3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-14 21:08:47 +00:00
This commit is contained in:
George Rennie 2025-04-02 14:29:44 +00:00 committed by GitHub
commit b6aad9ed2a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 653 additions and 234 deletions

View file

@ -29,6 +29,7 @@
#include "passes/techmap/simplemap.h"
#include <stdio.h>
#include <stdlib.h>
#include <optional>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
@ -95,6 +96,18 @@ struct OptDffWorker
}
// If this bit sigmaps to a bit driven by a mux ouput bit that only drives this
// bit, returns that mux otherwise nullopt
std::optional<cell_int_t> mergeable_mux(SigBit bit) {
sigmap.apply(bit);
auto it = bit2mux.find(bit);
if (it == bit2mux.end() || bitusers[bit] != 1)
return std::nullopt;
return it->second;
}
State combine_const(State a, State b) {
if (a == State::Sx && !opt.keepdc)
return b;
@ -591,13 +604,12 @@ struct OptDffWorker
State reset_val = State::Sx;
if (ff.has_srst)
reset_val = ff.val_srst[i];
while (bit2mux.count(ff.sig_d[i]) && bitusers[ff.sig_d[i]] == 1) {
cell_int_t mbit = bit2mux.at(ff.sig_d[i]);
if (GetSize(mbit.first->getPort(ID::S)) != 1)
while (const auto mbit = mergeable_mux(ff.sig_d[i])) {
if (GetSize(mbit->first->getPort(ID::S)) != 1)
break;
SigBit s = mbit.first->getPort(ID::S);
SigBit a = mbit.first->getPort(ID::A)[mbit.second];
SigBit b = mbit.first->getPort(ID::B)[mbit.second];
SigBit s = mbit->first->getPort(ID::S);
SigBit a = mbit->first->getPort(ID::A)[mbit->second];
SigBit b = mbit->first->getPort(ID::B)[mbit->second];
// Workaround for funny memory WE pattern.
if ((a == State::S0 || a == State::S1) && (b == State::S0 || b == State::S1))
break;
@ -668,13 +680,12 @@ struct OptDffWorker
for (int i = 0 ; i < ff.width; i++) {
// First, eat up as many simple muxes as possible.
ctrls_t enables;
while (bit2mux.count(ff.sig_d[i]) && bitusers[ff.sig_d[i]] == 1) {
cell_int_t mbit = bit2mux.at(ff.sig_d[i]);
if (GetSize(mbit.first->getPort(ID::S)) != 1)
while (const auto mbit = mergeable_mux(ff.sig_d[i])) {
if (GetSize(mbit->first->getPort(ID::S)) != 1)
break;
SigBit s = mbit.first->getPort(ID::S);
SigBit a = mbit.first->getPort(ID::A)[mbit.second];
SigBit b = mbit.first->getPort(ID::B)[mbit.second];
SigBit s = mbit->first->getPort(ID::S);
SigBit a = mbit->first->getPort(ID::A)[mbit->second];
SigBit b = mbit->first->getPort(ID::B)[mbit->second];
if (a == ff.sig_q[i]) {
enables.insert(ctrl_t(s, true));
ff.sig_d[i] = b;

View file

@ -24,25 +24,27 @@
#include <sstream>
#include <stdlib.h>
#include <stdio.h>
#include <algorithm>
#include <type_traits>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
RTLIL::SigSpec find_any_lvalue(const RTLIL::Process *proc)
RTLIL::SigSpec find_any_lvalue(const RTLIL::Process& proc)
{
RTLIL::SigSpec lvalue;
for (auto sync : proc->syncs)
for (auto &action : sync->actions)
for (const auto* sync : proc.syncs)
for (const auto& action : sync->actions)
if (action.first.size() > 0) {
lvalue = action.first;
lvalue.sort_and_unify();
break;
}
for (auto sync : proc->syncs) {
for (const auto* sync : proc.syncs) {
RTLIL::SigSpec this_lvalue;
for (auto &action : sync->actions)
for (const auto& action : sync->actions)
this_lvalue.append(action.first);
this_lvalue.sort_and_unify();
RTLIL::SigSpec common_sig = this_lvalue.extract(lvalue);
@ -53,238 +55,452 @@ RTLIL::SigSpec find_any_lvalue(const RTLIL::Process *proc)
return lvalue;
}
void gen_dffsr_complex(RTLIL::Module *mod, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, RTLIL::SigSpec clk, bool clk_polarity,
std::vector<std::pair<RTLIL::SigSpec, RTLIL::SyncRule*>> &async_rules, RTLIL::Process *proc)
{
// A signal should be set/cleared if there is a load trigger that is enabled
// such that the load value is 1/0 and it is the highest priority trigger
RTLIL::SigSpec sig_sr_set = RTLIL::SigSpec(0, sig_d.size());
RTLIL::SigSpec sig_sr_clr = RTLIL::SigSpec(0, sig_d.size());
std::string new_dff_name() {
std::stringstream sstr;
sstr << "$procdff$" << (autoidx++);
return sstr.str();
}
// Reverse iterate through the rules as the first ones are the highest priority
// so need to be at the top of the mux trees
for (auto it = async_rules.crbegin(); it != async_rules.crend(); it++)
class Dff {
public:
// Extract the relevant signals from a process that drives sig as a DFF
Dff(RTLIL::Module& mod, const SigSpec& sig_out, RTLIL::Process& proc) :
proc{proc}, mod{mod}, sig_in(RTLIL::State::Sz, sig_out.size()), sig_out{sig_out}
{
const auto& [sync_value, rule] = *it;
const auto pos_trig = rule->type == RTLIL::SyncType::ST1 ? rule->signal : mod->Not(NEW_ID, rule->signal);
// We gather sync rules corresponding to always/edge first to check
// whether they are conflicting before actually updating clk
const RTLIL::SyncRule* sync_edge = nullptr;
const RTLIL::SyncRule* sync_always = nullptr;
bool global_clock = false;
// If pos_trig is true, we have priority at this point in the tree so
// set a bit if sync_value has a set bit. Otherwise, defer to the rest
// of the priority tree
sig_sr_set = mod->Mux(NEW_ID, sig_sr_set, sync_value, pos_trig);
for (const auto* sync : proc.syncs)
for (const auto& action : sync->actions) {
if (action.first.extract(sig_out).empty())
continue;
// Same deal with clear bit
const auto sync_value_inv = mod->Not(NEW_ID, sync_value);
sig_sr_clr = mod->Mux(NEW_ID, sig_sr_clr, sync_value_inv, pos_trig);
// Level sensitive assignments (set/reset/aload)
if (sync->type == RTLIL::SyncType::ST0 || sync->type == RTLIL::SyncType::ST1) {
RTLIL::SigSpec rstval(RTLIL::State::Sz, sig_out.size());
sig_out.replace(action.first, action.second, &rstval);
async_rules.emplace_back(rstval, *sync);
continue;
}
// Edge sensitive assignments (clock)
if (sync->type == RTLIL::SyncType::STp || sync->type == RTLIL::SyncType::STn) {
if (sync_edge != NULL && sync_edge != sync)
log_error("Multiple edge sensitive events found for this signal!\n");
sig_out.replace(action.first, action.second, &sig_in);
sync_edge = sync;
continue;
}
// Always assignments
if (sync->type == RTLIL::SyncType::STa) {
if (sync_always != NULL && sync_always != sync)
log_error("Multiple always events found for this signal!\n");
sig_out.replace(action.first, action.second, &sig_in);
sync_always = sync;
continue;
}
// Global clock assignments
if (sync->type == RTLIL::SyncType::STg) {
sig_out.replace(action.first, action.second, &sig_in);
global_clock = true;
continue;
}
log_error("Event with any-edge sensitivity found for this signal!\n");
}
if (sync_always && (sync_edge || !async_rules.empty()))
log_error("Mixed always event with edge and/or level sensitive events!\n");
if (!sync_edge && !global_clock && !sync_always)
log_error("Missing edge-sensitive event for this signal!\n");
// Update our internal versions of these signals to track whether things
// are edge sensitive
if (sync_edge)
clk = *sync_edge;
always = sync_always != nullptr;
}
std::stringstream sstr;
sstr << "$procdff$" << (autoidx++);
RTLIL::Cell *cell = mod->addDffsr(sstr.str(), clk, sig_sr_set, sig_sr_clr, sig_d, sig_q, clk_polarity);
cell->attributes = proc->attributes;
log(" created %s cell `%s' with %s edge clock and multiple level-sensitive resets.\n",
cell->type.c_str(), cell->name.c_str(), clk_polarity ? "positive" : "negative");
}
void gen_aldff(RTLIL::Module *mod, RTLIL::SigSpec sig_in, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_out,
bool clk_polarity, bool set_polarity, RTLIL::SigSpec clk, RTLIL::SigSpec set, RTLIL::Process *proc)
{
std::stringstream sstr;
sstr << "$procdff$" << (autoidx++);
RTLIL::Cell *cell = mod->addCell(sstr.str(), ID($aldff));
cell->attributes = proc->attributes;
cell->parameters[ID::WIDTH] = RTLIL::Const(sig_in.size());
cell->parameters[ID::ALOAD_POLARITY] = RTLIL::Const(set_polarity, 1);
cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity, 1);
cell->setPort(ID::D, sig_in);
cell->setPort(ID::Q, sig_out);
cell->setPort(ID::AD, sig_set);
cell->setPort(ID::CLK, clk);
cell->setPort(ID::ALOAD, set);
log(" created %s cell `%s' with %s edge clock and %s level non-const reset.\n", cell->type.c_str(), cell->name.c_str(),
clk_polarity ? "positive" : "negative", set_polarity ? "positive" : "negative");
}
void gen_dff(RTLIL::Module *mod, RTLIL::SigSpec sig_in, RTLIL::Const val_rst, RTLIL::SigSpec sig_out,
bool clk_polarity, bool arst_polarity, RTLIL::SigSpec clk, RTLIL::SigSpec *arst, RTLIL::Process *proc)
{
std::stringstream sstr;
sstr << "$procdff$" << (autoidx++);
RTLIL::Cell *cell = mod->addCell(sstr.str(), clk.empty() ? ID($ff) : arst ? ID($adff) : ID($dff));
cell->attributes = proc->attributes;
cell->parameters[ID::WIDTH] = RTLIL::Const(sig_in.size());
if (arst) {
cell->parameters[ID::ARST_POLARITY] = RTLIL::Const(arst_polarity, 1);
cell->parameters[ID::ARST_VALUE] = val_rst;
}
if (!clk.empty()) {
cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity, 1);
void optimize(ConstEval& ce) {
optimize_const_eval(ce);
optimize_same_value(ce);
optimize_self_assign(ce);
optimize_single_rule_consts();
}
cell->setPort(ID::D, sig_in);
cell->setPort(ID::Q, sig_out);
if (arst)
cell->setPort(ID::ARST, *arst);
if (!clk.empty())
cell->setPort(ID::CLK, clk);
// Const evaluate async rule values and triggers, and remove those that
// have triggers that are always false
void optimize_const_eval(ConstEval& ce) {
ce.eval(sig_in);
ce.eval(clk.sig);
if (!clk.empty())
log(" created %s cell `%s' with %s edge clock", cell->type.c_str(), cell->name.c_str(), clk_polarity ? "positive" : "negative");
else
log(" created %s cell `%s' with global clock", cell->type.c_str(), cell->name.c_str());
if (arst)
log(" and %s level reset", arst_polarity ? "positive" : "negative");
log(".\n");
}
for (auto& [value, trigger] : async_rules) {
ce.eval(value);
ce.eval(trigger.sig);
}
void proc_dff(RTLIL::Module *mod, RTLIL::Process *proc, ConstEval &ce)
{
while (1)
{
RTLIL::SigSpec sig = find_any_lvalue(proc);
async_rules.erase(
std::remove_if(async_rules.begin(), async_rules.end(),
[](const auto& rule) { return rule.trigger.is_never_triggered(); }
),
async_rules.end()
);
}
if (sig.size() == 0)
// Combine adjacent async rules that assign the same value into one rule
// with a disjunction of triggers. The resulting trigger is optimized by
// constant evaluation. We apply all of these optimizations that can be
// done to the LSB and shrink the size of the signal we are considering if
// higher bits cannot be optimized in the same way.
void optimize_same_value(ConstEval& ce) {
for (size_t i = 0; i + 1 < async_rules.size();) {
const bool lsb_optimizable = shrink_while_matching_values([&](const size_t bit) {
return async_rules[i].value[bit] == async_rules[i + 1].value[bit];
});
if (!lsb_optimizable) {
i++;
continue;
}
// i and i + 1 assign the same value so can be merged by taking
// the disjunction of triggers and deleting the second
async_rules[i].trigger = mod.ReduceOr(
NEW_ID,
SigSpec{
async_rules[i].trigger.positive_trigger(mod),
async_rules[i + 1].trigger.positive_trigger(mod)
}
);
async_rules.erase(async_rules.begin() + i + 1);
ce.eval(async_rules[i].trigger.sig);
}
}
// If the lowest priority async rule assigns the output value to itself,
// remove the rule and fold this into the input signal. If the LSB assigns
// the output to itself but higher bits don't, we resize down to just the
// LSBs that assign to themselves, allowing more optimized representations
// for those bits.
void optimize_self_assign(ConstEval& ce) {
SigSpec sig_out_mapped = sig_out;
ce.assign_map.apply(sig_out_mapped);
// Calculate the number of low priority rules that can be folded into
// the input signal for a given bit position
const size_t lsb_foldable_rules = shrink_while_matching_values([&](const size_t i) {
size_t foldable = 0;
for (auto it = async_rules.crbegin(); it != async_rules.crend(); it++, foldable++) {
const auto& [value, trigger] = *it;
if (value[i] != sig_out_mapped[i])
break;
}
return foldable;
});
if (lsb_foldable_rules == 0)
return;
// Calculate the disjunction of triggers
SigSpec triggers;
for (size_t i = 0; i < lsb_foldable_rules; i++)
triggers.append(async_rules.crbegin()[i].trigger.positive_trigger(mod));
const auto trigger = mod.ReduceOr(NEW_ID, triggers);
sig_in = mod.Mux(NEW_ID, sig_in, sig_out, trigger);
ce.eval(sig_in);
async_rules.resize(async_rules.size() - lsb_foldable_rules);
}
// If we have only a single rule, this means we will generate either an $aldff
// or an $adff if the reset value is constant or non-constant respectively.
// If there are any non-constant bits in the rule value, an $aldff will be
// used for all bits, but we would like to use an $adff for as many
// bits as possible. This optimization therefore calculates the longest run
// of bits starting at the LSB of the value with the same constness and
// removes the rest from consideration in this pass. This means that const
// and non-const sections can be separately mapped to $adff and $aldff.
void optimize_single_rule_consts() {
if (async_rules.size() != 1)
return;
shrink_while_matching_values([&](const size_t i) {
return async_rules.front().value[i].is_wire();
});
}
void generate() {
// Progressively attempt more complex formulations, preferring the
// simpler ones. These rules should be able to cover all representable
// DFF patterns.
if (try_generate_always())
return;
if (try_generate_dff())
return;
if (try_generate_single_async_dff())
return;
if (try_generate_dffsr())
return;
log_error("unable to match a dff type to this signal's rules.\n");
}
// Generates a connection if this dff is an always connection
// Returns true if successful
bool try_generate_always() {
if (!always)
return false;
log_assert(async_rules.empty());
log_assert(clk.empty());
log(" created direct connection (no actual register cell created).\n");
mod.connect(sig_out, sig_in);
return true;
}
// Generates a $dff if this dff has no async rules and a clock of a $ff
// if this dff has no async rules and is globally clocked
// Returns true if succesful
bool try_generate_dff() {
if (always || !async_rules.empty())
return false;
RTLIL::Cell* cell;
const char* edge;
if (clk.empty()) {
edge = "global";
cell = mod.addFf(new_dff_name(), sig_in, sig_out);
} else {
edge = clk.polarity_str();
cell = mod.addDff(
/* name */ new_dff_name(),
/* sig_clk */ clk.sig,
/* sig_d */ sig_in,
/* sig_q */ sig_out,
/* clk_polarity */ clk.polarity()
);
}
cell->attributes = proc.attributes;
log(" created %s cell `%s' with %s edge clock.", cell->type.c_str(), cell->name.c_str(), edge);
return true;
}
// Generates an $adff or $aldff if this dff has a single async rule that
// is constant or non-constant respectively
// Returns true if successful
bool try_generate_single_async_dff() {
if (!explicitly_clocked() || async_rules.size() != 1)
return false;
const auto& aload = async_rules.front();
const bool is_const = aload.value.is_fully_const();
RTLIL::Cell* cell;
if (is_const) {
cell = mod.addAdff(
/* name */ new_dff_name(),
/* sig_clk */ clk.sig,
/* sig_arst */ aload.trigger.sig,
/* sig_d */ sig_in,
/* sig_q */ sig_out,
/* arst_value */ aload.value.as_const(),
/* clk_polarity */ clk.polarity(),
/* arst_polarity */ aload.trigger.polarity()
);
} else {
log_warning("Async reset value `%s' is not constant!\n", log_signal(aload.value));
cell = mod.addAldff(
/* name */ new_dff_name(),
/* sig_clk */ clk.sig,
/* sig_aload */ aload.trigger.sig,
/* sig_d */ sig_in,
/* sig_q */ sig_out,
/* sig_ad */ aload.value,
/* clk_polarity */ clk.polarity(),
/* aload_polarity */ aload.trigger.polarity()
);
}
cell->attributes = proc.attributes;
log(
" created %s cell `%s' with %s edge clock and %s level %sconst reset.\n",
cell->type.c_str(), cell->name.c_str(), clk.polarity_str(), aload.trigger.polarity_str(),
is_const ? "" : "non-"
);
return true;
}
// Generates a $dffsr cell from a complex set of async rules that are converted
// into driving conditions for set and reset signals
// Returns true if successful
bool try_generate_dffsr() {
if (!explicitly_clocked())
return false;
// A signal should be set/cleared if there is a load trigger that is enabled
// such that the load value is 1/0 and it is the highest priority trigger
RTLIL::SigSpec sig_set(0, size()), sig_clr(0, size());
// Reverse iterate through the rules as the first ones are the highest priority
// so need to be at the top of the mux trees
for (auto it = async_rules.crbegin(); it != async_rules.crend(); it++) {
const auto& [sync_value, trigger] = *it;
const auto pos_trig = trigger.positive_trigger(mod);
// If pos_trig is true, we have priority at this point in the tree so
// set a bit if value has a set bit. Otherwise, defer to the rest
// of the priority tree
sig_set = mod.Mux(NEW_ID, sig_set, sync_value, pos_trig);
// Same deal with clear bit
const auto sync_value_inv = mod.Not(NEW_ID, sync_value);
sig_clr = mod.Mux(NEW_ID, sig_clr, sync_value_inv, pos_trig);
}
auto* cell = mod.addDffsr(
/* name */ new_dff_name(),
/* sig_clk */ clk.sig,
/* sig_set */ sig_set,
/* sig_clr */ sig_clr,
/* sig_d */ sig_in,
/* sig_q */ sig_out,
/* clk_polarity */ clk.polarity()
);
cell->attributes = proc.attributes;
log(" created %s cell `%s' with %s edge clock and multiple level-sensitive resets.\n",
cell->type.c_str(), cell->name.c_str(), clk.polarity_str());
return true;
}
bool empty() const { return sig_out.empty(); }
size_t size() const { return sig_out.size(); }
const SigSpec& output() const { return sig_out; }
// True if there is an explicit clock signal, false if driven by an always
// or global clock
bool explicitly_clocked() const { return !always && !clk.empty(); }
private:
void resize(const size_t new_size) {
if (new_size >= size())
return;
sig_in = sig_in.extract(0, new_size);
sig_out = sig_out.extract(0, new_size);
for (auto& [value, _] : async_rules)
value = value.extract(0, new_size);
}
// Given some function that maps from an index to a value, this resizes
// the dff to a range starting at the LSB that all return the same value
// from the function as the LSB. This function also returns the value
// calculated for the LSB.
template <typename F>
typename std::invoke_result_t<F, size_t> shrink_while_matching_values(F f) {
const auto base_val = f(0);
size_t new_size;
for (new_size = 1; new_size < size(); new_size++)
if (f(new_size) != base_val)
break;
resize(new_size);
return base_val;
}
RTLIL::Process& proc;
RTLIL::Module& mod;
// A clock or reset trigger that is active when sig goes high (low) when
// inverted is false (true)
struct TriggerSig {
SigSpec sig;
bool inverted = false;
TriggerSig() = default;
TriggerSig(const RTLIL::SyncRule& sync) : sig{sync.signal},
inverted{sync.type == RTLIL::SyncType::ST0 || sync.type == RTLIL::SyncType::STn} {}
TriggerSig(const RTLIL::SigSpec& signal) : sig{signal} {}
bool empty() const { return sig.empty(); }
bool polarity() const { return !inverted; }
const char* polarity_str() const { return polarity() ? "positive" : "negative"; }
bool is_never_triggered() const {
return inverted ? sig.is_fully_ones() : sig.is_fully_zero();
}
SigSpec positive_trigger(RTLIL::Module& mod) const {
if (!inverted)
return sig;
return mod.Not(NEW_ID, sig);
}
};
// An update rule to update sig_q to value when trigger is triggered
struct AsyncRule {
SigSpec value;
TriggerSig trigger;
AsyncRule() = default;
AsyncRule(const SigSpec& value, const RTLIL::SyncRule& sync) : value{value}, trigger{sync} {}
};
// The d input (used when no async rules apply) and q output
SigSpec sig_in, sig_out;
// A priority ordered list of asynchronous rules used for set/reset/aload.
// A rule that comes earlier in this vector has higher priority than a later
// one (if both of their trigger conditions are met the higher priority
// value is taken)
std::vector<AsyncRule> async_rules;
// The clock signal with its polarity. If clk is empty, the DFF is driven
// by a global clock (and should have no async rules)
TriggerSig clk;
// If this is true, this isn't really a DFF but instead an always assignment
// that can be made with a connection. clk and async_rules should be empty
// in this case
bool always = false;
};
void proc_dff(RTLIL::Module& mod, RTLIL::Process& proc, ConstEval &ce) {
while (1) {
// Find a new signal assigned by this process
const auto sig = find_any_lvalue(proc);
if (sig.empty())
break;
log("Creating register for signal `%s.%s' using process `%s.%s'.\n",
mod->name.c_str(), log_signal(sig), mod->name.c_str(), proc->name.c_str());
mod.name.c_str(), log_signal(sig), mod.name.c_str(), proc.name.c_str());
RTLIL::SigSpec insig = RTLIL::SigSpec(RTLIL::State::Sz, sig.size());
RTLIL::SyncRule *sync_edge = NULL;
RTLIL::SyncRule *sync_always = NULL;
bool global_clock = false;
Dff dff{mod, sig, proc};
dff.optimize(ce);
dff.generate();
// A priority ordered set of rules, pairing the value to be assigned for
// that rule to the rule
std::vector<std::pair<RTLIL::SigSpec, RTLIL::SyncRule*>> async_rules;
// Needed when the async rules are collapsed into one as async_rules
// works with pointers to SyncRule
RTLIL::SyncRule single_async_rule;
for (auto sync : proc->syncs)
for (auto &action : sync->actions)
{
if (action.first.extract(sig).size() == 0)
continue;
if (sync->type == RTLIL::SyncType::ST0 || sync->type == RTLIL::SyncType::ST1) {
RTLIL::SigSpec rstval = RTLIL::SigSpec(RTLIL::State::Sz, sig.size());
sig.replace(action.first, action.second, &rstval);
async_rules.emplace_back(rstval, sync);
}
else if (sync->type == RTLIL::SyncType::STp || sync->type == RTLIL::SyncType::STn) {
if (sync_edge != NULL && sync_edge != sync)
log_error("Multiple edge sensitive events found for this signal!\n");
sig.replace(action.first, action.second, &insig);
sync_edge = sync;
}
else if (sync->type == RTLIL::SyncType::STa) {
if (sync_always != NULL && sync_always != sync)
log_error("Multiple always events found for this signal!\n");
sig.replace(action.first, action.second, &insig);
sync_always = sync;
}
else if (sync->type == RTLIL::SyncType::STg) {
sig.replace(action.first, action.second, &insig);
global_clock = true;
}
else {
log_error("Event with any-edge sensitivity found for this signal!\n");
}
action.first.remove2(sig, &action.second);
}
// If all async rules assign the same value, priority ordering between
// them doesn't matter so they can be collapsed together into one rule
// with the disjunction of triggers
if (!async_rules.empty() &&
std::all_of(async_rules.begin(), async_rules.end(), [&](auto& p) {
return p.first == async_rules.front().first;
}))
{
const auto rstval = async_rules.front().first;
// The trigger is the disjunction of existing triggers
// (with appropriate negation)
RTLIL::SigSpec triggers;
for (const auto &[_, it] : async_rules)
triggers.append(it->type == RTLIL::SyncType::ST1 ? it->signal : mod->Not(NEW_ID, it->signal));
// Put this into the dummy sync rule so it can be treated the same
// as ones coming from the module
single_async_rule.type = RTLIL::SyncType::ST1;
single_async_rule.signal = mod->ReduceOr(NEW_ID, triggers);
single_async_rule.actions.push_back(RTLIL::SigSig(sig, rstval));
// Replace existing rules with this new rule
async_rules.clear();
async_rules.emplace_back(rstval, &single_async_rule);
}
SigSpec sig_q = sig;
ce.assign_map.apply(insig);
ce.assign_map.apply(sig);
// If the reset value assigns the reg to itself, add this as part of
// the input signal and delete the rule
if (async_rules.size() == 1 && async_rules.front().first == sig) {
const auto& [_, rule] = async_rules.front();
if (rule->type == RTLIL::SyncType::ST1)
insig = mod->Mux(NEW_ID, insig, sig, rule->signal);
else
insig = mod->Mux(NEW_ID, sig, insig, rule->signal);
async_rules.clear();
}
if (sync_always) {
if (sync_edge || !async_rules.empty())
log_error("Mixed always event with edge and/or level sensitive events!\n");
log(" created direct connection (no actual register cell created).\n");
mod->connect(RTLIL::SigSig(sig, insig));
continue;
}
if (!sync_edge && !global_clock)
log_error("Missing edge-sensitive event for this signal!\n");
// More than one reset value so we derive a dffsr formulation
if (async_rules.size() > 1)
{
log_warning("Complex async reset for dff `%s'.\n", log_signal(sig));
gen_dffsr_complex(mod, insig, sig, sync_edge->signal, sync_edge->type == RTLIL::SyncType::STp, async_rules, proc);
continue;
}
// If there is a reset condition in the async rules, use it
SigSpec rstval = async_rules.empty() ? RTLIL::SigSpec(RTLIL::State::Sz, sig.size()) : async_rules.front().first;
RTLIL::SyncRule* sync_level = async_rules.empty() ? nullptr : async_rules.front().second;
ce.assign_map.apply(rstval);
if (!rstval.is_fully_const() && !ce.eval(rstval))
{
log_warning("Async reset value `%s' is not constant!\n", log_signal(rstval));
gen_aldff(mod, insig, rstval, sig_q,
sync_edge->type == RTLIL::SyncType::STp,
sync_level && sync_level->type == RTLIL::SyncType::ST1,
sync_edge->signal, sync_level->signal, proc);
continue;
}
gen_dff(mod, insig, rstval.as_const(), sig_q,
sync_edge && sync_edge->type == RTLIL::SyncType::STp,
sync_level && sync_level->type == RTLIL::SyncType::ST1,
sync_edge ? sync_edge->signal : SigSpec(),
sync_level ? &sync_level->signal : NULL, proc);
// Now that we are done with the signal remove it from the process
// We must do this after optimizing the dff as to emit an optimal dff
// type we might not actually use all bits of sig in this iteration
for (auto* sync : proc.syncs)
for (auto& action : sync->actions)
action.first.remove2(dff.output(), &action.second);
}
}
@ -311,7 +527,7 @@ struct ProcDffPass : public Pass {
ConstEval ce(mod);
for (auto &proc_it : mod->processes)
if (design->selected(mod, proc_it.second))
proc_dff(mod, proc_it.second, ce);
proc_dff(*mod, *proc_it.second, ce);
}
}
} ProcDffPass;

View file

@ -78,3 +78,195 @@ select -assert-count 1 t:$assert
sat -tempinduct -verify -prove-asserts
design -reset
# A mix of different flop types all described together to stress test proc_dff
# more
read_verilog -formal <<EOT
module top(
input wire clk,
input wire arst,
input wire [7:0] d0, d1, d2, d3,
input wire [7:0] ad2,
output reg [7:0] q0, q1, q2, q3
);
wire never = '0;
always @(posedge clk, posedge arst) begin
{q0, q1, q2, q3} <= {d0, d1, d2, d3};
if (arst)
{q0, q2[7:4], q3, q2[3:0]} <= {q0, ad2[3:0], 8'hFF, 4'h5};
else if (never)
{q0, q1, q2, q3} <= {q3, q2, q1, q0};
end
always @* begin
if (arst) begin
assert(q2 == {ad2[3:0], 4'h5});
assert(q3 == 8'hFF);
end
end
endmodule
EOT
proc
opt_dff
opt_clean
# q0 is a standard $dffe
select w:q0 %ci* c:* %i
select -assert-count 1 %
select -assert-count 1 % t:$dffe %i
# q1 is an $aldff where both both aload and data take the same value
select w:q1 %ci* c:* %i
select -assert-count 1 %
select -assert-count 1 % t:$aldff %i
select -assert-count 1 % %ci:+[AD,D] w:* %i
# q2 is part driven by an $adff, and part by an $aldff
select w:q2 %ci* c:* %i
select -assert-count 2 %
select -assert-count 1 % t:$adff %i
select -assert-count 1 % t:$aldff %i
# q3 is driven by an $adff
select w:q3 %ci* c:* %i
select -assert-count 1 %
select -assert-count 1 % t:$adff %i
# never should appear in none of the cones of flops
select -assert-none c:* %x* w:never %i
select -clear
clk2fflogic
select -assert-any t:$assert
sat -tempinduct -verify -prove-asserts
design -reset
# A design which is best mapped with different flops for different ranges of
# the variable
read_verilog <<EOT
module top(
input wire clk,
input wire rsta,
input wire rstb,
input wire [7:0] d,
output reg [7:0] q
);
always @(posedge clk or posedge rsta or posedge rstb) begin
if (rsta)
q <= '0;
else if (rstb)
q[3:0] <= 4'b0;
else
q <= d;
end
endmodule
EOT
proc
opt_dff
opt_clean
select w:q %ci* c:* %i
select -assert-count 1 % t:$adffe %i
select -assert-count 1 % t:$adff %i
design -reset
# Another design which is best mapped with different flops for different ranges
# of the variable.
read_verilog <<EOT
module top(
input wire clk,
input wire rst,
output reg [7:0] q,
input wire [7:0] d
);
always @(posedge clk or posedge rst) begin
if (rst)
q[3:0] <= '0;
else
q <= d;
end
endmodule
EOT
proc
opt_dff
opt_clean
select w:q %ci* c:* %i
select -assert-count 1 % t:$dffe %i
select -assert-count 1 % t:$adff %i
design -reset
# A design that relies on merging adjacent sync rules with the same priority
# and folding low priority feedback rules into enables at the bit level
read_verilog -formal <<EOT
module top(
input wire clk,
input wire rsta, rstb, rstc, rstd,
input wire [2:0] d,
output reg [2:0] q
);
always @(posedge clk, posedge rsta, negedge rstb, posedge rstc, negedge rstd) begin
if (rsta)
q <= {1'b1, 1'b0, d[0]};
else if (!rstb)
q <= {1'b1, 1'b0, d[0]};
else if (rstc)
q <= {q[2], 1'b0, d[0]};
else if (~rstd)
q <= {q[2], 1'b1, d[0]};
else
q <= d;
end
always @* begin
if (rsta) begin
assert(q[2] == 1'b1);
assert(q[1] == 1'b0);
assert(q[0] == d[0]);
end else if (!rstb) begin
assert(q[2] == 1'b1);
assert(q[1] == 1'b0);
assert(q[0] == d[0]);
end else if (rstc) begin
assert(q[1] == 1'b0);
assert(q[0] == d[0]);
end else if (!rstd) begin
assert(q[1] == 1'b1);
assert(q[0] == d[0]);
end
end
endmodule
EOT
proc
opt_dff
opt_clean
# q is driven by an adffe, a dffsr and an aldff per bit
select w:q %ci1 c:* %i
select -assert-count 3 %
select -assert-count 1 % t:$adffe %i
select -assert-count 1 % t:$dffsr %i
select -assert-count 1 % t:$aldff %i
select -clear
clk2fflogic
select -assert-any t:$assert
sat -tempinduct -verify -prove-asserts