mirror of
https://github.com/YosysHQ/yosys
synced 2025-04-16 05:48:44 +00:00
536 lines
17 KiB
C++
536 lines
17 KiB
C++
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "kernel/register.h"
|
|
#include "kernel/sigtools.h"
|
|
#include "kernel/consteval.h"
|
|
#include "kernel/log.h"
|
|
#include <sstream>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <algorithm>
|
|
#include <type_traits>
|
|
|
|
USING_YOSYS_NAMESPACE
|
|
PRIVATE_NAMESPACE_BEGIN
|
|
|
|
RTLIL::SigSpec find_any_lvalue(const RTLIL::Process& proc)
|
|
{
|
|
RTLIL::SigSpec lvalue;
|
|
|
|
for (const auto* sync : proc.syncs)
|
|
for (const auto& action : sync->actions)
|
|
if (action.first.size() > 0) {
|
|
lvalue = action.first;
|
|
lvalue.sort_and_unify();
|
|
break;
|
|
}
|
|
|
|
for (const auto* sync : proc.syncs) {
|
|
RTLIL::SigSpec this_lvalue;
|
|
for (const auto& action : sync->actions)
|
|
this_lvalue.append(action.first);
|
|
this_lvalue.sort_and_unify();
|
|
RTLIL::SigSpec common_sig = this_lvalue.extract(lvalue);
|
|
if (common_sig.size() > 0)
|
|
lvalue = common_sig;
|
|
}
|
|
|
|
return lvalue;
|
|
}
|
|
|
|
std::string new_dff_name() {
|
|
std::stringstream sstr;
|
|
sstr << "$procdff$" << (autoidx++);
|
|
return sstr.str();
|
|
}
|
|
|
|
class Dff {
|
|
public:
|
|
// Extract the relevant signals from a process that drives sig as a DFF
|
|
Dff(RTLIL::Module& mod, const SigSpec& sig_out, RTLIL::Process& proc) :
|
|
proc{proc}, mod{mod}, sig_in(RTLIL::State::Sz, sig_out.size()), sig_out{sig_out}
|
|
{
|
|
// We gather sync rules corresponding to always/edge first to check
|
|
// whether they are conflicting before actually updating clk
|
|
const RTLIL::SyncRule* sync_edge = nullptr;
|
|
const RTLIL::SyncRule* sync_always = nullptr;
|
|
bool global_clock = false;
|
|
|
|
for (const auto* sync : proc.syncs)
|
|
for (const auto& action : sync->actions) {
|
|
if (action.first.extract(sig_out).empty())
|
|
continue;
|
|
|
|
// Level sensitive assignments (set/reset/aload)
|
|
if (sync->type == RTLIL::SyncType::ST0 || sync->type == RTLIL::SyncType::ST1) {
|
|
RTLIL::SigSpec rstval(RTLIL::State::Sz, sig_out.size());
|
|
sig_out.replace(action.first, action.second, &rstval);
|
|
async_rules.emplace_back(rstval, *sync);
|
|
continue;
|
|
}
|
|
|
|
// Edge sensitive assignments (clock)
|
|
if (sync->type == RTLIL::SyncType::STp || sync->type == RTLIL::SyncType::STn) {
|
|
if (sync_edge != NULL && sync_edge != sync)
|
|
log_error("Multiple edge sensitive events found for this signal!\n");
|
|
sig_out.replace(action.first, action.second, &sig_in);
|
|
sync_edge = sync;
|
|
continue;
|
|
}
|
|
|
|
// Always assignments
|
|
if (sync->type == RTLIL::SyncType::STa) {
|
|
if (sync_always != NULL && sync_always != sync)
|
|
log_error("Multiple always events found for this signal!\n");
|
|
sig_out.replace(action.first, action.second, &sig_in);
|
|
sync_always = sync;
|
|
continue;
|
|
}
|
|
|
|
// Global clock assignments
|
|
if (sync->type == RTLIL::SyncType::STg) {
|
|
sig_out.replace(action.first, action.second, &sig_in);
|
|
global_clock = true;
|
|
continue;
|
|
}
|
|
|
|
log_error("Event with any-edge sensitivity found for this signal!\n");
|
|
}
|
|
|
|
if (sync_always && (sync_edge || !async_rules.empty()))
|
|
log_error("Mixed always event with edge and/or level sensitive events!\n");
|
|
|
|
if (!sync_edge && !global_clock && !sync_always)
|
|
log_error("Missing edge-sensitive event for this signal!\n");
|
|
|
|
// Update our internal versions of these signals to track whether things
|
|
// are edge sensitive
|
|
if (sync_edge)
|
|
clk = *sync_edge;
|
|
always = sync_always != nullptr;
|
|
}
|
|
|
|
void optimize(ConstEval& ce) {
|
|
optimize_const_eval(ce);
|
|
optimize_same_value(ce);
|
|
optimize_self_assign(ce);
|
|
optimize_single_rule_consts();
|
|
}
|
|
|
|
// Const evaluate async rule values and triggers, and remove those that
|
|
// have triggers that are always false
|
|
void optimize_const_eval(ConstEval& ce) {
|
|
ce.eval(sig_in);
|
|
ce.eval(clk.sig);
|
|
|
|
for (auto& [value, trigger] : async_rules) {
|
|
ce.eval(value);
|
|
ce.eval(trigger.sig);
|
|
}
|
|
|
|
async_rules.erase(
|
|
std::remove_if(async_rules.begin(), async_rules.end(),
|
|
[](const auto& rule) { return rule.trigger.is_never_triggered(); }
|
|
),
|
|
async_rules.end()
|
|
);
|
|
}
|
|
|
|
// Combine adjacent async rules that assign the same value into one rule
|
|
// with a disjunction of triggers. The resulting trigger is optimized by
|
|
// constant evaluation. We apply all of these optimizations that can be
|
|
// done to the LSB and shrink the size of the signal we are considering if
|
|
// higher bits cannot be optimized in the same way.
|
|
void optimize_same_value(ConstEval& ce) {
|
|
for (size_t i = 0; i + 1 < async_rules.size();) {
|
|
const bool lsb_optimizable = shrink_while_matching_values([&](const size_t bit) {
|
|
return async_rules[i].value[bit] == async_rules[i + 1].value[bit];
|
|
});
|
|
|
|
if (!lsb_optimizable) {
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
// i and i + 1 assign the same value so can be merged by taking
|
|
// the disjunction of triggers and deleting the second
|
|
async_rules[i].trigger = mod.ReduceOr(
|
|
NEW_ID,
|
|
SigSpec{
|
|
async_rules[i].trigger.positive_trigger(mod),
|
|
async_rules[i + 1].trigger.positive_trigger(mod)
|
|
}
|
|
);
|
|
async_rules.erase(async_rules.begin() + i + 1);
|
|
|
|
ce.eval(async_rules[i].trigger.sig);
|
|
}
|
|
}
|
|
|
|
// If the lowest priority async rule assigns the output value to itself,
|
|
// remove the rule and fold this into the input signal. If the LSB assigns
|
|
// the output to itself but higher bits don't, we resize down to just the
|
|
// LSBs that assign to themselves, allowing more optimized representations
|
|
// for those bits.
|
|
void optimize_self_assign(ConstEval& ce) {
|
|
SigSpec sig_out_mapped = sig_out;
|
|
ce.assign_map.apply(sig_out_mapped);
|
|
|
|
// Calculate the number of low priority rules that can be folded into
|
|
// the input signal for a given bit position
|
|
const size_t lsb_foldable_rules = shrink_while_matching_values([&](const size_t i) {
|
|
size_t foldable = 0;
|
|
for (auto it = async_rules.crbegin(); it != async_rules.crend(); it++, foldable++) {
|
|
const auto& [value, trigger] = *it;
|
|
if (value[i] != sig_out_mapped[i])
|
|
break;
|
|
}
|
|
return foldable;
|
|
});
|
|
|
|
if (lsb_foldable_rules == 0)
|
|
return;
|
|
|
|
// Calculate the disjunction of triggers
|
|
SigSpec triggers;
|
|
for (size_t i = 0; i < lsb_foldable_rules; i++)
|
|
triggers.append(async_rules.crbegin()[i].trigger.positive_trigger(mod));
|
|
|
|
const auto trigger = mod.ReduceOr(NEW_ID, triggers);
|
|
sig_in = mod.Mux(NEW_ID, sig_in, sig_out, trigger);
|
|
ce.eval(sig_in);
|
|
|
|
async_rules.resize(async_rules.size() - lsb_foldable_rules);
|
|
}
|
|
|
|
// If we have only a single rule, this means we will generate either an $aldff
|
|
// or an $adff if the reset value is constant or non-constant respectively.
|
|
// If there are any non-constant bits in the rule value, an $aldff will be
|
|
// used for all bits, but we would like to use an $adff for as many
|
|
// bits as possible. This optimization therefore calculates the longest run
|
|
// of bits starting at the LSB of the value with the same constness and
|
|
// removes the rest from consideration in this pass. This means that const
|
|
// and non-const sections can be separately mapped to $adff and $aldff.
|
|
void optimize_single_rule_consts() {
|
|
if (async_rules.size() != 1)
|
|
return;
|
|
|
|
shrink_while_matching_values([&](const size_t i) {
|
|
return async_rules.front().value[i].is_wire();
|
|
});
|
|
}
|
|
|
|
void generate() {
|
|
// Progressively attempt more complex formulations, preferring the
|
|
// simpler ones. These rules should be able to cover all representable
|
|
// DFF patterns.
|
|
if (try_generate_always())
|
|
return;
|
|
|
|
if (try_generate_dff())
|
|
return;
|
|
|
|
if (try_generate_single_async_dff())
|
|
return;
|
|
|
|
if (try_generate_dffsr())
|
|
return;
|
|
|
|
log_error("unable to match a dff type to this signal's rules.\n");
|
|
}
|
|
|
|
// Generates a connection if this dff is an always connection
|
|
// Returns true if successful
|
|
bool try_generate_always() {
|
|
if (!always)
|
|
return false;
|
|
|
|
log_assert(async_rules.empty());
|
|
log_assert(clk.empty());
|
|
|
|
log(" created direct connection (no actual register cell created).\n");
|
|
mod.connect(sig_out, sig_in);
|
|
return true;
|
|
}
|
|
|
|
// Generates a $dff if this dff has no async rules and a clock of a $ff
|
|
// if this dff has no async rules and is globally clocked
|
|
// Returns true if succesful
|
|
bool try_generate_dff() {
|
|
if (always || !async_rules.empty())
|
|
return false;
|
|
|
|
RTLIL::Cell* cell;
|
|
const char* edge;
|
|
if (clk.empty()) {
|
|
edge = "global";
|
|
cell = mod.addFf(new_dff_name(), sig_in, sig_out);
|
|
} else {
|
|
edge = clk.polarity_str();
|
|
cell = mod.addDff(
|
|
/* name */ new_dff_name(),
|
|
/* sig_clk */ clk.sig,
|
|
/* sig_d */ sig_in,
|
|
/* sig_q */ sig_out,
|
|
/* clk_polarity */ clk.polarity()
|
|
);
|
|
}
|
|
cell->attributes = proc.attributes;
|
|
|
|
log(" created %s cell `%s' with %s edge clock.", cell->type.c_str(), cell->name.c_str(), edge);
|
|
return true;
|
|
}
|
|
|
|
// Generates an $adff or $aldff if this dff has a single async rule that
|
|
// is constant or non-constant respectively
|
|
// Returns true if successful
|
|
bool try_generate_single_async_dff() {
|
|
if (!explicitly_clocked() || async_rules.size() != 1)
|
|
return false;
|
|
|
|
const auto& aload = async_rules.front();
|
|
const bool is_const = aload.value.is_fully_const();
|
|
|
|
RTLIL::Cell* cell;
|
|
if (is_const) {
|
|
cell = mod.addAdff(
|
|
/* name */ new_dff_name(),
|
|
/* sig_clk */ clk.sig,
|
|
/* sig_arst */ aload.trigger.sig,
|
|
/* sig_d */ sig_in,
|
|
/* sig_q */ sig_out,
|
|
/* arst_value */ aload.value.as_const(),
|
|
/* clk_polarity */ clk.polarity(),
|
|
/* arst_polarity */ aload.trigger.polarity()
|
|
);
|
|
} else {
|
|
log_warning("Async reset value `%s' is not constant!\n", log_signal(aload.value));
|
|
cell = mod.addAldff(
|
|
/* name */ new_dff_name(),
|
|
/* sig_clk */ clk.sig,
|
|
/* sig_aload */ aload.trigger.sig,
|
|
/* sig_d */ sig_in,
|
|
/* sig_q */ sig_out,
|
|
/* sig_ad */ aload.value,
|
|
/* clk_polarity */ clk.polarity(),
|
|
/* aload_polarity */ aload.trigger.polarity()
|
|
);
|
|
}
|
|
cell->attributes = proc.attributes;
|
|
|
|
log(
|
|
" created %s cell `%s' with %s edge clock and %s level %sconst reset.\n",
|
|
cell->type.c_str(), cell->name.c_str(), clk.polarity_str(), aload.trigger.polarity_str(),
|
|
is_const ? "" : "non-"
|
|
);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Generates a $dffsr cell from a complex set of async rules that are converted
|
|
// into driving conditions for set and reset signals
|
|
// Returns true if successful
|
|
bool try_generate_dffsr() {
|
|
if (!explicitly_clocked())
|
|
return false;
|
|
|
|
// A signal should be set/cleared if there is a load trigger that is enabled
|
|
// such that the load value is 1/0 and it is the highest priority trigger
|
|
RTLIL::SigSpec sig_set(0, size()), sig_clr(0, size());
|
|
|
|
// Reverse iterate through the rules as the first ones are the highest priority
|
|
// so need to be at the top of the mux trees
|
|
for (auto it = async_rules.crbegin(); it != async_rules.crend(); it++) {
|
|
const auto& [sync_value, trigger] = *it;
|
|
const auto pos_trig = trigger.positive_trigger(mod);
|
|
|
|
// If pos_trig is true, we have priority at this point in the tree so
|
|
// set a bit if value has a set bit. Otherwise, defer to the rest
|
|
// of the priority tree
|
|
sig_set = mod.Mux(NEW_ID, sig_set, sync_value, pos_trig);
|
|
|
|
// Same deal with clear bit
|
|
const auto sync_value_inv = mod.Not(NEW_ID, sync_value);
|
|
sig_clr = mod.Mux(NEW_ID, sig_clr, sync_value_inv, pos_trig);
|
|
}
|
|
|
|
auto* cell = mod.addDffsr(
|
|
/* name */ new_dff_name(),
|
|
/* sig_clk */ clk.sig,
|
|
/* sig_set */ sig_set,
|
|
/* sig_clr */ sig_clr,
|
|
/* sig_d */ sig_in,
|
|
/* sig_q */ sig_out,
|
|
/* clk_polarity */ clk.polarity()
|
|
);
|
|
cell->attributes = proc.attributes;
|
|
|
|
log(" created %s cell `%s' with %s edge clock and multiple level-sensitive resets.\n",
|
|
cell->type.c_str(), cell->name.c_str(), clk.polarity_str());
|
|
return true;
|
|
}
|
|
|
|
bool empty() const { return sig_out.empty(); }
|
|
size_t size() const { return sig_out.size(); }
|
|
const SigSpec& output() const { return sig_out; }
|
|
|
|
// True if there is an explicit clock signal, false if driven by an always
|
|
// or global clock
|
|
bool explicitly_clocked() const { return !always && !clk.empty(); }
|
|
|
|
private:
|
|
void resize(const size_t new_size) {
|
|
if (new_size >= size())
|
|
return;
|
|
|
|
sig_in = sig_in.extract(0, new_size);
|
|
sig_out = sig_out.extract(0, new_size);
|
|
for (auto& [value, _] : async_rules)
|
|
value = value.extract(0, new_size);
|
|
}
|
|
|
|
// Given some function that maps from an index to a value, this resizes
|
|
// the dff to a range starting at the LSB that all return the same value
|
|
// from the function as the LSB. This function also returns the value
|
|
// calculated for the LSB.
|
|
template <typename F>
|
|
typename std::invoke_result_t<F, size_t> shrink_while_matching_values(F f) {
|
|
const auto base_val = f(0);
|
|
|
|
size_t new_size;
|
|
for (new_size = 1; new_size < size(); new_size++)
|
|
if (f(new_size) != base_val)
|
|
break;
|
|
|
|
resize(new_size);
|
|
return base_val;
|
|
}
|
|
|
|
RTLIL::Process& proc;
|
|
RTLIL::Module& mod;
|
|
|
|
// A clock or reset trigger that is active when sig goes high (low) when
|
|
// inverted is false (true)
|
|
struct TriggerSig {
|
|
SigSpec sig;
|
|
bool inverted = false;
|
|
|
|
TriggerSig() = default;
|
|
TriggerSig(const RTLIL::SyncRule& sync) : sig{sync.signal},
|
|
inverted{sync.type == RTLIL::SyncType::ST0 || sync.type == RTLIL::SyncType::STn} {}
|
|
|
|
TriggerSig(const RTLIL::SigSpec& signal) : sig{signal} {}
|
|
|
|
bool empty() const { return sig.empty(); }
|
|
bool polarity() const { return !inverted; }
|
|
const char* polarity_str() const { return polarity() ? "positive" : "negative"; }
|
|
|
|
bool is_never_triggered() const {
|
|
return inverted ? sig.is_fully_ones() : sig.is_fully_zero();
|
|
}
|
|
|
|
SigSpec positive_trigger(RTLIL::Module& mod) const {
|
|
if (!inverted)
|
|
return sig;
|
|
return mod.Not(NEW_ID, sig);
|
|
}
|
|
};
|
|
|
|
// An update rule to update sig_q to value when trigger is triggered
|
|
struct AsyncRule {
|
|
SigSpec value;
|
|
TriggerSig trigger;
|
|
|
|
AsyncRule() = default;
|
|
AsyncRule(const SigSpec& value, const RTLIL::SyncRule& sync) : value{value}, trigger{sync} {}
|
|
};
|
|
|
|
// The d input (used when no async rules apply) and q output
|
|
SigSpec sig_in, sig_out;
|
|
|
|
// A priority ordered list of asynchronous rules used for set/reset/aload.
|
|
// A rule that comes earlier in this vector has higher priority than a later
|
|
// one (if both of their trigger conditions are met the higher priority
|
|
// value is taken)
|
|
std::vector<AsyncRule> async_rules;
|
|
|
|
// The clock signal with its polarity. If clk is empty, the DFF is driven
|
|
// by a global clock (and should have no async rules)
|
|
TriggerSig clk;
|
|
|
|
// If this is true, this isn't really a DFF but instead an always assignment
|
|
// that can be made with a connection. clk and async_rules should be empty
|
|
// in this case
|
|
bool always = false;
|
|
};
|
|
|
|
void proc_dff(RTLIL::Module& mod, RTLIL::Process& proc, ConstEval &ce) {
|
|
while (1) {
|
|
// Find a new signal assigned by this process
|
|
const auto sig = find_any_lvalue(proc);
|
|
if (sig.empty())
|
|
break;
|
|
|
|
log("Creating register for signal `%s.%s' using process `%s.%s'.\n",
|
|
mod.name.c_str(), log_signal(sig), mod.name.c_str(), proc.name.c_str());
|
|
|
|
Dff dff{mod, sig, proc};
|
|
dff.optimize(ce);
|
|
dff.generate();
|
|
|
|
// Now that we are done with the signal remove it from the process
|
|
// We must do this after optimizing the dff as to emit an optimal dff
|
|
// type we might not actually use all bits of sig in this iteration
|
|
for (auto* sync : proc.syncs)
|
|
for (auto& action : sync->actions)
|
|
action.first.remove2(dff.output(), &action.second);
|
|
}
|
|
}
|
|
|
|
struct ProcDffPass : public Pass {
|
|
ProcDffPass() : Pass("proc_dff", "extract flip-flops from processes") { }
|
|
void help() override
|
|
{
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
log("\n");
|
|
log(" proc_dff [selection]\n");
|
|
log("\n");
|
|
log("This pass identifies flip-flops in the processes and converts them to\n");
|
|
log("d-type flip-flop cells.\n");
|
|
log("\n");
|
|
}
|
|
void execute(std::vector<std::string> args, RTLIL::Design *design) override
|
|
{
|
|
log_header(design, "Executing PROC_DFF pass (convert process syncs to FFs).\n");
|
|
|
|
extra_args(args, 1, design);
|
|
|
|
for (auto mod : design->modules())
|
|
if (design->selected(mod)) {
|
|
ConstEval ce(mod);
|
|
for (auto &proc_it : mod->processes)
|
|
if (design->selected(mod, proc_it.second))
|
|
proc_dff(*mod, *proc_it.second, ce);
|
|
}
|
|
}
|
|
} ProcDffPass;
|
|
|
|
PRIVATE_NAMESPACE_END
|