; for (int i = 0; i < GetSize(live_ports); i++) { RTLIL::SigSpec sig_in = sig_ports.extract(live_ports[i]*GetSize(sig_a), GetSize(sig_a)); if (i == GetSize(live_ports)-1) { new_sig_a = sig_in; } else { new_sig_b.append(sig_in); new_sig_s.append(sig_s.extract(live_ports[i], 1)); } } mi.cell->setPort(ID::A, new_sig_a); mi.cell->setPort(ID::B, new_sig_b); mi.cell->setPort(ID::S, new_sig_s); if (GetSize(new_sig_s) == 1) { mi.cell->type = ID($mux); mi.cell->parameters.erase(ID::S_WIDTH); } else { mi.cell->parameters[ID::S_WIDTH] = RTLIL::Const(GetSize(new_sig_s)); } } } } vector sig2bits(RTLIL::SigSpec sig, bool skip_non_wires = true) { vector results; assign_map.apply(sig); for (auto &bit : sig) if (bit.wire != NULL) { if (bit2num.count(bit) == 0) { bitinfo_t info; info.seen_non_mux = false; bit2num.expect(bit, GetSize(bit2info)); bit2info.push_back(info); } results.push_back(bit2num.at(bit)); } else if (!skip_non_wires) results.push_back(-1); return results; } struct knowledge_t { // Known inactive signals // The payload is a reference counter used to manage the list // When it is non-zero, the signal in known to be inactive // When it reaches zero, the map element is removed std::unordered_map known_inactive; // database of known active signals std::unordered_map known_active; // this is just used to keep track of visited muxes in order to prohibit // endless recursion in mux loops std::unordered_set visited_muxes; }; static void activate_port(knowledge_t &knowledge, int port_idx, const muxinfo_t &muxinfo) { // First, mark all other ports inactive for (int i = 0; i < GetSize(muxinfo.ports); i++) { if (i == port_idx) continue; if (muxinfo.ports[i].ctrl_sig >= 0) ++knowledge.known_inactive[muxinfo.ports[i].ctrl_sig]; } // Mark port active unless it's the last one if (port_idx < GetSize(muxinfo.ports)-1 && !muxinfo.ports[port_idx].const_activated) ++knowledge.known_active[muxinfo.ports[port_idx].ctrl_sig]; } static void deactivate_port(knowledge_t &knowledge, int port_idx, const muxinfo_t &muxinfo) { auto unlearn = [](std::unordered_map& knowns, int i) { auto it = knowns.find(i); if (it != knowns.end()) if (--it->second == 0) knowns.erase(it); }; if (port_idx < GetSize(muxinfo.ports)-1 && !muxinfo.ports[port_idx].const_activated) unlearn(knowledge.known_active, muxinfo.ports[port_idx].ctrl_sig); // Undo inactivity assumptions for other ports for (int i = 0; i < GetSize(muxinfo.ports); i++) { if (i == port_idx) continue; if (muxinfo.ports[i].ctrl_sig >= 0) unlearn(knowledge.known_inactive, muxinfo.ports[i].ctrl_sig); } } struct limits_t { // Are we allowed to replace inputs with constants? // True if knowledge doesn't contain assumptions bool do_replace_known = true; // Are we allowed to mark ports as observable? // True if we're recursing from a pure root mux bool do_mark_ports_observable = true; // How many more subtree recursions into input trees can we take? // Then shalt thou count to three, no more, no less. Three shall be the number thou shalt count, and the number of the counting shall be three. int recursions_left = 3; limits_t subtree() const { limits_t ret = *this; log_assert(ret.recursions_left > 0); ret.recursions_left--; return ret; } }; void eval_mux_port(knowledge_t &knowledge, int mux_idx, int port_idx, limits_t limits) { if (glob_evals_left == 0) return; muxinfo_t &muxinfo = mux2info[mux_idx]; if (limits.do_mark_ports_observable) muxinfo.ports[port_idx].observable = true; // For the purposes of recursion, we assume the port is active, // meaning all other ports are inactive activate_port(knowledge, port_idx, muxinfo); vector input_mux_queue; for (int m : muxinfo.ports[port_idx].input_muxes) { if (knowledge.visited_muxes.count(m)) continue; knowledge.visited_muxes.insert(m); input_mux_queue.push_back(m); } for (int m : input_mux_queue) { if (root_enable_muxes.at(m)) continue; else if (root_muxes.at(m)) { // This leaf node of the current tree // is the root of an input tree of the current tree if (limits.recursions_left == 0) { // Ran out of subtree depth, re-eval this input tree in the next re-run root_mux_rerun.insert(m); root_enable_muxes.at(m) = true; log_debug(" Removing pure flag from root mux %s.\n", log_id(mux2info[m].cell)); } else { auto new_limits = limits.subtree(); // Since our knowledge includes assumption, // we can't generally allow replacing in an input tree based on it new_limits.do_replace_known = false; eval_mux(knowledge, m, new_limits); } } else { // This non-root input mux has only this mux as a user, // so here we are allowed to pass along do_replace_known eval_mux(knowledge, m, limits); } if (glob_evals_left == 0) return; } // Allow revisiting input muxes, since evaluating other ports should // revisit these input muxes with different activation assumptions for (int m : input_mux_queue) knowledge.visited_muxes.erase(m); // Undo our assumptions that the port is active deactivate_port(knowledge, port_idx, muxinfo); } void replace_known(knowledge_t &knowledge, muxinfo_t &muxinfo, IdString portname) { SigSpec sig = muxinfo.cell->getPort(portname); bool did_something = false; int width_if_b = 0; idict ctrl_bits; if (portname == ID::B) width_if_b = GetSize(muxinfo.cell->getPort(ID::A)); for (int bit : sig2bits(muxinfo.cell->getPort(ID::S), false)) ctrl_bits(bit); int slice_idx = 0, slice_off = 0; vector bits = sig2bits(sig, false); for (int i = 0; i < GetSize(bits); i++) { if (bits[i] >= 0) { if (knowledge.known_inactive.count(bits[i]) > 0) { sig[i] = State::S0; did_something = true; } else if (knowledge.known_active.count(bits[i]) > 0) { sig[i] = State::S1; did_something = true; } if (ctrl_bits.count(bits[i])) { if (!width_if_b) { // Single-bit $mux example // mux: S ? B : A = Y // A=S // 0 ? B : 0 = 0 // 1 ? B : 1 = B // rewrite to A=0 // 0 ? B : 0 = 0 // 1 ? B : 0 = B // which is equivalent sig[i] = State::S0; } else { // "Sliced" $pmux example // B[i]=S[j] // i == j => B[i] activated only when B[i] is high, safe to rewrite to 1 // i != j => B[i] activated only when B[i] is low, safe to rewrite to 0 sig[i] = ctrl_bits.at(bits[i]) == slice_idx ? State::S1 : State::S0; } did_something = true; } } if (width_if_b) { // Roll over into next slice if (++slice_off == width_if_b) slice_idx++, slice_off=0; } } if (did_something) { log(" Replacing known input bits on port %s of cell %s: %s -> %s\n", log_id(portname), log_id(muxinfo.cell), log_signal(muxinfo.cell->getPort(portname)), log_signal(sig)); muxinfo.cell->setPort(portname, sig); } } void eval_mux(knowledge_t &knowledge, int mux_idx, limits_t limits) { if (glob_evals_left == 0) return; glob_evals_left--; muxinfo_t &muxinfo = mux2info[mux_idx]; log_debug("\t\teval %s (replace %d enable %d)\n", log_id(muxinfo.cell), limits.do_replace_known, limits.do_mark_ports_observable); // set input ports to constants if we find known active or inactive signals if (limits.do_replace_known) { replace_known(knowledge, muxinfo, ID::A); replace_known(knowledge, muxinfo, ID::B); } // if there is a constant activated port we just use it for (int port_idx = 0; port_idx < GetSize(muxinfo.ports); port_idx++) { portinfo_t &portinfo = muxinfo.ports[port_idx]; if (portinfo.const_activated) { eval_mux_port(knowledge, mux_idx, port_idx, limits); return; } } // Compare ports with known active control signals. if we find a match, // only this port can be active. Do not include the last port, // it's the default port without an associated control signal for (int port_idx = 0; port_idx < GetSize(muxinfo.ports)-1; port_idx++) { portinfo_t &portinfo = muxinfo.ports[port_idx]; if (portinfo.const_deactivated) continue; if (knowledge.known_active.count(portinfo.ctrl_sig) > 0) { eval_mux_port(knowledge, mux_idx, port_idx, limits); return; } } // eval all ports that could be activated (control signal is not in // known_inactive or const_deactivated). for (int port_idx = 0; port_idx < GetSize(muxinfo.ports); port_idx++) { portinfo_t &portinfo = muxinfo.ports[port_idx]; if (portinfo.const_deactivated) continue; if (port_idx < GetSize(muxinfo.ports)-1) if (knowledge.known_inactive.count(portinfo.ctrl_sig) > 0) continue; eval_mux_port(knowledge, mux_idx, port_idx, limits); if (glob_evals_left == 0) return; } } void eval_root_mux(int mux_idx) { log_assert(glob_evals_left > 0); knowledge_t knowledge; knowledge.visited_muxes.insert(mux_idx); limits_t limits = {}; limits.do_mark_ports_observable = root_enable_muxes.at(mux_idx); eval_mux(knowledge, mux_idx, limits); } }; struct OptMuxtreePass : public Pass { OptMuxtreePass() : Pass("opt_muxtree", "eliminate dead trees in multiplexer trees") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" opt_muxtree [selection]\n"); log("\n"); log("This pass analyzes the control signals for the multiplexer trees in the design\n"); log("and identifies inputs that can never be active. It then removes this dead\n"); log("branches from the multiplexer trees.\n"); log("\n"); log("This pass only operates on completely selected modules without processes.\n"); log("\n"); } void execute(vector args, RTLIL::Design *design) override { log_header(design, "Executing OPT_MUXTREE pass (detect dead branches in mux trees).\n"); extra_args(args, 1, design); int total_count = 0; for (auto module : design->selected_whole_modules_warn()) { if (module->has_processes_warn()) continue; OptMuxtreeWorker worker(design, module); total_count += worker.removed_count; } if (total_count) design->scratchpad_set_bool("opt.did_something", true); log("Removed %d multiplexer ports.\n", total_count); } } OptMuxtreePass; PRIVATE_NAMESPACE_END