3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-08-11 13:40:53 +00:00

Merge pull request #5273 from YosysHQ/emil/krys-equiv_assume-refactor

equiv_simple: refactor
This commit is contained in:
Emil J 2025-08-08 10:52:15 +02:00 committed by GitHub
commit 94d3b3eb5a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 272 additions and 203 deletions

View file

@ -64,7 +64,7 @@ struct ezSatPtr : public std::unique_ptr<ezSAT> {
struct SatGen
{
ezSAT *ez;
SigMap *sigmap;
const SigMap *sigmap;
std::string prefix;
SigPool initial_state;
std::map<std::string, RTLIL::SigSpec> asserts_a, asserts_en;
@ -75,12 +75,12 @@ struct SatGen
bool model_undef;
bool def_formal = false;
SatGen(ezSAT *ez, SigMap *sigmap, std::string prefix = std::string()) :
SatGen(ezSAT *ez, const SigMap *sigmap, std::string prefix = std::string()) :
ez(ez), sigmap(sigmap), prefix(prefix), ignore_div_by_zero(false), model_undef(false)
{
}
void setContext(SigMap *sigmap, std::string prefix = std::string())
void setContext(const SigMap *sigmap, std::string prefix = std::string())
{
this->sigmap = sigmap;
this->prefix = prefix;

View file

@ -28,273 +28,344 @@ struct EquivSimpleWorker
Module *module;
const vector<Cell*> &equiv_cells;
const vector<Cell*> &assume_cells;
Cell *equiv_cell;
struct Cone {
pool<Cell*> cells;
pool<SigBit> bits;
void clear() {
cells.clear();
bits.clear();
}
};
SigMap &sigmap;
dict<SigBit, Cell*> &bit2driver;
struct DesignModel {
const SigMap &sigmap;
dict<SigBit, Cell*> &bit2driver;
};
DesignModel model;
ezSatPtr ez;
SatGen satgen;
int max_seq;
bool short_cones;
bool verbose;
bool set_assumes;
struct Config {
bool verbose = false;
bool short_cones = false;
bool model_undef = false;
bool nogroup = false;
bool set_assumes = false;
int max_seq = 1;
};
Config cfg;
pool<pair<Cell*, int>> imported_cells_cache;
EquivSimpleWorker(const vector<Cell*> &equiv_cells, const vector<Cell*> &assume_cells, SigMap &sigmap, dict<SigBit, Cell*> &bit2driver, int max_seq, bool short_cones, bool verbose, bool model_undef, bool set_assumes) :
module(equiv_cells.front()->module), equiv_cells(equiv_cells), assume_cells(assume_cells), equiv_cell(nullptr),
sigmap(sigmap), bit2driver(bit2driver), satgen(ez.get(), &sigmap), max_seq(max_seq), short_cones(short_cones), verbose(verbose), set_assumes(set_assumes)
EquivSimpleWorker(const vector<Cell*> &equiv_cells, const vector<Cell*> &assume_cells, DesignModel model, Config cfg) :
module(equiv_cells.front()->module), equiv_cells(equiv_cells), assume_cells(assume_cells),
model(model), satgen(ez.get(), &model.sigmap), cfg(cfg)
{
satgen.model_undef = model_undef;
satgen.model_undef = cfg.model_undef;
}
bool find_input_cone(pool<SigBit> &next_seed, pool<Cell*> &cells_cone, pool<SigBit> &bits_cone, const pool<Cell*> &cells_stop, const pool<SigBit> &bits_stop, pool<SigBit> *input_bits, Cell *cell)
{
if (cells_cone.count(cell))
struct ConeFinder {
DesignModel model;
// Bits we should also analyze in a later iteration (flop inputs)
pool<SigBit> &next_seed;
// Cells and bits we've seen so far while traversing
Cone& cone;
// We're not allowed to traverse past cells and bits in `stop`
const Cone& stop;
// Input bits are bits that no longer can be traversed
// Tracking these is optional
pool<SigBit>* input_bits;
// Recursively traverses backwards from a cell to find all cells in its input cone
// Adds cell to cone.cells, stops at cells in 'stop' set
// Returns true if stopped on a stop cell
bool find_input_cone(Cell *cell)
{
if (cone.cells.count(cell))
return false;
cone.cells.insert(cell);
if (stop.cells.count(cell))
return true;
for (auto &conn : cell->connections())
if (yosys_celltypes.cell_input(cell->type, conn.first))
for (auto bit : model.sigmap(conn.second)) {
if (RTLIL::builtin_ff_cell_types().count(cell->type)) {
if (!conn.first.in(ID::CLK, ID::C))
next_seed.insert(bit);
} else
find_input_cone(bit);
}
return false;
}
void find_input_cone(SigBit bit)
{
if (cone.bits.count(bit))
return;
cells_cone.insert(cell);
cone.bits.insert(bit);
if (cells_stop.count(cell))
return true;
if (stop.bits.count(bit)) {
if (input_bits != nullptr) input_bits->insert(bit);
return;
}
for (auto &conn : cell->connections())
if (yosys_celltypes.cell_input(cell->type, conn.first))
for (auto bit : sigmap(conn.second)) {
if (RTLIL::builtin_ff_cell_types().count(cell->type)) {
if (!conn.first.in(ID::CLK, ID::C))
next_seed.insert(bit);
} else
find_input_cone(next_seed, cells_cone, bits_cone, cells_stop, bits_stop, input_bits, bit);
}
return false;
}
if (!model.bit2driver.count(bit))
return;
void find_input_cone(pool<SigBit> &next_seed, pool<Cell*> &cells_cone, pool<SigBit> &bits_cone, const pool<Cell*> &cells_stop, const pool<SigBit> &bits_stop, pool<SigBit> *input_bits, SigBit bit)
// If the input cone of the driver cell reaches a stop bit,
// then `bit` is an "input bit"
if (find_input_cone(model.bit2driver.at(bit)))
if (input_bits != nullptr) input_bits->insert(bit);
}
void find_input_cone(pool<SigBit> bits)
{
for (auto bit : bits)
find_input_cone(bit);
}
};
// Builds (full or short) input cones from the seeds
// Creates full cones (no stops) and optionally short cones (stop at other side's cone)
// Updates seed_a/seed_b with next iteration's FF inputs
// Returns input bits and cone structures for SAT problem construction
std::tuple<pool<SigBit>, Cone, Cone> init_iter(pool<SigBit>& seed_a, pool<SigBit>& seed_b) const
{
if (bits_cone.count(bit))
return;
// Empty, never inserted to, to traverse full cones
const Cone no_stop;
Cone full_cone_a, full_cone_b;
bits_cone.insert(bit);
// Values of seed_* for the next iteration
pool<SigBit> next_seed_a, next_seed_b;
if (bits_stop.count(bit)) {
if (input_bits != nullptr) input_bits->insert(bit);
return;
{
ConeFinder finder_a {model, next_seed_a, full_cone_a, no_stop, nullptr};
finder_a.find_input_cone(seed_a);
ConeFinder finder_b {model, next_seed_b, full_cone_b, no_stop, nullptr};
finder_b.find_input_cone(seed_b);
}
if (!bit2driver.count(bit))
return;
Cone short_cone_a, short_cone_b;
pool<SigBit> input_bits;
if (find_input_cone(next_seed, cells_cone, bits_cone, cells_stop, bits_stop, input_bits, bit2driver.at(bit)))
if (input_bits != nullptr) input_bits->insert(bit);
if (cfg.short_cones)
{
// Rebuild cones with the knowledge of the full cones.
// Avoids stuffing overlaps in input cones into the solver
// e.g. for A by using the full B cone as stops
next_seed_a.clear();
ConeFinder short_finder_a = {model, next_seed_a, short_cone_a, short_cone_b, &input_bits};
short_finder_a.find_input_cone(seed_a);
next_seed_a.swap(seed_a);
next_seed_b.clear();
ConeFinder short_finder_b = {model, next_seed_b, short_cone_b, short_cone_a, &input_bits};
short_finder_b.find_input_cone(seed_b);
next_seed_b.swap(seed_b);
}
else
{
short_cone_a = full_cone_a;
next_seed_a.swap(seed_a);
short_cone_b = full_cone_b;
next_seed_b.swap(seed_b);
}
return std::make_tuple(input_bits, short_cone_a, short_cone_b);
}
bool run_cell()
void report_new_cells(const pool<Cell*>& cells, const Cone& cone_a, const Cone& cone_b) const
{
SigBit bit_a = sigmap(equiv_cell->getPort(ID::A)).as_bit();
SigBit bit_b = sigmap(equiv_cell->getPort(ID::B)).as_bit();
int ez_context = ez->frozen_literal();
log(" Adding %d new cells to the problem (%d A, %d B, %d shared).\n",
GetSize(cells), GetSize(cone_a.cells), GetSize(cone_b.cells),
(GetSize(cone_a.cells) + GetSize(cone_b.cells)) - GetSize(cells));
#if 0
for (auto cell : short_cells_cone_a)
log(" A-side cell: %s\n", log_id(cell));
for (auto cell : short_cells_cone_b)
log(" B-side cell: %s\n", log_id(cell));
#endif
}
void report_new_assume_cells(const pool<Cell*>& extra_problem_cells, int old_size, const pool<Cell*>& problem_cells) const
{
if (cfg.verbose) {
log(" Adding %d new cells to check assumptions (and reusing %d).\n",
GetSize(problem_cells) - old_size,
old_size - (GetSize(problem_cells) - GetSize(extra_problem_cells)));
#if 0
for (auto cell : extra_problem_cells)
log(" cell: %s\n", log_id(cell));
#endif
}
}
// Ensure the input cones of $assume cells get modelled by the problem
pool<Cell*> add_assumes_to_problem(const Cone& cone_a, const Cone& cone_b) const
{
pool<Cell*> extra_problem_cells;
for (auto assume : assume_cells) {
pool<SigBit> assume_seed, dummy_next_seed, overlap_bits;
assume_seed.insert(model.sigmap(assume->getPort(ID::A)).as_bit());
assume_seed.insert(model.sigmap(assume->getPort(ID::EN)).as_bit());
for (auto& cone : {cone_a, cone_b}) {
Cone assume_cone;
ConeFinder{model, dummy_next_seed, assume_cone, cone, &overlap_bits}
.find_input_cone(assume_seed);
if (GetSize(overlap_bits)) {
extra_problem_cells.insert(assume);
extra_problem_cells.insert(assume_cone.cells.begin(), assume_cone.cells.end());
overlap_bits.clear();
}
assume_cone.clear();
dummy_next_seed.clear();
}
}
return extra_problem_cells;
}
static void report_missing_model(Cell* cell)
{
if (RTLIL::builtin_ff_cell_types().count(cell->type))
log_cmd_error("No SAT model available for async FF cell %s (%s). Consider running `async2sync` or `clk2fflogic` first.\n", log_id(cell), log_id(cell->type));
else
log_cmd_error("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type));
}
void prepare_ezsat(int ez_context, SigBit bit_a, SigBit bit_b)
{
if (satgen.model_undef)
{
int ez_a = satgen.importSigBit(bit_a, max_seq+1);
int ez_b = satgen.importDefSigBit(bit_b, max_seq+1);
int ez_undef_a = satgen.importUndefSigBit(bit_a, max_seq+1);
int ez_a = satgen.importSigBit(bit_a, cfg.max_seq+1);
int ez_b = satgen.importDefSigBit(bit_b, cfg.max_seq+1);
int ez_undef_a = satgen.importUndefSigBit(bit_a, cfg.max_seq+1);
ez->assume(ez->XOR(ez_a, ez_b), ez_context);
ez->assume(ez->NOT(ez_undef_a), ez_context);
}
else
{
int ez_a = satgen.importSigBit(bit_a, max_seq+1);
int ez_b = satgen.importSigBit(bit_b, max_seq+1);
int ez_a = satgen.importSigBit(bit_a, cfg.max_seq+1);
int ez_b = satgen.importSigBit(bit_b, cfg.max_seq+1);
ez->assume(ez->XOR(ez_a, ez_b), ez_context);
}
}
void construct_ezsat(const pool<SigBit>& input_bits, int step)
{
if (cfg.set_assumes) {
if (cfg.verbose && step == cfg.max_seq) {
RTLIL::SigSpec assumes_a, assumes_en;
satgen.getAssumes(assumes_a, assumes_en, step+1);
for (int i = 0; i < GetSize(assumes_a); i++)
log(" Import constraint from assume cell: %s when %s (%d).\n", log_signal(assumes_a[i]), log_signal(assumes_en[i]), step);
}
ez->assume(satgen.importAssumes(step+1));
}
if (satgen.model_undef) {
for (auto bit : input_bits)
ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step+1)));
}
if (cfg.verbose)
log(" Problem size at t=%d: %d literals, %d clauses\n", step, ez->numCnfVariables(), ez->numCnfClauses());
}
bool prove_equiv_cell(Cell* cell)
{
SigBit bit_a = model.sigmap(cell->getPort(ID::A)).as_bit();
SigBit bit_b = model.sigmap(cell->getPort(ID::B)).as_bit();
int ez_context = ez->frozen_literal();
prepare_ezsat(ez_context, bit_a, bit_b);
// Two bits, bit_a, and bit_b, have been marked equivalent in the design
// We will be traversing the input cones for each of them
// In the first iteration, we will using those as starting points
pool<SigBit> seed_a = { bit_a };
pool<SigBit> seed_b = { bit_b };
if (verbose) {
log(" Trying to prove $equiv cell %s:\n", log_id(equiv_cell));
log(" A = %s, B = %s, Y = %s\n", log_signal(bit_a), log_signal(bit_b), log_signal(equiv_cell->getPort(ID::Y)));
if (cfg.verbose) {
log(" Trying to prove $equiv cell %s:\n", log_id(cell));
log(" A = %s, B = %s, Y = %s\n", log_signal(bit_a), log_signal(bit_b), log_signal(cell->getPort(ID::Y)));
} else {
log(" Trying to prove $equiv for %s:", log_signal(equiv_cell->getPort(ID::Y)));
log(" Trying to prove $equiv for %s:", log_signal(cell->getPort(ID::Y)));
}
int step = max_seq;
int step = cfg.max_seq;
while (1)
{
pool<Cell*> no_stop_cells;
pool<SigBit> no_stop_bits;
pool<Cell*> full_cells_cone_a, full_cells_cone_b;
pool<SigBit> full_bits_cone_a, full_bits_cone_b;
pool<SigBit> next_seed_a, next_seed_b;
for (auto bit_a : seed_a)
find_input_cone(next_seed_a, full_cells_cone_a, full_bits_cone_a, no_stop_cells, no_stop_bits, nullptr, bit_a);
for (auto bit_b : seed_b)
find_input_cone(next_seed_b, full_cells_cone_b, full_bits_cone_b, no_stop_cells, no_stop_bits, nullptr, bit_b);
pool<Cell*> short_cells_cone_a, short_cells_cone_b;
pool<SigBit> short_bits_cone_a, short_bits_cone_b;
pool<SigBit> input_bits;
if (short_cones)
{
next_seed_a.clear();
for (auto bit_a : seed_a)
find_input_cone(next_seed_a, short_cells_cone_a, short_bits_cone_a, full_cells_cone_b, full_bits_cone_b, &input_bits, bit_a);
next_seed_a.swap(seed_a);
next_seed_b.clear();
for (auto bit_b : seed_b)
find_input_cone(next_seed_b, short_cells_cone_b, short_bits_cone_b, full_cells_cone_a, full_bits_cone_a, &input_bits, bit_b);
next_seed_b.swap(seed_b);
}
else
{
short_cells_cone_a = full_cells_cone_a;
short_bits_cone_a = full_bits_cone_a;
next_seed_a.swap(seed_a);
short_cells_cone_b = full_cells_cone_b;
short_bits_cone_b = full_bits_cone_b;
next_seed_b.swap(seed_b);
}
// Traverse input cones of seed_a and seed_b, potentially finding new seeds
auto [input_bits, cone_a, cone_b] = init_iter(seed_a, seed_b);
// Cells to model in SAT solver
pool<Cell*> problem_cells;
problem_cells.insert(short_cells_cone_a.begin(), short_cells_cone_a.end());
problem_cells.insert(short_cells_cone_b.begin(), short_cells_cone_b.end());
problem_cells.insert(cone_a.cells.begin(), cone_a.cells.end());
problem_cells.insert(cone_b.cells.begin(), cone_b.cells.end());
if (verbose)
{
log(" Adding %d new cells to the problem (%d A, %d B, %d shared).\n",
GetSize(problem_cells), GetSize(short_cells_cone_a), GetSize(short_cells_cone_b),
(GetSize(short_cells_cone_a) + GetSize(short_cells_cone_b)) - GetSize(problem_cells));
#if 0
for (auto cell : short_cells_cone_a)
log(" A-side cell: %s\n", log_id(cell));
if (cfg.verbose)
report_new_cells(problem_cells, cone_a, cone_b);
for (auto cell : short_cells_cone_b)
log(" B-side cell: %s\n", log_id(cell));
#endif
}
if (set_assumes) {
pool<Cell*> extra_problem_cells;
for (auto assume : assume_cells) {
pool<SigBit> assume_seed, next_assume_seed;
assume_seed.insert(sigmap(assume->getPort(ID::A)).as_bit());
assume_seed.insert(sigmap(assume->getPort(ID::EN)).as_bit());
pool<Cell*> assume_cells_cone;
pool<SigBit> assume_bits_cone;
pool<SigBit> overlap_bits;
for (auto bit_x : assume_seed) {
find_input_cone(next_assume_seed, assume_cells_cone, assume_bits_cone, short_cells_cone_a, short_bits_cone_a, &overlap_bits, bit_x);
}
if (GetSize(overlap_bits)) {
extra_problem_cells.insert(assume);
extra_problem_cells.insert(assume_cells_cone.begin(), assume_cells_cone.end());
overlap_bits.clear();
}
assume_cells_cone.clear();
assume_bits_cone.clear();
for (auto bit_x : assume_seed) {
find_input_cone(next_assume_seed, assume_cells_cone, assume_bits_cone, short_cells_cone_b, short_bits_cone_b, &overlap_bits, bit_x);
}
if (GetSize(overlap_bits)) {
extra_problem_cells.insert(assume);
extra_problem_cells.insert(assume_cells_cone.begin(), assume_cells_cone.end());
overlap_bits.clear();
}
assume_cells_cone.clear();
assume_bits_cone.clear();
next_assume_seed.clear();
}
if (GetSize(extra_problem_cells)) {
if (cfg.set_assumes) {
auto extras = add_assumes_to_problem(cone_a, cone_b);
if (GetSize(extras)) {
auto old_size = GetSize(problem_cells);
problem_cells.insert(extra_problem_cells.begin(), extra_problem_cells.end());
if (verbose) {
log(" Adding %d new cells to check assumptions (and reusing %d).\n",
GetSize(problem_cells) - old_size,
old_size - (GetSize(problem_cells) - GetSize(extra_problem_cells)));
#if 0
for (auto cell : extra_problem_cells)
log(" cell: %s\n", log_id(cell));
#endif
}
problem_cells.insert(extras.begin(), extras.end());
report_new_assume_cells(extras, old_size, problem_cells);
}
}
for (auto cell : problem_cells) {
auto key = pair<Cell*, int>(cell, step+1);
if (!imported_cells_cache.count(key) && !satgen.importCell(cell, step+1)) {
if (RTLIL::builtin_ff_cell_types().count(cell->type))
log_cmd_error("No SAT model available for async FF cell %s (%s). Consider running `async2sync` or `clk2fflogic` first.\n", log_id(cell), log_id(cell->type));
else
log_cmd_error("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type));
report_missing_model(cell);
}
imported_cells_cache.insert(key);
}
if (set_assumes) {
if (verbose && step == max_seq) {
RTLIL::SigSpec assumes_a, assumes_en;
satgen.getAssumes(assumes_a, assumes_en, step+1);
for (int i = 0; i < GetSize(assumes_a); i++)
log(" Import constraint from assume cell: %s when %s (%d).\n", log_signal(assumes_a[i]), log_signal(assumes_en[i]), step);
}
ez->assume(satgen.importAssumes(step+1));
}
if (satgen.model_undef) {
for (auto bit : input_bits)
ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step+1)));
}
if (verbose)
log(" Problem size at t=%d: %d literals, %d clauses\n", step, ez->numCnfVariables(), ez->numCnfClauses());
construct_ezsat(input_bits, step);
if (!ez->solve(ez_context)) {
log(verbose ? " Proved equivalence! Marking $equiv cell as proven.\n" : " success!\n");
equiv_cell->setPort(ID::B, equiv_cell->getPort(ID::A));
log(cfg.verbose ? " Proved equivalence! Marking $equiv cell as proven.\n" : " success!\n");
// Replace $equiv cell with a short
cell->setPort(ID::B, cell->getPort(ID::A));
ez->assume(ez->NOT(ez_context));
return true;
}
if (verbose)
log(" Failed to prove equivalence with sequence length %d.\n", max_seq - step);
if (cfg.verbose)
log(" Failed to prove equivalence with sequence length %d.\n", cfg.max_seq - step);
if (--step < 0) {
if (verbose)
if (cfg.verbose)
log(" Reached sequence limit.\n");
break;
}
if (seed_a.empty() && seed_b.empty()) {
if (verbose)
if (cfg.verbose)
log(" No nets to continue in previous time step.\n");
break;
}
if (seed_a.empty()) {
if (verbose)
if (cfg.verbose)
log(" No nets on A-side to continue in previous time step.\n");
break;
}
if (seed_b.empty()) {
if (verbose)
if (cfg.verbose)
log(" No nets on B-side to continue in previous time step.\n");
break;
}
if (verbose) {
if (cfg.verbose) {
#if 0
log(" Continuing analysis in previous time step with the following nets:\n");
for (auto bit : seed_a)
@ -307,7 +378,7 @@ struct EquivSimpleWorker
}
}
if (!verbose)
if (!cfg.verbose)
log(" failed.\n");
ez->assume(ez->NOT(ez_context));
@ -319,14 +390,13 @@ struct EquivSimpleWorker
if (GetSize(equiv_cells) > 1) {
SigSpec sig;
for (auto c : equiv_cells)
sig.append(sigmap(c->getPort(ID::Y)));
sig.append(model.sigmap(c->getPort(ID::Y)));
log(" Grouping SAT models for %s:\n", log_signal(sig));
}
int counter = 0;
for (auto c : equiv_cells) {
equiv_cell = c;
if (run_cell())
if (prove_equiv_cell(c))
counter++;
}
return counter;
@ -366,37 +436,35 @@ struct EquivSimplePass : public Pass {
}
void execute(std::vector<std::string> args, Design *design) override
{
bool verbose = false, short_cones = false, model_undef = false, nogroup = false;
bool set_assumes = false;
EquivSimpleWorker::Config cfg = {};
int success_counter = 0;
int max_seq = 1;
log_header(design, "Executing EQUIV_SIMPLE pass.\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-v") {
verbose = true;
cfg.verbose = true;
continue;
}
if (args[argidx] == "-short") {
short_cones = true;
cfg.short_cones = true;
continue;
}
if (args[argidx] == "-undef") {
model_undef = true;
cfg.model_undef = true;
continue;
}
if (args[argidx] == "-nogroup") {
nogroup = true;
cfg.nogroup = true;
continue;
}
if (args[argidx] == "-seq" && argidx+1 < args.size()) {
max_seq = atoi(args[++argidx].c_str());
cfg.max_seq = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-set-assumes") {
set_assumes = true;
cfg.set_assumes = true;
continue;
}
break;
@ -421,7 +489,7 @@ struct EquivSimplePass : public Pass {
if (cell->type == ID($equiv) && cell->getPort(ID::A) != cell->getPort(ID::B)) {
auto bit = sigmap(cell->getPort(ID::Y).as_bit());
auto bit_group = bit;
if (!nogroup && bit_group.wire)
if (!cfg.nogroup && bit_group.wire)
bit_group.offset = 0;
unproven_equiv_cells[bit_group][bit] = cell;
unproven_cells_counter++;
@ -446,15 +514,16 @@ struct EquivSimplePass : public Pass {
}
unproven_equiv_cells.sort();
for (auto it : unproven_equiv_cells)
for (auto [_, d] : unproven_equiv_cells)
{
it.second.sort();
d.sort();
vector<Cell*> cells;
for (auto it2 : it.second)
cells.push_back(it2.second);
for (auto [_, cell] : d)
cells.push_back(cell);
EquivSimpleWorker worker(cells, assumes, sigmap, bit2driver, max_seq, short_cones, verbose, model_undef, set_assumes);
EquivSimpleWorker::DesignModel model {sigmap, bit2driver};
EquivSimpleWorker worker(cells, assumes, model, cfg);
success_counter += worker.run();
}
}