3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-24 01:25:33 +00:00

reuse net on same cell

This commit is contained in:
Alain Dargelas 2025-03-03 21:45:53 -08:00
parent 6cff6d9c49
commit 425e1a03ae

View file

@ -5,6 +5,53 @@
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
RTLIL::IdString generateSigSpecName(const RTLIL::SigSpec &sigspec)
{
if (sigspec.empty()) {
return RTLIL::IdString(); // Empty SigSpec, return empty IdString
}
std::stringstream ss;
if (sigspec.is_wire()) {
// Handle wires
ss << sigspec.as_wire()->name.str();
} else if (sigspec.size() == 1 && sigspec[0].wire) {
// Handle single-bit SigSpecs
ss << sigspec[0].wire->name.str();
if (sigspec[0].wire->width != 1) {
ss << "[" << sigspec[0].offset << "]";
}
} else if (sigspec.is_chunk()) {
// Handle slices
RTLIL::Wire *parent_wire = sigspec[0].wire;
SigChunk chunk = sigspec.as_chunk();
if (parent_wire) {
ss << parent_wire->name.str() << "[" << chunk.offset + chunk.width - 1 << ":" << chunk.offset << "]";
}
} else if (!sigspec.is_chunk()) {
// Handle vector of chunks
int max = 0;
int min = INT_MAX;
RTLIL::Wire *parent_wire = sigspec[0].wire;
for (SigChunk chunk : sigspec.chunks()) {
max = std::max(max, chunk.offset);
min = std::min(min, chunk.offset);
}
if (parent_wire) {
ss << parent_wire->name.str() << "[" << max << ":" << min << "]";
} else {
ss << "\\sigspec_[" << max << ":" << min << "]";
}
} else {
// Handle other cases (e.g., constants)
ss << "\\sigspec_";
}
RTLIL::IdString base_name = RTLIL::IdString(ss.str());
return RTLIL::IdString(ss.str());
}
// Signal cell driver(s), precompute a cell output signal to a cell map
void sigCellDrivers(RTLIL::Module *module, SigMap &sigmap, dict<RTLIL::SigSpec, std::set<Cell *>> &sig2CellsInFanout,
dict<RTLIL::SigSpec, std::set<Cell *>> &sig2CellsInFanin)
@ -75,13 +122,6 @@ RTLIL::Wire *getParentWire(const RTLIL::SigSpec &sigspec)
return first_bit.wire;
}
std::string getSigSpecName(const RTLIL::SigSpec &sigspec) {
Wire* wire = getParentWire(sigspec);
if (wire)
return wire->name.c_str();
return "";
}
// Find if a signal is used in another (One level)
bool isSigSpecUsedIn(SigSpec &haystack, SigMap &sigmap, SigSpec &needle)
{
@ -179,11 +219,23 @@ RTLIL::SigSpec getCellOutputSigSpec(Cell *cell, SigMap &sigmap)
SigSpec updateToBuffer(std::map<SigSpec, int> &bufferIndexes,
std::map<RTLIL::SigSpec, std::vector<std::tuple<RTLIL::SigSpec, Cell *>>> &buffer_outputs,
dict<RTLIL::SigSpec, std::set<Cell *>> &sig2CellsInFanout, std::map<Cell *, int> &bufferActualFanout,
int max_output_per_buffer, Cell *cell, SigSpec sigToReplace, bool debug)
std::map<Cell *, std::map<SigSpec, SigSpec>> &usedBuffers, int max_output_per_buffer, Cell *fanoutcell, SigSpec sigToReplace,
bool debug)
{
if (debug)
std::cout << " CHUNK, indexCurrentBuffer: " << bufferIndexes[sigToReplace] << " buffer_outputs "
<< buffer_outputs[sigToReplace].size() << std::endl;
// Reuse cached result for a given cell;
std::map<Cell *, std::map<SigSpec, SigSpec>>::iterator itrCell = usedBuffers.find(fanoutcell);
if (itrCell != usedBuffers.end()) {
std::map<SigSpec, SigSpec>::iterator itrBuffer = itrCell->second.find(sigToReplace);
if (itrBuffer != itrCell->second.end()) {
if (debug)
std::cout << "REUSE CACHE:" << fanoutcell->name.c_str() << " SIG: " << generateSigSpecName(sigToReplace).c_str()
<< std::endl;
return itrBuffer->second;
}
}
// Retrieve the buffer information for that cell's chunk
std::vector<std::tuple<RTLIL::SigSpec, Cell *>> &buf_info_vec = buffer_outputs[sigToReplace];
// Retrieve which buffer is getting filled
@ -192,7 +244,7 @@ SigSpec updateToBuffer(std::map<SigSpec, int> &bufferIndexes,
SigSpec newSig = std::get<0>(buf_info);
Cell *newBuf = std::get<1>(buf_info);
// Keep track of fanout map information for recursive calls
sig2CellsInFanout[newSig].insert(cell);
sig2CellsInFanout[newSig].insert(fanoutcell);
// Increment buffer capacity
bufferActualFanout[newBuf]++;
if (debug)
@ -207,57 +259,21 @@ SigSpec updateToBuffer(std::map<SigSpec, int> &bufferIndexes,
std::cout << " NEXT BUFFER" << std::endl;
}
}
// Cache result
if (debug)
std::cout << "CACHE:" << fanoutcell->name.c_str() << " SIG: " << generateSigSpecName(sigToReplace).c_str() << " BY "
<< generateSigSpecName(newSig).c_str() << std::endl;
if (itrCell == usedBuffers.end()) {
std::map<SigSpec, SigSpec> tmpPair;
tmpPair.emplace(sigToReplace, newSig);
usedBuffers.emplace(fanoutcell, tmpPair);
} else {
itrCell->second.emplace(sigToReplace, newSig);
}
// Return buffer's output
return newSig;
}
RTLIL::IdString generateSigSpecName(RTLIL::Module *module, const RTLIL::SigSpec &sigspec)
{
if (sigspec.empty()) {
return RTLIL::IdString(); // Empty SigSpec, return empty IdString
}
std::stringstream ss;
if (sigspec.is_wire()) {
// Handle wires
ss << sigspec.as_wire()->name.str();
} else if (sigspec.size() == 1 && sigspec[0].wire) {
// Handle single-bit SigSpecs
ss << sigspec[0].wire->name.str();
if (sigspec[0].wire->width != 1) {
ss << "[" << sigspec[0].offset << "]";
}
} else if (sigspec.is_chunk()) {
// Handle slices
RTLIL::Wire *parent_wire = sigspec[0].wire;
SigChunk chunk = sigspec.as_chunk();
if (parent_wire) {
ss << parent_wire->name.str() << "[" << chunk.offset + chunk.width - 1 << ":" << chunk.offset << "]";
}
} else if (!sigspec.is_chunk()) {
// Handle vector of chunks
int max = 0;
int min = INT_MAX;
RTLIL::Wire *parent_wire = sigspec[0].wire;
for (SigChunk chunk : sigspec.chunks()) {
max = std::max(max, chunk.offset);
min = std::min(min, chunk.offset);
}
if (parent_wire) {
ss << parent_wire->name.str() << "[" << max << ":" << min << "]";
} else {
ss << "\\sigspec_[" << max << ":" << min << "]";
}
} else {
// Handle other cases (e.g., constants)
ss << "\\sigspec_";
}
RTLIL::IdString base_name = RTLIL::IdString(ss.str());
return RTLIL::IdString(ss.str());
}
// For a given cell with fanout exceeding the limit,
// - create an array of buffers per cell output chunk (2 dimentions array of buffers)
// - connect cell chunk to corresponding buffers
@ -265,13 +281,13 @@ RTLIL::IdString generateSigSpecName(RTLIL::Module *module, const RTLIL::SigSpec
// - when a buffer reaches capacity, switch to the next buffer
// The capacity of the buffers might be larger than the limit in a given pass,
// Recursion is used until all buffers capacity is under or at the limit.
void fixfanout(RTLIL::Design *design, RTLIL::Module *module, SigMap &sigmap, dict<RTLIL::SigSpec, std::set<Cell *>> &sig2CellsInFanout,
SigSpec sigToBuffer, int fanout, int limit, bool debug)
void fixfanout(RTLIL::Module *module, SigMap &sigmap, dict<RTLIL::SigSpec, std::set<Cell *>> &sig2CellsInFanout,
std::map<Cell *, std::map<SigSpec, SigSpec>> &usedBuffers, SigSpec sigToBuffer, int fanout, int limit, bool debug)
{
if (sigToBuffer.is_fully_const()) {
return;
}
std::string signame = generateSigSpecName(module, sigToBuffer).c_str();
std::string signame = generateSigSpecName(sigToBuffer).c_str();
if (fanout <= limit) {
if (debug) {
std::cout << "Nothing to do for: " << signame << std::endl;
@ -310,10 +326,9 @@ void fixfanout(RTLIL::Design *design, RTLIL::Module *module, SigMap &sigmap, dic
for (SigChunk chunk : sigToBuffer.chunks()) {
std::vector<std::tuple<RTLIL::SigSpec, Cell *>> buffer_chunk_outputs;
for (int i = 0; i < num_buffers; ++i) {
std::cout << "Name: " << signame + "_fbuf" + std::to_string(index_buffer) << std::endl;
RTLIL::Cell *buffer = module->addCell(signame + "_fbuf" + std::to_string(index_buffer), ID($pos));
RTLIL::Cell *buffer = module->addCell(signame + "_fbuf" + std::to_string(index_buffer), ID($pos));
bufferActualFanout[buffer] = 0;
RTLIL::SigSpec buffer_output = module->addWire(signame + "_wbuf" + std::to_string(index_buffer) , chunk.size());
RTLIL::SigSpec buffer_output = module->addWire(signame + "_wbuf" + std::to_string(index_buffer), chunk.size());
buffer->setPort(ID(A), chunk);
buffer->setPort(ID(Y), sigmap(buffer_output));
buffer->fixup_parameters();
@ -337,19 +352,22 @@ void fixfanout(RTLIL::Design *design, RTLIL::Module *module, SigMap &sigmap, dic
for (Cell *fanoutcell : fanoutcells) {
if (debug)
std::cout << "\n CELL in fanout: " << fanoutcell->name.c_str() << "\n" << std::flush;
// For a given cell, if a buffer drives multiple inputs, use the same buffer for all connections to that cell
for (auto &conn : fanoutcell->connections()) {
IdString portName = conn.first;
RTLIL::SigSpec actual = sigmap(conn.second);
// RTLIL::SigSpec actual = sigmap(conn.second);
RTLIL::SigSpec actual = conn.second;
if (fanoutcell->input(portName)) {
if (actual.is_chunk()) {
// Input of that cell is a chunk
if (debug)
std::cout << " IS A CHUNK" << std::endl;
if (buffer_outputs.find(actual) != buffer_outputs.end()) {
if (debug) std::cout << " MATCH" << std::endl;
if (debug)
std::cout << " MATCH" << std::endl;
// Input is one of the cell's outputs, its a match
SigSpec newSig = updateToBuffer(bufferIndexes, buffer_outputs, sig2CellsInFanout, bufferActualFanout,
max_output_per_buffer, fanoutcell, actual, debug);
usedBuffers, max_output_per_buffer, fanoutcell, actual, debug);
// Override the fanout cell's input with the buffer output
fanoutcell->setPort(portName, newSig);
}
@ -362,10 +380,11 @@ void fixfanout(RTLIL::Design *design, RTLIL::Module *module, SigMap &sigmap, dic
std::vector<RTLIL::SigChunk> newChunks;
for (SigChunk chunk : actual.chunks()) {
if (buffer_outputs.find(chunk) != buffer_outputs.end()) {
if (debug) std::cout << " MATCH" << std::endl;
if (debug)
std::cout << " MATCH" << std::endl;
SigSpec newSig =
updateToBuffer(bufferIndexes, buffer_outputs, sig2CellsInFanout, bufferActualFanout,
max_output_per_buffer, fanoutcell, chunk, debug);
usedBuffers, max_output_per_buffer, fanoutcell, chunk, debug);
// Append the buffer's output in the chunk vector
newChunks.push_back(newSig.as_chunk());
} else {
@ -375,7 +394,6 @@ void fixfanout(RTLIL::Design *design, RTLIL::Module *module, SigMap &sigmap, dic
}
// Override the fanout cell's input with the newly created chunk vector
fanoutcell->setPort(portName, newChunks);
break;
}
}
}
@ -390,7 +408,7 @@ void fixfanout(RTLIL::Design *design, RTLIL::Module *module, SigMap &sigmap, dic
} else {
// Recursively fix the fanout of the newly created buffers
RTLIL::SigSpec sig = getCellOutputSigSpec(itr->first, sigmap);
fixfanout(design, module, sigmap, sig2CellsInFanout, sig, itr->second, limit, debug);
fixfanout(module, sigmap, sig2CellsInFanout, usedBuffers, sig, itr->second, limit, debug);
}
}
}
@ -583,19 +601,21 @@ struct AnnotateCellFanout : public ScriptPass {
{
// Fix high fanout
std::map<Cell *, std::map<SigSpec, SigSpec>> usedBuffers;
SigMap sigmap(module);
dict<Cell *, int> cellFanout;
dict<SigSpec, int> sigFanout;
dict<RTLIL::SigSpec, std::set<Cell *>> sig2CellsInFanout;
calculateFanout(module, sigmap, sig2CellsInFanout, cellFanout, sigFanout);
// Fix cells outputs with high fanout
// Fix cells outputs with high fanout
for (auto itrCell : cellFanout) {
Cell *cell = itrCell.first;
int fanout = itrCell.second;
if (limit > 0 && (fanout > limit)) {
RTLIL::SigSpec cellOutSig = getCellOutputSigSpec(cell, sigmap);
fixfanout(design, module, sigmap, sig2CellsInFanout, cellOutSig, fanout, limit, debug);
fixfanout(module, sigmap, sig2CellsInFanout, usedBuffers, cellOutSig, fanout, limit, debug);
fixedFanout = true;
} else {
// Add attribute with fanout info to every cell
@ -615,7 +635,7 @@ struct AnnotateCellFanout : public ScriptPass {
}
}
for (auto sig : sigsToFix) {
fixfanout(design, module, sigmap, sig2CellsInFanout, sig.first, sig.second, limit, debug);
fixfanout(module, sigmap, sig2CellsInFanout, usedBuffers, sig.first, sig.second, limit, debug);
fixedFanout = true;
}
}