3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-08-11 13:40:53 +00:00

Merge pull request #5233 from YosysHQ/krys/equiv_assume

Assumptions for equiv_*
This commit is contained in:
KrystalDelusion 2025-08-09 10:39:04 +12:00 committed by GitHub
commit 1ae82d7b9d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 450 additions and 150 deletions

View file

@ -64,7 +64,7 @@ struct ezSatPtr : public std::unique_ptr<ezSAT> {
struct SatGen struct SatGen
{ {
ezSAT *ez; ezSAT *ez;
SigMap *sigmap; const SigMap *sigmap;
std::string prefix; std::string prefix;
SigPool initial_state; SigPool initial_state;
std::map<std::string, RTLIL::SigSpec> asserts_a, asserts_en; std::map<std::string, RTLIL::SigSpec> asserts_a, asserts_en;
@ -75,12 +75,12 @@ struct SatGen
bool model_undef; bool model_undef;
bool def_formal = false; bool def_formal = false;
SatGen(ezSAT *ez, SigMap *sigmap, std::string prefix = std::string()) : SatGen(ezSAT *ez, const SigMap *sigmap, std::string prefix = std::string()) :
ez(ez), sigmap(sigmap), prefix(prefix), ignore_div_by_zero(false), model_undef(false) ez(ez), sigmap(sigmap), prefix(prefix), ignore_div_by_zero(false), model_undef(false)
{ {
} }
void setContext(SigMap *sigmap, std::string prefix = std::string()) void setContext(const SigMap *sigmap, std::string prefix = std::string())
{ {
this->sigmap = sigmap; this->sigmap = sigmap;
this->prefix = prefix; this->prefix = prefix;

View file

@ -37,14 +37,15 @@ struct EquivInductWorker
int max_seq; int max_seq;
int success_counter; int success_counter;
bool set_assumes;
dict<int, int> ez_step_is_consistent; dict<int, int> ez_step_is_consistent;
pool<Cell*> cell_warn_cache; pool<Cell*> cell_warn_cache;
SigPool undriven_signals; SigPool undriven_signals;
EquivInductWorker(Module *module, const pool<Cell*> &unproven_equiv_cells, bool model_undef, int max_seq) : module(module), sigmap(module), EquivInductWorker(Module *module, const pool<Cell*> &unproven_equiv_cells, bool model_undef, int max_seq, bool set_assumes) : module(module), sigmap(module),
cells(module->selected_cells()), workset(unproven_equiv_cells), cells(module->selected_cells()), workset(unproven_equiv_cells),
satgen(ez.get(), &sigmap), max_seq(max_seq), success_counter(0) satgen(ez.get(), &sigmap), max_seq(max_seq), success_counter(0), set_assumes(set_assumes)
{ {
satgen.model_undef = model_undef; satgen.model_undef = model_undef;
} }
@ -77,6 +78,16 @@ struct EquivInductWorker
} }
} }
if (set_assumes) {
if (step == 1) {
RTLIL::SigSpec assumes_a, assumes_en;
satgen.getAssumes(assumes_a, assumes_en, step);
for (int i = 0; i < GetSize(assumes_a); i++)
log("Import constraint from assume cell: %s when %s.\n", log_signal(assumes_a[i]), log_signal(assumes_en[i]));
}
ez->assume(satgen.importAssumes(step));
}
if (satgen.model_undef) { if (satgen.model_undef) {
for (auto bit : undriven_signals.export_all()) for (auto bit : undriven_signals.export_all())
ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step))); ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step)));
@ -184,6 +195,9 @@ struct EquivInductPass : public Pass {
log(" -seq <N>\n"); log(" -seq <N>\n");
log(" the max. number of time steps to be considered (default = 4)\n"); log(" the max. number of time steps to be considered (default = 4)\n");
log("\n"); log("\n");
log(" -set-assumes\n");
log(" set all assumptions provided via $assume cells\n");
log("\n");
log("This command is very effective in proving complex sequential circuits, when\n"); log("This command is very effective in proving complex sequential circuits, when\n");
log("the internal state of the circuit quickly propagates to $equiv cells.\n"); log("the internal state of the circuit quickly propagates to $equiv cells.\n");
log("\n"); log("\n");
@ -200,7 +214,7 @@ struct EquivInductPass : public Pass {
void execute(std::vector<std::string> args, Design *design) override void execute(std::vector<std::string> args, Design *design) override
{ {
int success_counter = 0; int success_counter = 0;
bool model_undef = false; bool model_undef = false, set_assumes = false;
int max_seq = 4; int max_seq = 4;
log_header(design, "Executing EQUIV_INDUCT pass.\n"); log_header(design, "Executing EQUIV_INDUCT pass.\n");
@ -215,6 +229,10 @@ struct EquivInductPass : public Pass {
max_seq = atoi(args[++argidx].c_str()); max_seq = atoi(args[++argidx].c_str());
continue; continue;
} }
if (args[argidx] == "-set-assumes") {
set_assumes = true;
continue;
}
break; break;
} }
extra_args(args, argidx, design); extra_args(args, argidx, design);
@ -222,6 +240,7 @@ struct EquivInductPass : public Pass {
for (auto module : design->selected_modules()) for (auto module : design->selected_modules())
{ {
pool<Cell*> unproven_equiv_cells; pool<Cell*> unproven_equiv_cells;
vector<Cell*> assume_cells;
for (auto cell : module->selected_cells()) for (auto cell : module->selected_cells())
if (cell->type == ID($equiv)) { if (cell->type == ID($equiv)) {
@ -234,7 +253,7 @@ struct EquivInductPass : public Pass {
continue; continue;
} }
EquivInductWorker worker(module, unproven_equiv_cells, model_undef, max_seq); EquivInductWorker worker(module, unproven_equiv_cells, model_undef, max_seq, set_assumes);
worker.run(); worker.run();
success_counter += worker.success_counter; success_counter += worker.success_counter;
} }

View file

@ -27,215 +27,345 @@ struct EquivSimpleWorker
{ {
Module *module; Module *module;
const vector<Cell*> &equiv_cells; const vector<Cell*> &equiv_cells;
Cell *equiv_cell; const vector<Cell*> &assume_cells;
struct Cone {
pool<Cell*> cells;
pool<SigBit> bits;
void clear() {
cells.clear();
bits.clear();
}
};
SigMap &sigmap; struct DesignModel {
dict<SigBit, Cell*> &bit2driver; const SigMap &sigmap;
dict<SigBit, Cell*> &bit2driver;
};
DesignModel model;
ezSatPtr ez; ezSatPtr ez;
SatGen satgen; SatGen satgen;
int max_seq;
bool short_cones; struct Config {
bool verbose; bool verbose = false;
bool short_cones = false;
bool model_undef = false;
bool nogroup = false;
bool set_assumes = false;
int max_seq = 1;
};
Config cfg;
pool<pair<Cell*, int>> imported_cells_cache; pool<pair<Cell*, int>> imported_cells_cache;
EquivSimpleWorker(const vector<Cell*> &equiv_cells, SigMap &sigmap, dict<SigBit, Cell*> &bit2driver, int max_seq, bool short_cones, bool verbose, bool model_undef) : EquivSimpleWorker(const vector<Cell*> &equiv_cells, const vector<Cell*> &assume_cells, DesignModel model, Config cfg) :
module(equiv_cells.front()->module), equiv_cells(equiv_cells), equiv_cell(nullptr), module(equiv_cells.front()->module), equiv_cells(equiv_cells), assume_cells(assume_cells),
sigmap(sigmap), bit2driver(bit2driver), satgen(ez.get(), &sigmap), max_seq(max_seq), short_cones(short_cones), verbose(verbose) model(model), satgen(ez.get(), &model.sigmap), cfg(cfg)
{ {
satgen.model_undef = model_undef; satgen.model_undef = cfg.model_undef;
} }
bool find_input_cone(pool<SigBit> &next_seed, pool<Cell*> &cells_cone, pool<SigBit> &bits_cone, const pool<Cell*> &cells_stop, const pool<SigBit> &bits_stop, pool<SigBit> *input_bits, Cell *cell) struct ConeFinder {
{ DesignModel model;
if (cells_cone.count(cell)) // Bits we should also analyze in a later iteration (flop inputs)
pool<SigBit> &next_seed;
// Cells and bits we've seen so far while traversing
Cone& cone;
// We're not allowed to traverse past cells and bits in `stop`
const Cone& stop;
// Input bits are bits that no longer can be traversed
// Tracking these is optional
pool<SigBit>* input_bits;
// Recursively traverses backwards from a cell to find all cells in its input cone
// Adds cell to cone.cells, stops at cells in 'stop' set
// Returns true if stopped on a stop cell
bool find_input_cone(Cell *cell)
{
if (cone.cells.count(cell))
return false;
cone.cells.insert(cell);
if (stop.cells.count(cell))
return true;
for (auto &conn : cell->connections())
if (yosys_celltypes.cell_input(cell->type, conn.first))
for (auto bit : model.sigmap(conn.second)) {
if (RTLIL::builtin_ff_cell_types().count(cell->type)) {
if (!conn.first.in(ID::CLK, ID::C))
next_seed.insert(bit);
} else
find_input_cone(bit);
}
return false; return false;
}
void find_input_cone(SigBit bit)
{
if (cone.bits.count(bit))
return;
cells_cone.insert(cell); cone.bits.insert(bit);
if (cells_stop.count(cell)) if (stop.bits.count(bit)) {
return true; if (input_bits != nullptr) input_bits->insert(bit);
return;
}
for (auto &conn : cell->connections()) if (!model.bit2driver.count(bit))
if (yosys_celltypes.cell_input(cell->type, conn.first)) return;
for (auto bit : sigmap(conn.second)) {
if (RTLIL::builtin_ff_cell_types().count(cell->type)) {
if (!conn.first.in(ID::CLK, ID::C))
next_seed.insert(bit);
} else
find_input_cone(next_seed, cells_cone, bits_cone, cells_stop, bits_stop, input_bits, bit);
}
return false;
}
void find_input_cone(pool<SigBit> &next_seed, pool<Cell*> &cells_cone, pool<SigBit> &bits_cone, const pool<Cell*> &cells_stop, const pool<SigBit> &bits_stop, pool<SigBit> *input_bits, SigBit bit) // If the input cone of the driver cell reaches a stop bit,
// then `bit` is an "input bit"
if (find_input_cone(model.bit2driver.at(bit)))
if (input_bits != nullptr) input_bits->insert(bit);
}
void find_input_cone(pool<SigBit> bits)
{
for (auto bit : bits)
find_input_cone(bit);
}
};
// Builds (full or short) input cones from the seeds
// Creates full cones (no stops) and optionally short cones (stop at other side's cone)
// Updates seed_a/seed_b with next iteration's FF inputs
// Returns input bits and cone structures for SAT problem construction
std::tuple<pool<SigBit>, Cone, Cone> init_iter(pool<SigBit>& seed_a, pool<SigBit>& seed_b) const
{ {
if (bits_cone.count(bit)) // Empty, never inserted to, to traverse full cones
return; const Cone no_stop;
Cone full_cone_a, full_cone_b;
bits_cone.insert(bit); // Values of seed_* for the next iteration
pool<SigBit> next_seed_a, next_seed_b;
if (bits_stop.count(bit)) { {
if (input_bits != nullptr) input_bits->insert(bit); ConeFinder finder_a {model, next_seed_a, full_cone_a, no_stop, nullptr};
return; finder_a.find_input_cone(seed_a);
ConeFinder finder_b {model, next_seed_b, full_cone_b, no_stop, nullptr};
finder_b.find_input_cone(seed_b);
} }
if (!bit2driver.count(bit)) Cone short_cone_a, short_cone_b;
return; pool<SigBit> input_bits;
if (find_input_cone(next_seed, cells_cone, bits_cone, cells_stop, bits_stop, input_bits, bit2driver.at(bit))) if (cfg.short_cones)
if (input_bits != nullptr) input_bits->insert(bit); {
// Rebuild cones with the knowledge of the full cones.
// Avoids stuffing overlaps in input cones into the solver
// e.g. for A by using the full B cone as stops
next_seed_a.clear();
ConeFinder short_finder_a = {model, next_seed_a, short_cone_a, short_cone_b, &input_bits};
short_finder_a.find_input_cone(seed_a);
next_seed_a.swap(seed_a);
next_seed_b.clear();
ConeFinder short_finder_b = {model, next_seed_b, short_cone_b, short_cone_a, &input_bits};
short_finder_b.find_input_cone(seed_b);
next_seed_b.swap(seed_b);
}
else
{
short_cone_a = full_cone_a;
next_seed_a.swap(seed_a);
short_cone_b = full_cone_b;
next_seed_b.swap(seed_b);
}
return std::make_tuple(input_bits, short_cone_a, short_cone_b);
} }
bool run_cell() void report_new_cells(const pool<Cell*>& cells, const Cone& cone_a, const Cone& cone_b) const
{ {
SigBit bit_a = sigmap(equiv_cell->getPort(ID::A)).as_bit(); log(" Adding %d new cells to the problem (%d A, %d B, %d shared).\n",
SigBit bit_b = sigmap(equiv_cell->getPort(ID::B)).as_bit(); GetSize(cells), GetSize(cone_a.cells), GetSize(cone_b.cells),
int ez_context = ez->frozen_literal(); (GetSize(cone_a.cells) + GetSize(cone_b.cells)) - GetSize(cells));
#if 0
for (auto cell : short_cells_cone_a)
log(" A-side cell: %s\n", log_id(cell));
for (auto cell : short_cells_cone_b)
log(" B-side cell: %s\n", log_id(cell));
#endif
}
void report_new_assume_cells(const pool<Cell*>& extra_problem_cells, int old_size, const pool<Cell*>& problem_cells) const
{
if (cfg.verbose) {
log(" Adding %d new cells to check assumptions (and reusing %d).\n",
GetSize(problem_cells) - old_size,
old_size - (GetSize(problem_cells) - GetSize(extra_problem_cells)));
#if 0
for (auto cell : extra_problem_cells)
log(" cell: %s\n", log_id(cell));
#endif
}
}
// Ensure the input cones of $assume cells get modelled by the problem
pool<Cell*> add_assumes_to_problem(const Cone& cone_a, const Cone& cone_b) const
{
pool<Cell*> extra_problem_cells;
for (auto assume : assume_cells) {
pool<SigBit> assume_seed, dummy_next_seed, overlap_bits;
assume_seed.insert(model.sigmap(assume->getPort(ID::A)).as_bit());
assume_seed.insert(model.sigmap(assume->getPort(ID::EN)).as_bit());
for (auto& cone : {cone_a, cone_b}) {
Cone assume_cone;
ConeFinder{model, dummy_next_seed, assume_cone, cone, &overlap_bits}
.find_input_cone(assume_seed);
if (GetSize(overlap_bits)) {
extra_problem_cells.insert(assume);
extra_problem_cells.insert(assume_cone.cells.begin(), assume_cone.cells.end());
overlap_bits.clear();
}
assume_cone.clear();
dummy_next_seed.clear();
}
}
return extra_problem_cells;
}
static void report_missing_model(Cell* cell)
{
if (RTLIL::builtin_ff_cell_types().count(cell->type))
log_cmd_error("No SAT model available for async FF cell %s (%s). Consider running `async2sync` or `clk2fflogic` first.\n", log_id(cell), log_id(cell->type));
else
log_cmd_error("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type));
}
void prepare_ezsat(int ez_context, SigBit bit_a, SigBit bit_b)
{
if (satgen.model_undef) if (satgen.model_undef)
{ {
int ez_a = satgen.importSigBit(bit_a, max_seq+1); int ez_a = satgen.importSigBit(bit_a, cfg.max_seq+1);
int ez_b = satgen.importDefSigBit(bit_b, max_seq+1); int ez_b = satgen.importDefSigBit(bit_b, cfg.max_seq+1);
int ez_undef_a = satgen.importUndefSigBit(bit_a, max_seq+1); int ez_undef_a = satgen.importUndefSigBit(bit_a, cfg.max_seq+1);
ez->assume(ez->XOR(ez_a, ez_b), ez_context); ez->assume(ez->XOR(ez_a, ez_b), ez_context);
ez->assume(ez->NOT(ez_undef_a), ez_context); ez->assume(ez->NOT(ez_undef_a), ez_context);
} }
else else
{ {
int ez_a = satgen.importSigBit(bit_a, max_seq+1); int ez_a = satgen.importSigBit(bit_a, cfg.max_seq+1);
int ez_b = satgen.importSigBit(bit_b, max_seq+1); int ez_b = satgen.importSigBit(bit_b, cfg.max_seq+1);
ez->assume(ez->XOR(ez_a, ez_b), ez_context); ez->assume(ez->XOR(ez_a, ez_b), ez_context);
} }
}
void construct_ezsat(const pool<SigBit>& input_bits, int step)
{
if (cfg.set_assumes) {
if (cfg.verbose && step == cfg.max_seq) {
RTLIL::SigSpec assumes_a, assumes_en;
satgen.getAssumes(assumes_a, assumes_en, step+1);
for (int i = 0; i < GetSize(assumes_a); i++)
log(" Import constraint from assume cell: %s when %s (%d).\n", log_signal(assumes_a[i]), log_signal(assumes_en[i]), step);
}
ez->assume(satgen.importAssumes(step+1));
}
if (satgen.model_undef) {
for (auto bit : input_bits)
ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step+1)));
}
if (cfg.verbose)
log(" Problem size at t=%d: %d literals, %d clauses\n", step, ez->numCnfVariables(), ez->numCnfClauses());
}
bool prove_equiv_cell(Cell* cell)
{
SigBit bit_a = model.sigmap(cell->getPort(ID::A)).as_bit();
SigBit bit_b = model.sigmap(cell->getPort(ID::B)).as_bit();
int ez_context = ez->frozen_literal();
prepare_ezsat(ez_context, bit_a, bit_b);
// Two bits, bit_a, and bit_b, have been marked equivalent in the design
// We will be traversing the input cones for each of them
// In the first iteration, we will using those as starting points
pool<SigBit> seed_a = { bit_a }; pool<SigBit> seed_a = { bit_a };
pool<SigBit> seed_b = { bit_b }; pool<SigBit> seed_b = { bit_b };
if (verbose) { if (cfg.verbose) {
log(" Trying to prove $equiv cell %s:\n", log_id(equiv_cell)); log(" Trying to prove $equiv cell %s:\n", log_id(cell));
log(" A = %s, B = %s, Y = %s\n", log_signal(bit_a), log_signal(bit_b), log_signal(equiv_cell->getPort(ID::Y))); log(" A = %s, B = %s, Y = %s\n", log_signal(bit_a), log_signal(bit_b), log_signal(cell->getPort(ID::Y)));
} else { } else {
log(" Trying to prove $equiv for %s:", log_signal(equiv_cell->getPort(ID::Y))); log(" Trying to prove $equiv for %s:", log_signal(cell->getPort(ID::Y)));
} }
int step = max_seq; int step = cfg.max_seq;
while (1) while (1)
{ {
pool<Cell*> no_stop_cells; // Traverse input cones of seed_a and seed_b, potentially finding new seeds
pool<SigBit> no_stop_bits; auto [input_bits, cone_a, cone_b] = init_iter(seed_a, seed_b);
pool<Cell*> full_cells_cone_a, full_cells_cone_b;
pool<SigBit> full_bits_cone_a, full_bits_cone_b;
pool<SigBit> next_seed_a, next_seed_b;
for (auto bit_a : seed_a)
find_input_cone(next_seed_a, full_cells_cone_a, full_bits_cone_a, no_stop_cells, no_stop_bits, nullptr, bit_a);
for (auto bit_b : seed_b)
find_input_cone(next_seed_b, full_cells_cone_b, full_bits_cone_b, no_stop_cells, no_stop_bits, nullptr, bit_b);
pool<Cell*> short_cells_cone_a, short_cells_cone_b;
pool<SigBit> short_bits_cone_a, short_bits_cone_b;
pool<SigBit> input_bits;
if (short_cones)
{
next_seed_a.clear();
for (auto bit_a : seed_a)
find_input_cone(next_seed_a, short_cells_cone_a, short_bits_cone_a, full_cells_cone_b, full_bits_cone_b, &input_bits, bit_a);
next_seed_a.swap(seed_a);
next_seed_b.clear();
for (auto bit_b : seed_b)
find_input_cone(next_seed_b, short_cells_cone_b, short_bits_cone_b, full_cells_cone_a, full_bits_cone_a, &input_bits, bit_b);
next_seed_b.swap(seed_b);
}
else
{
short_cells_cone_a = full_cells_cone_a;
short_bits_cone_a = full_bits_cone_a;
next_seed_a.swap(seed_a);
short_cells_cone_b = full_cells_cone_b;
short_bits_cone_b = full_bits_cone_b;
next_seed_b.swap(seed_b);
}
// Cells to model in SAT solver
pool<Cell*> problem_cells; pool<Cell*> problem_cells;
problem_cells.insert(short_cells_cone_a.begin(), short_cells_cone_a.end()); problem_cells.insert(cone_a.cells.begin(), cone_a.cells.end());
problem_cells.insert(short_cells_cone_b.begin(), short_cells_cone_b.end()); problem_cells.insert(cone_b.cells.begin(), cone_b.cells.end());
if (verbose) if (cfg.verbose)
{ report_new_cells(problem_cells, cone_a, cone_b);
log(" Adding %d new cells to the problem (%d A, %d B, %d shared).\n",
GetSize(problem_cells), GetSize(short_cells_cone_a), GetSize(short_cells_cone_b),
(GetSize(short_cells_cone_a) + GetSize(short_cells_cone_b)) - GetSize(problem_cells));
#if 0
for (auto cell : short_cells_cone_a)
log(" A-side cell: %s\n", log_id(cell));
for (auto cell : short_cells_cone_b) if (cfg.set_assumes) {
log(" B-side cell: %s\n", log_id(cell)); auto extras = add_assumes_to_problem(cone_a, cone_b);
#endif if (GetSize(extras)) {
auto old_size = GetSize(problem_cells);
problem_cells.insert(extras.begin(), extras.end());
report_new_assume_cells(extras, old_size, problem_cells);
}
} }
for (auto cell : problem_cells) { for (auto cell : problem_cells) {
auto key = pair<Cell*, int>(cell, step+1); auto key = pair<Cell*, int>(cell, step+1);
if (!imported_cells_cache.count(key) && !satgen.importCell(cell, step+1)) { if (!imported_cells_cache.count(key) && !satgen.importCell(cell, step+1)) {
if (RTLIL::builtin_ff_cell_types().count(cell->type)) report_missing_model(cell);
log_cmd_error("No SAT model available for async FF cell %s (%s). Consider running `async2sync` or `clk2fflogic` first.\n", log_id(cell), log_id(cell->type));
else
log_cmd_error("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type));
} }
imported_cells_cache.insert(key); imported_cells_cache.insert(key);
} }
if (satgen.model_undef) { construct_ezsat(input_bits, step);
for (auto bit : input_bits)
ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step+1)));
}
if (verbose)
log(" Problem size at t=%d: %d literals, %d clauses\n", step, ez->numCnfVariables(), ez->numCnfClauses());
if (!ez->solve(ez_context)) { if (!ez->solve(ez_context)) {
log(verbose ? " Proved equivalence! Marking $equiv cell as proven.\n" : " success!\n"); log(cfg.verbose ? " Proved equivalence! Marking $equiv cell as proven.\n" : " success!\n");
equiv_cell->setPort(ID::B, equiv_cell->getPort(ID::A)); // Replace $equiv cell with a short
cell->setPort(ID::B, cell->getPort(ID::A));
ez->assume(ez->NOT(ez_context)); ez->assume(ez->NOT(ez_context));
return true; return true;
} }
if (verbose) if (cfg.verbose)
log(" Failed to prove equivalence with sequence length %d.\n", max_seq - step); log(" Failed to prove equivalence with sequence length %d.\n", cfg.max_seq - step);
if (--step < 0) { if (--step < 0) {
if (verbose) if (cfg.verbose)
log(" Reached sequence limit.\n"); log(" Reached sequence limit.\n");
break; break;
} }
if (seed_a.empty() && seed_b.empty()) { if (seed_a.empty() && seed_b.empty()) {
if (verbose) if (cfg.verbose)
log(" No nets to continue in previous time step.\n"); log(" No nets to continue in previous time step.\n");
break; break;
} }
if (seed_a.empty()) { if (seed_a.empty()) {
if (verbose) if (cfg.verbose)
log(" No nets on A-side to continue in previous time step.\n"); log(" No nets on A-side to continue in previous time step.\n");
break; break;
} }
if (seed_b.empty()) { if (seed_b.empty()) {
if (verbose) if (cfg.verbose)
log(" No nets on B-side to continue in previous time step.\n"); log(" No nets on B-side to continue in previous time step.\n");
break; break;
} }
if (verbose) { if (cfg.verbose) {
#if 0 #if 0
log(" Continuing analysis in previous time step with the following nets:\n"); log(" Continuing analysis in previous time step with the following nets:\n");
for (auto bit : seed_a) for (auto bit : seed_a)
@ -248,7 +378,7 @@ struct EquivSimpleWorker
} }
} }
if (!verbose) if (!cfg.verbose)
log(" failed.\n"); log(" failed.\n");
ez->assume(ez->NOT(ez_context)); ez->assume(ez->NOT(ez_context));
@ -260,14 +390,13 @@ struct EquivSimpleWorker
if (GetSize(equiv_cells) > 1) { if (GetSize(equiv_cells) > 1) {
SigSpec sig; SigSpec sig;
for (auto c : equiv_cells) for (auto c : equiv_cells)
sig.append(sigmap(c->getPort(ID::Y))); sig.append(model.sigmap(c->getPort(ID::Y)));
log(" Grouping SAT models for %s:\n", log_signal(sig)); log(" Grouping SAT models for %s:\n", log_signal(sig));
} }
int counter = 0; int counter = 0;
for (auto c : equiv_cells) { for (auto c : equiv_cells) {
equiv_cell = c; if (prove_equiv_cell(c))
if (run_cell())
counter++; counter++;
} }
return counter; return counter;
@ -301,35 +430,41 @@ struct EquivSimplePass : public Pass {
log(" -seq <N>\n"); log(" -seq <N>\n");
log(" the max. number of time steps to be considered (default = 1)\n"); log(" the max. number of time steps to be considered (default = 1)\n");
log("\n"); log("\n");
log(" -set-assumes\n");
log(" set all assumptions provided via $assume cells\n");
log("\n");
} }
void execute(std::vector<std::string> args, Design *design) override void execute(std::vector<std::string> args, Design *design) override
{ {
bool verbose = false, short_cones = false, model_undef = false, nogroup = false; EquivSimpleWorker::Config cfg = {};
int success_counter = 0; int success_counter = 0;
int max_seq = 1;
log_header(design, "Executing EQUIV_SIMPLE pass.\n"); log_header(design, "Executing EQUIV_SIMPLE pass.\n");
size_t argidx; size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) { for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-v") { if (args[argidx] == "-v") {
verbose = true; cfg.verbose = true;
continue; continue;
} }
if (args[argidx] == "-short") { if (args[argidx] == "-short") {
short_cones = true; cfg.short_cones = true;
continue; continue;
} }
if (args[argidx] == "-undef") { if (args[argidx] == "-undef") {
model_undef = true; cfg.model_undef = true;
continue; continue;
} }
if (args[argidx] == "-nogroup") { if (args[argidx] == "-nogroup") {
nogroup = true; cfg.nogroup = true;
continue; continue;
} }
if (args[argidx] == "-seq" && argidx+1 < args.size()) { if (args[argidx] == "-seq" && argidx+1 < args.size()) {
max_seq = atoi(args[++argidx].c_str()); cfg.max_seq = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-set-assumes") {
cfg.set_assumes = true;
continue; continue;
} }
break; break;
@ -347,17 +482,21 @@ struct EquivSimplePass : public Pass {
SigMap sigmap(module); SigMap sigmap(module);
dict<SigBit, Cell*> bit2driver; dict<SigBit, Cell*> bit2driver;
dict<SigBit, dict<SigBit, Cell*>> unproven_equiv_cells; dict<SigBit, dict<SigBit, Cell*>> unproven_equiv_cells;
vector<Cell*> assumes;
int unproven_cells_counter = 0; int unproven_cells_counter = 0;
for (auto cell : module->selected_cells()) for (auto cell : module->selected_cells()) {
if (cell->type == ID($equiv) && cell->getPort(ID::A) != cell->getPort(ID::B)) { if (cell->type == ID($equiv) && cell->getPort(ID::A) != cell->getPort(ID::B)) {
auto bit = sigmap(cell->getPort(ID::Y).as_bit()); auto bit = sigmap(cell->getPort(ID::Y).as_bit());
auto bit_group = bit; auto bit_group = bit;
if (!nogroup && bit_group.wire) if (!cfg.nogroup && bit_group.wire)
bit_group.offset = 0; bit_group.offset = 0;
unproven_equiv_cells[bit_group][bit] = cell; unproven_equiv_cells[bit_group][bit] = cell;
unproven_cells_counter++; unproven_cells_counter++;
} else if (cell->type == ID($assume)) {
assumes.push_back(cell);
} }
}
if (unproven_equiv_cells.empty()) if (unproven_equiv_cells.empty())
continue; continue;
@ -375,15 +514,16 @@ struct EquivSimplePass : public Pass {
} }
unproven_equiv_cells.sort(); unproven_equiv_cells.sort();
for (auto it : unproven_equiv_cells) for (auto [_, d] : unproven_equiv_cells)
{ {
it.second.sort(); d.sort();
vector<Cell*> cells; vector<Cell*> cells;
for (auto it2 : it.second) for (auto [_, cell] : d)
cells.push_back(it2.second); cells.push_back(cell);
EquivSimpleWorker worker(cells, sigmap, bit2driver, max_seq, short_cones, verbose, model_undef); EquivSimpleWorker::DesignModel model {sigmap, bit2driver};
EquivSimpleWorker worker(cells, assumes, model, cfg);
success_counter += worker.run(); success_counter += worker.run();
} }
} }

View file

@ -0,0 +1,141 @@
read_verilog -sv <<EOT
module gold (input D, output Q);
assign Q = '0;
endmodule
module gate (input D, output Q);
assume property (D == '0);
assign Q = D;
endmodule
EOT
chformal -lower
async2sync
design -stash input
# using $assert cells in sat verifies
design -load input
equiv_make -make_assert gold gate equiv
prep -top equiv
sat -set-assumes -prove-asserts -verify
# this fails
# sat -prove-asserts -verify
# so should $equiv
## in equiv_simple
design -load input
equiv_make gold gate equiv
equiv_simple -set-assumes equiv
equiv_status -assert equiv
## and equiv_induct
delete equiv
equiv_make gold gate equiv
equiv_induct -set-assumes equiv
equiv_status -assert equiv
# and it works through cells
design -reset
read_verilog -sv <<EOT
module gold (input [1:0] D, output [1:0] Q);
assign Q = !D;
endmodule
module gate (input [1:0] D, output [1:0] Q);
assume property (D == 2'b11);
wire [1:0] G = ~D;
assign Q = G;
endmodule
EOT
chformal -lower
async2sync
design -stash input2
design -load input2
equiv_make -make_assert gold gate equiv
prep -top equiv
sat -set-assumes -prove-asserts -verify
design -load input2
equiv_make gold gate equiv
equiv_simple -set-assumes equiv
equiv_status -assert equiv
delete equiv
equiv_make gold gate equiv
equiv_induct -set-assumes equiv
equiv_status -assert equiv
# and registers
design -reset
read_verilog -sv <<EOT
module gold (input clk, input [1:0] D, output [1:0] Q);
assign Q = '0;
endmodule
module gate (input clk, input [1:0] D, output [1:0] Q);
reg [1:0] Dreg;
assume property (Dreg == 2'b11);
always @(clk) begin
Dreg <= D;
end
assign Q = ~Dreg;
endmodule
EOT
proc
chformal -lower
async2sync
design -stash input3
design -load input3
equiv_make -make_assert gold gate equiv
prep -top equiv
sat -set-assumes -prove-asserts -verify
design -load input3
equiv_make gold gate equiv
equiv_simple -set-assumes equiv
equiv_status -assert equiv
delete equiv
equiv_make gold gate equiv
equiv_induct -set-assumes equiv
equiv_status -assert equiv
# so long as the assumption doesn't end up after the equiv
design -reset
read_verilog -sv <<EOT
module gold (input [1:0] D, output [1:0] Q);
assign Q = !D;
endmodule
module gate (input [1:0] D, output [1:0] Q);
assume property (G == 2'b00);
wire [1:0] G = ~D;
assign Q = G;
endmodule
EOT
chformal -lower
async2sync
design -stash input4
logger -expect log "model found: FAIL!" 1
logger -expect log "Found a total of 2 unproven .equiv cells." 2
design -load input4
equiv_make -make_assert gold gate equiv
prep -top equiv
sat -set-assumes -prove-asserts
design -load input4
equiv_make gold gate equiv
equiv_simple -set-assumes equiv
equiv_status equiv
delete equiv
equiv_make gold gate equiv
equiv_induct -set-assumes equiv
equiv_status equiv