mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-11-03 21:09:12 +00:00 
			
		
		
		
	Merge pull request #5233 from YosysHQ/krys/equiv_assume
Assumptions for equiv_*
This commit is contained in:
		
						commit
						1ae82d7b9d
					
				
					 4 changed files with 450 additions and 150 deletions
				
			
		| 
						 | 
				
			
			@ -64,7 +64,7 @@ struct ezSatPtr : public std::unique_ptr<ezSAT> {
 | 
			
		|||
struct SatGen
 | 
			
		||||
{
 | 
			
		||||
	ezSAT *ez;
 | 
			
		||||
	SigMap *sigmap;
 | 
			
		||||
	const SigMap *sigmap;
 | 
			
		||||
	std::string prefix;
 | 
			
		||||
	SigPool initial_state;
 | 
			
		||||
	std::map<std::string, RTLIL::SigSpec> asserts_a, asserts_en;
 | 
			
		||||
| 
						 | 
				
			
			@ -75,12 +75,12 @@ struct SatGen
 | 
			
		|||
	bool model_undef;
 | 
			
		||||
	bool def_formal = false;
 | 
			
		||||
 | 
			
		||||
	SatGen(ezSAT *ez, SigMap *sigmap, std::string prefix = std::string()) :
 | 
			
		||||
	SatGen(ezSAT *ez, const SigMap *sigmap, std::string prefix = std::string()) :
 | 
			
		||||
			ez(ez), sigmap(sigmap), prefix(prefix), ignore_div_by_zero(false), model_undef(false)
 | 
			
		||||
	{
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void setContext(SigMap *sigmap, std::string prefix = std::string())
 | 
			
		||||
	void setContext(const SigMap *sigmap, std::string prefix = std::string())
 | 
			
		||||
	{
 | 
			
		||||
		this->sigmap = sigmap;
 | 
			
		||||
		this->prefix = prefix;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -37,14 +37,15 @@ struct EquivInductWorker
 | 
			
		|||
 | 
			
		||||
	int max_seq;
 | 
			
		||||
	int success_counter;
 | 
			
		||||
	bool set_assumes;
 | 
			
		||||
 | 
			
		||||
	dict<int, int> ez_step_is_consistent;
 | 
			
		||||
	pool<Cell*> cell_warn_cache;
 | 
			
		||||
	SigPool undriven_signals;
 | 
			
		||||
 | 
			
		||||
	EquivInductWorker(Module *module, const pool<Cell*> &unproven_equiv_cells, bool model_undef, int max_seq) : module(module), sigmap(module),
 | 
			
		||||
	EquivInductWorker(Module *module, const pool<Cell*> &unproven_equiv_cells, bool model_undef, int max_seq, bool set_assumes) : module(module), sigmap(module),
 | 
			
		||||
			cells(module->selected_cells()), workset(unproven_equiv_cells),
 | 
			
		||||
			satgen(ez.get(), &sigmap), max_seq(max_seq), success_counter(0)
 | 
			
		||||
			satgen(ez.get(), &sigmap), max_seq(max_seq), success_counter(0), set_assumes(set_assumes)
 | 
			
		||||
	{
 | 
			
		||||
		satgen.model_undef = model_undef;
 | 
			
		||||
	}
 | 
			
		||||
| 
						 | 
				
			
			@ -77,6 +78,16 @@ struct EquivInductWorker
 | 
			
		|||
			}
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (set_assumes) {
 | 
			
		||||
			if (step == 1) {
 | 
			
		||||
				RTLIL::SigSpec assumes_a, assumes_en;
 | 
			
		||||
				satgen.getAssumes(assumes_a, assumes_en, step);
 | 
			
		||||
				for (int i = 0; i < GetSize(assumes_a); i++)
 | 
			
		||||
					log("Import constraint from assume cell: %s when %s.\n", log_signal(assumes_a[i]), log_signal(assumes_en[i]));
 | 
			
		||||
			}
 | 
			
		||||
			ez->assume(satgen.importAssumes(step));
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (satgen.model_undef) {
 | 
			
		||||
			for (auto bit : undriven_signals.export_all())
 | 
			
		||||
				ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step)));
 | 
			
		||||
| 
						 | 
				
			
			@ -184,6 +195,9 @@ struct EquivInductPass : public Pass {
 | 
			
		|||
		log("    -seq <N>\n");
 | 
			
		||||
		log("        the max. number of time steps to be considered (default = 4)\n");
 | 
			
		||||
		log("\n");
 | 
			
		||||
		log("    -set-assumes\n");
 | 
			
		||||
		log("        set all assumptions provided via $assume cells\n");
 | 
			
		||||
		log("\n");
 | 
			
		||||
		log("This command is very effective in proving complex sequential circuits, when\n");
 | 
			
		||||
		log("the internal state of the circuit quickly propagates to $equiv cells.\n");
 | 
			
		||||
		log("\n");
 | 
			
		||||
| 
						 | 
				
			
			@ -200,7 +214,7 @@ struct EquivInductPass : public Pass {
 | 
			
		|||
	void execute(std::vector<std::string> args, Design *design) override
 | 
			
		||||
	{
 | 
			
		||||
		int success_counter = 0;
 | 
			
		||||
		bool model_undef = false;
 | 
			
		||||
		bool model_undef = false, set_assumes = false;
 | 
			
		||||
		int max_seq = 4;
 | 
			
		||||
 | 
			
		||||
		log_header(design, "Executing EQUIV_INDUCT pass.\n");
 | 
			
		||||
| 
						 | 
				
			
			@ -215,6 +229,10 @@ struct EquivInductPass : public Pass {
 | 
			
		|||
				max_seq = atoi(args[++argidx].c_str());
 | 
			
		||||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
			if (args[argidx] == "-set-assumes") {
 | 
			
		||||
				set_assumes = true;
 | 
			
		||||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
		extra_args(args, argidx, design);
 | 
			
		||||
| 
						 | 
				
			
			@ -222,6 +240,7 @@ struct EquivInductPass : public Pass {
 | 
			
		|||
		for (auto module : design->selected_modules())
 | 
			
		||||
		{
 | 
			
		||||
			pool<Cell*> unproven_equiv_cells;
 | 
			
		||||
			vector<Cell*> assume_cells;
 | 
			
		||||
 | 
			
		||||
			for (auto cell : module->selected_cells())
 | 
			
		||||
				if (cell->type == ID($equiv)) {
 | 
			
		||||
| 
						 | 
				
			
			@ -234,7 +253,7 @@ struct EquivInductPass : public Pass {
 | 
			
		|||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			EquivInductWorker worker(module, unproven_equiv_cells, model_undef, max_seq);
 | 
			
		||||
			EquivInductWorker worker(module, unproven_equiv_cells, model_undef, max_seq, set_assumes);
 | 
			
		||||
			worker.run();
 | 
			
		||||
			success_counter += worker.success_counter;
 | 
			
		||||
		}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -27,215 +27,345 @@ struct EquivSimpleWorker
 | 
			
		|||
{
 | 
			
		||||
	Module *module;
 | 
			
		||||
	const vector<Cell*> &equiv_cells;
 | 
			
		||||
	Cell *equiv_cell;
 | 
			
		||||
	const vector<Cell*> &assume_cells;
 | 
			
		||||
	struct Cone {
 | 
			
		||||
		pool<Cell*> cells;
 | 
			
		||||
		pool<SigBit> bits;
 | 
			
		||||
		void clear() {
 | 
			
		||||
			cells.clear();
 | 
			
		||||
			bits.clear();
 | 
			
		||||
		}
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	SigMap &sigmap;
 | 
			
		||||
	dict<SigBit, Cell*> &bit2driver;
 | 
			
		||||
	struct DesignModel {
 | 
			
		||||
		const SigMap &sigmap;
 | 
			
		||||
		dict<SigBit, Cell*> &bit2driver;
 | 
			
		||||
	};
 | 
			
		||||
	DesignModel model;
 | 
			
		||||
 | 
			
		||||
	ezSatPtr ez;
 | 
			
		||||
	SatGen satgen;
 | 
			
		||||
	int max_seq;
 | 
			
		||||
	bool short_cones;
 | 
			
		||||
	bool verbose;
 | 
			
		||||
 | 
			
		||||
	struct Config {
 | 
			
		||||
		bool verbose = false;
 | 
			
		||||
		bool short_cones = false;
 | 
			
		||||
		bool model_undef = false;
 | 
			
		||||
		bool nogroup = false;
 | 
			
		||||
		bool set_assumes = false;
 | 
			
		||||
		int max_seq = 1;
 | 
			
		||||
	};
 | 
			
		||||
	Config cfg;
 | 
			
		||||
 | 
			
		||||
	pool<pair<Cell*, int>> imported_cells_cache;
 | 
			
		||||
 | 
			
		||||
	EquivSimpleWorker(const vector<Cell*> &equiv_cells, SigMap &sigmap, dict<SigBit, Cell*> &bit2driver, int max_seq, bool short_cones, bool verbose, bool model_undef) :
 | 
			
		||||
			module(equiv_cells.front()->module), equiv_cells(equiv_cells), equiv_cell(nullptr),
 | 
			
		||||
			sigmap(sigmap), bit2driver(bit2driver), satgen(ez.get(), &sigmap), max_seq(max_seq), short_cones(short_cones), verbose(verbose)
 | 
			
		||||
	EquivSimpleWorker(const vector<Cell*> &equiv_cells, const vector<Cell*> &assume_cells, DesignModel model, Config cfg) :
 | 
			
		||||
			module(equiv_cells.front()->module), equiv_cells(equiv_cells), assume_cells(assume_cells),
 | 
			
		||||
			model(model), satgen(ez.get(), &model.sigmap), cfg(cfg)
 | 
			
		||||
	{
 | 
			
		||||
		satgen.model_undef = model_undef;
 | 
			
		||||
		satgen.model_undef = cfg.model_undef;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	bool find_input_cone(pool<SigBit> &next_seed, pool<Cell*> &cells_cone, pool<SigBit> &bits_cone, const pool<Cell*> &cells_stop, const pool<SigBit> &bits_stop, pool<SigBit> *input_bits, Cell *cell)
 | 
			
		||||
	{
 | 
			
		||||
		if (cells_cone.count(cell))
 | 
			
		||||
	struct ConeFinder {
 | 
			
		||||
		DesignModel model;
 | 
			
		||||
		// Bits we should also analyze in a later iteration (flop inputs)
 | 
			
		||||
		pool<SigBit> &next_seed;
 | 
			
		||||
		// Cells and bits we've seen so far while traversing
 | 
			
		||||
		Cone& cone;
 | 
			
		||||
		// We're not allowed to traverse past cells and bits in `stop`
 | 
			
		||||
		const Cone& stop;
 | 
			
		||||
		// Input bits are bits that no longer can be traversed
 | 
			
		||||
		// Tracking these is optional
 | 
			
		||||
		pool<SigBit>* input_bits;
 | 
			
		||||
 | 
			
		||||
		// Recursively traverses backwards from a cell to find all cells in its input cone
 | 
			
		||||
		// Adds cell to cone.cells, stops at cells in 'stop' set
 | 
			
		||||
		// Returns true if stopped on a stop cell
 | 
			
		||||
		bool find_input_cone(Cell *cell)
 | 
			
		||||
		{
 | 
			
		||||
			if (cone.cells.count(cell))
 | 
			
		||||
				return false;
 | 
			
		||||
 | 
			
		||||
			cone.cells.insert(cell);
 | 
			
		||||
 | 
			
		||||
			if (stop.cells.count(cell))
 | 
			
		||||
				return true;
 | 
			
		||||
 | 
			
		||||
			for (auto &conn : cell->connections())
 | 
			
		||||
				if (yosys_celltypes.cell_input(cell->type, conn.first))
 | 
			
		||||
					for (auto bit : model.sigmap(conn.second)) {
 | 
			
		||||
						if (RTLIL::builtin_ff_cell_types().count(cell->type)) {
 | 
			
		||||
							if (!conn.first.in(ID::CLK, ID::C))
 | 
			
		||||
								next_seed.insert(bit);
 | 
			
		||||
						} else
 | 
			
		||||
							find_input_cone(bit);
 | 
			
		||||
					}
 | 
			
		||||
			return false;
 | 
			
		||||
		}
 | 
			
		||||
		void find_input_cone(SigBit bit)
 | 
			
		||||
		{
 | 
			
		||||
			if (cone.bits.count(bit))
 | 
			
		||||
				return;
 | 
			
		||||
 | 
			
		||||
		cells_cone.insert(cell);
 | 
			
		||||
			cone.bits.insert(bit);
 | 
			
		||||
 | 
			
		||||
		if (cells_stop.count(cell))
 | 
			
		||||
			return true;
 | 
			
		||||
			if (stop.bits.count(bit)) {
 | 
			
		||||
				if (input_bits != nullptr) input_bits->insert(bit);
 | 
			
		||||
				return;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		for (auto &conn : cell->connections())
 | 
			
		||||
			if (yosys_celltypes.cell_input(cell->type, conn.first))
 | 
			
		||||
				for (auto bit : sigmap(conn.second)) {
 | 
			
		||||
					if (RTLIL::builtin_ff_cell_types().count(cell->type)) {
 | 
			
		||||
						if (!conn.first.in(ID::CLK, ID::C))
 | 
			
		||||
							next_seed.insert(bit);
 | 
			
		||||
					} else
 | 
			
		||||
						find_input_cone(next_seed, cells_cone, bits_cone, cells_stop, bits_stop, input_bits, bit);
 | 
			
		||||
				}
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
			if (!model.bit2driver.count(bit))
 | 
			
		||||
				return;
 | 
			
		||||
 | 
			
		||||
	void find_input_cone(pool<SigBit> &next_seed, pool<Cell*> &cells_cone, pool<SigBit> &bits_cone, const pool<Cell*> &cells_stop, const pool<SigBit> &bits_stop, pool<SigBit> *input_bits, SigBit bit)
 | 
			
		||||
			// If the input cone of the driver cell reaches a stop bit,
 | 
			
		||||
			// then `bit` is an "input bit"
 | 
			
		||||
			if (find_input_cone(model.bit2driver.at(bit)))
 | 
			
		||||
				if (input_bits != nullptr) input_bits->insert(bit);
 | 
			
		||||
		}
 | 
			
		||||
		void find_input_cone(pool<SigBit> bits)
 | 
			
		||||
		{
 | 
			
		||||
			for (auto bit : bits)
 | 
			
		||||
				find_input_cone(bit);
 | 
			
		||||
		}
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// Builds (full or short) input cones from the seeds
 | 
			
		||||
	// Creates full cones (no stops) and optionally short cones (stop at other side's cone)
 | 
			
		||||
	// Updates seed_a/seed_b with next iteration's FF inputs
 | 
			
		||||
	// Returns input bits and cone structures for SAT problem construction
 | 
			
		||||
	std::tuple<pool<SigBit>, Cone, Cone> init_iter(pool<SigBit>& seed_a, pool<SigBit>& seed_b) const
 | 
			
		||||
	{
 | 
			
		||||
		if (bits_cone.count(bit))
 | 
			
		||||
			return;
 | 
			
		||||
		// Empty, never inserted to, to traverse full cones
 | 
			
		||||
		const Cone no_stop;
 | 
			
		||||
		Cone full_cone_a, full_cone_b;
 | 
			
		||||
 | 
			
		||||
		bits_cone.insert(bit);
 | 
			
		||||
		// Values of seed_* for the next iteration
 | 
			
		||||
		pool<SigBit> next_seed_a, next_seed_b;
 | 
			
		||||
 | 
			
		||||
		if (bits_stop.count(bit)) {
 | 
			
		||||
			if (input_bits != nullptr) input_bits->insert(bit);
 | 
			
		||||
			return;
 | 
			
		||||
		{
 | 
			
		||||
			ConeFinder finder_a {model, next_seed_a, full_cone_a, no_stop, nullptr};
 | 
			
		||||
			finder_a.find_input_cone(seed_a);
 | 
			
		||||
 | 
			
		||||
			ConeFinder finder_b {model, next_seed_b, full_cone_b, no_stop, nullptr};
 | 
			
		||||
			finder_b.find_input_cone(seed_b);
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (!bit2driver.count(bit))
 | 
			
		||||
			return;
 | 
			
		||||
		Cone short_cone_a, short_cone_b;
 | 
			
		||||
		pool<SigBit> input_bits;
 | 
			
		||||
 | 
			
		||||
		if (find_input_cone(next_seed, cells_cone, bits_cone, cells_stop, bits_stop, input_bits, bit2driver.at(bit)))
 | 
			
		||||
			if (input_bits != nullptr) input_bits->insert(bit);
 | 
			
		||||
		if (cfg.short_cones)
 | 
			
		||||
		{
 | 
			
		||||
			// Rebuild cones with the knowledge of the full cones.
 | 
			
		||||
			// Avoids stuffing overlaps in input cones into the solver
 | 
			
		||||
			// e.g. for A by using the full B cone as stops
 | 
			
		||||
			next_seed_a.clear();
 | 
			
		||||
			ConeFinder short_finder_a = {model, next_seed_a, short_cone_a, short_cone_b, &input_bits};
 | 
			
		||||
			short_finder_a.find_input_cone(seed_a);
 | 
			
		||||
			next_seed_a.swap(seed_a);
 | 
			
		||||
 | 
			
		||||
			next_seed_b.clear();
 | 
			
		||||
			ConeFinder short_finder_b = {model, next_seed_b, short_cone_b, short_cone_a, &input_bits};
 | 
			
		||||
			short_finder_b.find_input_cone(seed_b);
 | 
			
		||||
			next_seed_b.swap(seed_b);
 | 
			
		||||
		}
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			short_cone_a = full_cone_a;
 | 
			
		||||
			next_seed_a.swap(seed_a);
 | 
			
		||||
 | 
			
		||||
			short_cone_b = full_cone_b;
 | 
			
		||||
			next_seed_b.swap(seed_b);
 | 
			
		||||
		}
 | 
			
		||||
		return std::make_tuple(input_bits, short_cone_a, short_cone_b);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	bool run_cell()
 | 
			
		||||
	void report_new_cells(const pool<Cell*>& cells, const Cone& cone_a, const Cone& cone_b) const
 | 
			
		||||
	{
 | 
			
		||||
		SigBit bit_a = sigmap(equiv_cell->getPort(ID::A)).as_bit();
 | 
			
		||||
		SigBit bit_b = sigmap(equiv_cell->getPort(ID::B)).as_bit();
 | 
			
		||||
		int ez_context = ez->frozen_literal();
 | 
			
		||||
		log("    Adding %d new cells to the problem (%d A, %d B, %d shared).\n",
 | 
			
		||||
					GetSize(cells), GetSize(cone_a.cells), GetSize(cone_b.cells),
 | 
			
		||||
					(GetSize(cone_a.cells) + GetSize(cone_b.cells)) - GetSize(cells));
 | 
			
		||||
		#if 0
 | 
			
		||||
			for (auto cell : short_cells_cone_a)
 | 
			
		||||
				log("      A-side cell: %s\n", log_id(cell));
 | 
			
		||||
 | 
			
		||||
			for (auto cell : short_cells_cone_b)
 | 
			
		||||
				log("      B-side cell: %s\n", log_id(cell));
 | 
			
		||||
		#endif
 | 
			
		||||
	}
 | 
			
		||||
	void report_new_assume_cells(const pool<Cell*>& extra_problem_cells, int old_size, const pool<Cell*>& problem_cells) const
 | 
			
		||||
	{
 | 
			
		||||
		if (cfg.verbose) {
 | 
			
		||||
			log("    Adding %d new cells to check assumptions (and reusing %d).\n",
 | 
			
		||||
				GetSize(problem_cells) - old_size,
 | 
			
		||||
				old_size - (GetSize(problem_cells) - GetSize(extra_problem_cells)));
 | 
			
		||||
		#if 0
 | 
			
		||||
			for (auto cell : extra_problem_cells)
 | 
			
		||||
				log("      cell: %s\n", log_id(cell));
 | 
			
		||||
		#endif
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Ensure the input cones of $assume cells get modelled by the problem
 | 
			
		||||
	pool<Cell*> add_assumes_to_problem(const Cone& cone_a, const Cone& cone_b) const
 | 
			
		||||
	{
 | 
			
		||||
		pool<Cell*> extra_problem_cells;
 | 
			
		||||
		for (auto assume : assume_cells) {
 | 
			
		||||
			pool<SigBit> assume_seed, dummy_next_seed, overlap_bits;
 | 
			
		||||
			assume_seed.insert(model.sigmap(assume->getPort(ID::A)).as_bit());
 | 
			
		||||
			assume_seed.insert(model.sigmap(assume->getPort(ID::EN)).as_bit());
 | 
			
		||||
 | 
			
		||||
			for (auto& cone : {cone_a, cone_b}) {
 | 
			
		||||
				Cone assume_cone;
 | 
			
		||||
				ConeFinder{model, dummy_next_seed, assume_cone, cone, &overlap_bits}
 | 
			
		||||
					.find_input_cone(assume_seed);
 | 
			
		||||
				if (GetSize(overlap_bits)) {
 | 
			
		||||
					extra_problem_cells.insert(assume);
 | 
			
		||||
					extra_problem_cells.insert(assume_cone.cells.begin(), assume_cone.cells.end());
 | 
			
		||||
					overlap_bits.clear();
 | 
			
		||||
				}
 | 
			
		||||
				assume_cone.clear();
 | 
			
		||||
				dummy_next_seed.clear();
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		return extra_problem_cells;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	static void report_missing_model(Cell* cell)
 | 
			
		||||
	{
 | 
			
		||||
		if (RTLIL::builtin_ff_cell_types().count(cell->type))
 | 
			
		||||
			log_cmd_error("No SAT model available for async FF cell %s (%s).  Consider running `async2sync` or `clk2fflogic` first.\n", log_id(cell), log_id(cell->type));
 | 
			
		||||
		else
 | 
			
		||||
			log_cmd_error("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type));
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void prepare_ezsat(int ez_context, SigBit bit_a, SigBit bit_b)
 | 
			
		||||
	{
 | 
			
		||||
		if (satgen.model_undef)
 | 
			
		||||
		{
 | 
			
		||||
			int ez_a = satgen.importSigBit(bit_a, max_seq+1);
 | 
			
		||||
			int ez_b = satgen.importDefSigBit(bit_b, max_seq+1);
 | 
			
		||||
			int ez_undef_a = satgen.importUndefSigBit(bit_a, max_seq+1);
 | 
			
		||||
			int ez_a = satgen.importSigBit(bit_a, cfg.max_seq+1);
 | 
			
		||||
			int ez_b = satgen.importDefSigBit(bit_b, cfg.max_seq+1);
 | 
			
		||||
			int ez_undef_a = satgen.importUndefSigBit(bit_a, cfg.max_seq+1);
 | 
			
		||||
 | 
			
		||||
			ez->assume(ez->XOR(ez_a, ez_b), ez_context);
 | 
			
		||||
			ez->assume(ez->NOT(ez_undef_a), ez_context);
 | 
			
		||||
		}
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			int ez_a = satgen.importSigBit(bit_a, max_seq+1);
 | 
			
		||||
			int ez_b = satgen.importSigBit(bit_b, max_seq+1);
 | 
			
		||||
			int ez_a = satgen.importSigBit(bit_a, cfg.max_seq+1);
 | 
			
		||||
			int ez_b = satgen.importSigBit(bit_b, cfg.max_seq+1);
 | 
			
		||||
			ez->assume(ez->XOR(ez_a, ez_b), ez_context);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	void construct_ezsat(const pool<SigBit>& input_bits, int step)
 | 
			
		||||
	{
 | 
			
		||||
		if (cfg.set_assumes) {
 | 
			
		||||
			if (cfg.verbose && step == cfg.max_seq) {
 | 
			
		||||
				RTLIL::SigSpec assumes_a, assumes_en;
 | 
			
		||||
				satgen.getAssumes(assumes_a, assumes_en, step+1);
 | 
			
		||||
				for (int i = 0; i < GetSize(assumes_a); i++)
 | 
			
		||||
					log("    Import constraint from assume cell: %s when %s (%d).\n", log_signal(assumes_a[i]), log_signal(assumes_en[i]), step);
 | 
			
		||||
			}
 | 
			
		||||
			ez->assume(satgen.importAssumes(step+1));
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (satgen.model_undef) {
 | 
			
		||||
			for (auto bit : input_bits)
 | 
			
		||||
				ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step+1)));
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (cfg.verbose)
 | 
			
		||||
			log("    Problem size at t=%d: %d literals, %d clauses\n", step, ez->numCnfVariables(), ez->numCnfClauses());
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	bool prove_equiv_cell(Cell* cell)
 | 
			
		||||
	{
 | 
			
		||||
		SigBit bit_a = model.sigmap(cell->getPort(ID::A)).as_bit();
 | 
			
		||||
		SigBit bit_b = model.sigmap(cell->getPort(ID::B)).as_bit();
 | 
			
		||||
		int ez_context = ez->frozen_literal();
 | 
			
		||||
 | 
			
		||||
		prepare_ezsat(ez_context, bit_a, bit_b);
 | 
			
		||||
 | 
			
		||||
		// Two bits, bit_a, and bit_b, have been marked equivalent in the design
 | 
			
		||||
		// We will be traversing the input cones for each of them
 | 
			
		||||
		// In the first iteration, we will using those as starting points
 | 
			
		||||
		pool<SigBit> seed_a = { bit_a };
 | 
			
		||||
		pool<SigBit> seed_b = { bit_b };
 | 
			
		||||
 | 
			
		||||
		if (verbose) {
 | 
			
		||||
			log("  Trying to prove $equiv cell %s:\n", log_id(equiv_cell));
 | 
			
		||||
			log("    A = %s, B = %s, Y = %s\n", log_signal(bit_a), log_signal(bit_b), log_signal(equiv_cell->getPort(ID::Y)));
 | 
			
		||||
		if (cfg.verbose) {
 | 
			
		||||
			log("  Trying to prove $equiv cell %s:\n", log_id(cell));
 | 
			
		||||
			log("    A = %s, B = %s, Y = %s\n", log_signal(bit_a), log_signal(bit_b), log_signal(cell->getPort(ID::Y)));
 | 
			
		||||
		} else {
 | 
			
		||||
			log("  Trying to prove $equiv for %s:", log_signal(equiv_cell->getPort(ID::Y)));
 | 
			
		||||
			log("  Trying to prove $equiv for %s:", log_signal(cell->getPort(ID::Y)));
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		int step = max_seq;
 | 
			
		||||
		int step = cfg.max_seq;
 | 
			
		||||
		while (1)
 | 
			
		||||
		{
 | 
			
		||||
			pool<Cell*> no_stop_cells;
 | 
			
		||||
			pool<SigBit> no_stop_bits;
 | 
			
		||||
 | 
			
		||||
			pool<Cell*> full_cells_cone_a, full_cells_cone_b;
 | 
			
		||||
			pool<SigBit> full_bits_cone_a, full_bits_cone_b;
 | 
			
		||||
 | 
			
		||||
			pool<SigBit> next_seed_a, next_seed_b;
 | 
			
		||||
 | 
			
		||||
			for (auto bit_a : seed_a)
 | 
			
		||||
				find_input_cone(next_seed_a, full_cells_cone_a, full_bits_cone_a, no_stop_cells, no_stop_bits, nullptr, bit_a);
 | 
			
		||||
 | 
			
		||||
			for (auto bit_b : seed_b)
 | 
			
		||||
				find_input_cone(next_seed_b, full_cells_cone_b, full_bits_cone_b, no_stop_cells, no_stop_bits, nullptr, bit_b);
 | 
			
		||||
 | 
			
		||||
			pool<Cell*> short_cells_cone_a, short_cells_cone_b;
 | 
			
		||||
			pool<SigBit> short_bits_cone_a, short_bits_cone_b;
 | 
			
		||||
			pool<SigBit> input_bits;
 | 
			
		||||
 | 
			
		||||
			if (short_cones)
 | 
			
		||||
			{
 | 
			
		||||
				next_seed_a.clear();
 | 
			
		||||
				for (auto bit_a : seed_a)
 | 
			
		||||
					find_input_cone(next_seed_a, short_cells_cone_a, short_bits_cone_a, full_cells_cone_b, full_bits_cone_b, &input_bits, bit_a);
 | 
			
		||||
				next_seed_a.swap(seed_a);
 | 
			
		||||
 | 
			
		||||
				next_seed_b.clear();
 | 
			
		||||
				for (auto bit_b : seed_b)
 | 
			
		||||
					find_input_cone(next_seed_b, short_cells_cone_b, short_bits_cone_b, full_cells_cone_a, full_bits_cone_a, &input_bits, bit_b);
 | 
			
		||||
				next_seed_b.swap(seed_b);
 | 
			
		||||
			}
 | 
			
		||||
			else
 | 
			
		||||
			{
 | 
			
		||||
				short_cells_cone_a = full_cells_cone_a;
 | 
			
		||||
				short_bits_cone_a = full_bits_cone_a;
 | 
			
		||||
				next_seed_a.swap(seed_a);
 | 
			
		||||
 | 
			
		||||
				short_cells_cone_b = full_cells_cone_b;
 | 
			
		||||
				short_bits_cone_b = full_bits_cone_b;
 | 
			
		||||
				next_seed_b.swap(seed_b);
 | 
			
		||||
			}
 | 
			
		||||
			// Traverse input cones of seed_a and seed_b, potentially finding new seeds
 | 
			
		||||
			auto [input_bits, cone_a, cone_b] = init_iter(seed_a, seed_b);
 | 
			
		||||
 | 
			
		||||
			// Cells to model in SAT solver
 | 
			
		||||
			pool<Cell*> problem_cells;
 | 
			
		||||
			problem_cells.insert(short_cells_cone_a.begin(), short_cells_cone_a.end());
 | 
			
		||||
			problem_cells.insert(short_cells_cone_b.begin(), short_cells_cone_b.end());
 | 
			
		||||
			problem_cells.insert(cone_a.cells.begin(), cone_a.cells.end());
 | 
			
		||||
			problem_cells.insert(cone_b.cells.begin(), cone_b.cells.end());
 | 
			
		||||
 | 
			
		||||
			if (verbose)
 | 
			
		||||
			{
 | 
			
		||||
				log("    Adding %d new cells to the problem (%d A, %d B, %d shared).\n",
 | 
			
		||||
						GetSize(problem_cells), GetSize(short_cells_cone_a), GetSize(short_cells_cone_b),
 | 
			
		||||
						(GetSize(short_cells_cone_a) + GetSize(short_cells_cone_b)) - GetSize(problem_cells));
 | 
			
		||||
			#if 0
 | 
			
		||||
				for (auto cell : short_cells_cone_a)
 | 
			
		||||
					log("      A-side cell: %s\n", log_id(cell));
 | 
			
		||||
			if (cfg.verbose)
 | 
			
		||||
				report_new_cells(problem_cells, cone_a, cone_b);
 | 
			
		||||
 | 
			
		||||
				for (auto cell : short_cells_cone_b)
 | 
			
		||||
					log("      B-side cell: %s\n", log_id(cell));
 | 
			
		||||
			#endif
 | 
			
		||||
			if (cfg.set_assumes) {
 | 
			
		||||
				auto extras = add_assumes_to_problem(cone_a, cone_b);
 | 
			
		||||
				if (GetSize(extras)) {
 | 
			
		||||
					auto old_size = GetSize(problem_cells);
 | 
			
		||||
					problem_cells.insert(extras.begin(), extras.end());
 | 
			
		||||
					report_new_assume_cells(extras, old_size, problem_cells);
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			for (auto cell : problem_cells) {
 | 
			
		||||
				auto key = pair<Cell*, int>(cell, step+1);
 | 
			
		||||
				if (!imported_cells_cache.count(key) && !satgen.importCell(cell, step+1)) {
 | 
			
		||||
					if (RTLIL::builtin_ff_cell_types().count(cell->type))
 | 
			
		||||
						log_cmd_error("No SAT model available for async FF cell %s (%s).  Consider running `async2sync` or `clk2fflogic` first.\n", log_id(cell), log_id(cell->type));
 | 
			
		||||
					else
 | 
			
		||||
						log_cmd_error("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type));
 | 
			
		||||
					report_missing_model(cell);
 | 
			
		||||
				}
 | 
			
		||||
				imported_cells_cache.insert(key);
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			if (satgen.model_undef) {
 | 
			
		||||
				for (auto bit : input_bits)
 | 
			
		||||
					ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step+1)));
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			if (verbose)
 | 
			
		||||
				log("    Problem size at t=%d: %d literals, %d clauses\n", step, ez->numCnfVariables(), ez->numCnfClauses());
 | 
			
		||||
			construct_ezsat(input_bits, step);
 | 
			
		||||
 | 
			
		||||
			if (!ez->solve(ez_context)) {
 | 
			
		||||
				log(verbose ? "    Proved equivalence! Marking $equiv cell as proven.\n" : " success!\n");
 | 
			
		||||
				equiv_cell->setPort(ID::B, equiv_cell->getPort(ID::A));
 | 
			
		||||
				log(cfg.verbose ? "    Proved equivalence! Marking $equiv cell as proven.\n" : " success!\n");
 | 
			
		||||
				// Replace $equiv cell with a short
 | 
			
		||||
				cell->setPort(ID::B, cell->getPort(ID::A));
 | 
			
		||||
				ez->assume(ez->NOT(ez_context));
 | 
			
		||||
				return true;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			if (verbose)
 | 
			
		||||
				log("    Failed to prove equivalence with sequence length %d.\n", max_seq - step);
 | 
			
		||||
			if (cfg.verbose)
 | 
			
		||||
				log("    Failed to prove equivalence with sequence length %d.\n", cfg.max_seq - step);
 | 
			
		||||
 | 
			
		||||
			if (--step < 0) {
 | 
			
		||||
				if (verbose)
 | 
			
		||||
				if (cfg.verbose)
 | 
			
		||||
					log("    Reached sequence limit.\n");
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			if (seed_a.empty() && seed_b.empty()) {
 | 
			
		||||
				if (verbose)
 | 
			
		||||
				if (cfg.verbose)
 | 
			
		||||
					log("    No nets to continue in previous time step.\n");
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			if (seed_a.empty()) {
 | 
			
		||||
				if (verbose)
 | 
			
		||||
				if (cfg.verbose)
 | 
			
		||||
					log("    No nets on A-side to continue in previous time step.\n");
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			if (seed_b.empty()) {
 | 
			
		||||
				if (verbose)
 | 
			
		||||
				if (cfg.verbose)
 | 
			
		||||
					log("    No nets on B-side to continue in previous time step.\n");
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			if (verbose) {
 | 
			
		||||
			if (cfg.verbose) {
 | 
			
		||||
			#if 0
 | 
			
		||||
				log("    Continuing analysis in previous time step with the following nets:\n");
 | 
			
		||||
				for (auto bit : seed_a)
 | 
			
		||||
| 
						 | 
				
			
			@ -248,7 +378,7 @@ struct EquivSimpleWorker
 | 
			
		|||
			}
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (!verbose)
 | 
			
		||||
		if (!cfg.verbose)
 | 
			
		||||
			log(" failed.\n");
 | 
			
		||||
 | 
			
		||||
		ez->assume(ez->NOT(ez_context));
 | 
			
		||||
| 
						 | 
				
			
			@ -260,14 +390,13 @@ struct EquivSimpleWorker
 | 
			
		|||
		if (GetSize(equiv_cells) > 1) {
 | 
			
		||||
			SigSpec sig;
 | 
			
		||||
			for (auto c : equiv_cells)
 | 
			
		||||
				sig.append(sigmap(c->getPort(ID::Y)));
 | 
			
		||||
				sig.append(model.sigmap(c->getPort(ID::Y)));
 | 
			
		||||
			log(" Grouping SAT models for %s:\n", log_signal(sig));
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		int counter = 0;
 | 
			
		||||
		for (auto c : equiv_cells) {
 | 
			
		||||
			equiv_cell = c;
 | 
			
		||||
			if (run_cell())
 | 
			
		||||
			if (prove_equiv_cell(c))
 | 
			
		||||
				counter++;
 | 
			
		||||
		}
 | 
			
		||||
		return counter;
 | 
			
		||||
| 
						 | 
				
			
			@ -301,35 +430,41 @@ struct EquivSimplePass : public Pass {
 | 
			
		|||
		log("    -seq <N>\n");
 | 
			
		||||
		log("        the max. number of time steps to be considered (default = 1)\n");
 | 
			
		||||
		log("\n");
 | 
			
		||||
		log("    -set-assumes\n");
 | 
			
		||||
		log("        set all assumptions provided via $assume cells\n");
 | 
			
		||||
		log("\n");
 | 
			
		||||
	}
 | 
			
		||||
	void execute(std::vector<std::string> args, Design *design) override
 | 
			
		||||
	{
 | 
			
		||||
		bool verbose = false, short_cones = false, model_undef = false, nogroup = false;
 | 
			
		||||
		EquivSimpleWorker::Config cfg = {};
 | 
			
		||||
		int success_counter = 0;
 | 
			
		||||
		int max_seq = 1;
 | 
			
		||||
 | 
			
		||||
		log_header(design, "Executing EQUIV_SIMPLE pass.\n");
 | 
			
		||||
 | 
			
		||||
		size_t argidx;
 | 
			
		||||
		for (argidx = 1; argidx < args.size(); argidx++) {
 | 
			
		||||
			if (args[argidx] == "-v") {
 | 
			
		||||
				verbose = true;
 | 
			
		||||
				cfg.verbose = true;
 | 
			
		||||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
			if (args[argidx] == "-short") {
 | 
			
		||||
				short_cones = true;
 | 
			
		||||
				cfg.short_cones = true;
 | 
			
		||||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
			if (args[argidx] == "-undef") {
 | 
			
		||||
				model_undef = true;
 | 
			
		||||
				cfg.model_undef = true;
 | 
			
		||||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
			if (args[argidx] == "-nogroup") {
 | 
			
		||||
				nogroup = true;
 | 
			
		||||
				cfg.nogroup = true;
 | 
			
		||||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
			if (args[argidx] == "-seq" && argidx+1 < args.size()) {
 | 
			
		||||
				max_seq = atoi(args[++argidx].c_str());
 | 
			
		||||
				cfg.max_seq = atoi(args[++argidx].c_str());
 | 
			
		||||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
			if (args[argidx] == "-set-assumes") {
 | 
			
		||||
				cfg.set_assumes = true;
 | 
			
		||||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
			break;
 | 
			
		||||
| 
						 | 
				
			
			@ -347,17 +482,21 @@ struct EquivSimplePass : public Pass {
 | 
			
		|||
			SigMap sigmap(module);
 | 
			
		||||
			dict<SigBit, Cell*> bit2driver;
 | 
			
		||||
			dict<SigBit, dict<SigBit, Cell*>> unproven_equiv_cells;
 | 
			
		||||
			vector<Cell*> assumes;
 | 
			
		||||
			int unproven_cells_counter = 0;
 | 
			
		||||
 | 
			
		||||
			for (auto cell : module->selected_cells())
 | 
			
		||||
			for (auto cell : module->selected_cells()) {
 | 
			
		||||
				if (cell->type == ID($equiv) && cell->getPort(ID::A) != cell->getPort(ID::B)) {
 | 
			
		||||
					auto bit = sigmap(cell->getPort(ID::Y).as_bit());
 | 
			
		||||
					auto bit_group = bit;
 | 
			
		||||
					if (!nogroup && bit_group.wire)
 | 
			
		||||
					if (!cfg.nogroup && bit_group.wire)
 | 
			
		||||
						bit_group.offset = 0;
 | 
			
		||||
					unproven_equiv_cells[bit_group][bit] = cell;
 | 
			
		||||
					unproven_cells_counter++;
 | 
			
		||||
				} else if (cell->type == ID($assume)) {
 | 
			
		||||
					assumes.push_back(cell);
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			if (unproven_equiv_cells.empty())
 | 
			
		||||
				continue;
 | 
			
		||||
| 
						 | 
				
			
			@ -375,15 +514,16 @@ struct EquivSimplePass : public Pass {
 | 
			
		|||
			}
 | 
			
		||||
 | 
			
		||||
			unproven_equiv_cells.sort();
 | 
			
		||||
			for (auto it : unproven_equiv_cells)
 | 
			
		||||
			for (auto [_, d] : unproven_equiv_cells)
 | 
			
		||||
			{
 | 
			
		||||
				it.second.sort();
 | 
			
		||||
				d.sort();
 | 
			
		||||
 | 
			
		||||
				vector<Cell*> cells;
 | 
			
		||||
				for (auto it2 : it.second)
 | 
			
		||||
					cells.push_back(it2.second);
 | 
			
		||||
				for (auto [_, cell] : d)
 | 
			
		||||
					cells.push_back(cell);
 | 
			
		||||
 | 
			
		||||
				EquivSimpleWorker worker(cells, sigmap, bit2driver, max_seq, short_cones, verbose, model_undef);
 | 
			
		||||
				EquivSimpleWorker::DesignModel model {sigmap, bit2driver};
 | 
			
		||||
				EquivSimpleWorker worker(cells, assumes, model, cfg);
 | 
			
		||||
				success_counter += worker.run();
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										141
									
								
								tests/various/equiv_assume.ys
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										141
									
								
								tests/various/equiv_assume.ys
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,141 @@
 | 
			
		|||
read_verilog -sv <<EOT
 | 
			
		||||
module gold (input D, output Q);
 | 
			
		||||
assign Q = '0;
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
module gate (input D, output Q);
 | 
			
		||||
assume property (D == '0);
 | 
			
		||||
assign Q = D;
 | 
			
		||||
endmodule
 | 
			
		||||
EOT
 | 
			
		||||
 | 
			
		||||
chformal -lower
 | 
			
		||||
async2sync
 | 
			
		||||
design -stash input
 | 
			
		||||
 | 
			
		||||
# using $assert cells in sat verifies
 | 
			
		||||
design -load input
 | 
			
		||||
equiv_make -make_assert gold gate equiv
 | 
			
		||||
prep -top equiv
 | 
			
		||||
sat -set-assumes -prove-asserts -verify
 | 
			
		||||
# this fails
 | 
			
		||||
# sat -prove-asserts -verify
 | 
			
		||||
 | 
			
		||||
# so should $equiv
 | 
			
		||||
## in equiv_simple
 | 
			
		||||
design -load input
 | 
			
		||||
equiv_make gold gate equiv
 | 
			
		||||
equiv_simple -set-assumes equiv
 | 
			
		||||
equiv_status -assert equiv
 | 
			
		||||
 | 
			
		||||
## and equiv_induct
 | 
			
		||||
delete equiv
 | 
			
		||||
equiv_make gold gate equiv
 | 
			
		||||
equiv_induct -set-assumes equiv
 | 
			
		||||
equiv_status -assert equiv
 | 
			
		||||
 | 
			
		||||
# and it works through cells
 | 
			
		||||
design -reset
 | 
			
		||||
read_verilog -sv <<EOT
 | 
			
		||||
module gold (input [1:0] D, output [1:0] Q);
 | 
			
		||||
assign Q = !D;
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
module gate (input [1:0] D, output [1:0] Q);
 | 
			
		||||
assume property (D == 2'b11);
 | 
			
		||||
wire [1:0] G = ~D;
 | 
			
		||||
assign Q = G;
 | 
			
		||||
endmodule
 | 
			
		||||
EOT
 | 
			
		||||
 | 
			
		||||
chformal -lower
 | 
			
		||||
async2sync
 | 
			
		||||
design -stash input2
 | 
			
		||||
 | 
			
		||||
design -load input2
 | 
			
		||||
equiv_make -make_assert gold gate equiv
 | 
			
		||||
prep -top equiv
 | 
			
		||||
sat -set-assumes -prove-asserts -verify
 | 
			
		||||
 | 
			
		||||
design -load input2
 | 
			
		||||
equiv_make gold gate equiv
 | 
			
		||||
equiv_simple -set-assumes equiv
 | 
			
		||||
equiv_status -assert equiv
 | 
			
		||||
 | 
			
		||||
delete equiv
 | 
			
		||||
equiv_make gold gate equiv
 | 
			
		||||
equiv_induct -set-assumes equiv
 | 
			
		||||
equiv_status -assert equiv
 | 
			
		||||
 | 
			
		||||
# and registers
 | 
			
		||||
design -reset
 | 
			
		||||
read_verilog -sv <<EOT
 | 
			
		||||
module gold (input clk, input [1:0] D, output [1:0] Q);
 | 
			
		||||
assign Q = '0;
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
module gate (input clk, input [1:0] D, output [1:0] Q);
 | 
			
		||||
reg [1:0] Dreg;
 | 
			
		||||
assume property (Dreg == 2'b11);
 | 
			
		||||
always @(clk) begin
 | 
			
		||||
    Dreg <= D;
 | 
			
		||||
end
 | 
			
		||||
assign Q = ~Dreg;
 | 
			
		||||
endmodule
 | 
			
		||||
EOT
 | 
			
		||||
 | 
			
		||||
proc
 | 
			
		||||
chformal -lower
 | 
			
		||||
async2sync
 | 
			
		||||
design -stash input3
 | 
			
		||||
 | 
			
		||||
design -load input3
 | 
			
		||||
equiv_make -make_assert gold gate equiv
 | 
			
		||||
prep -top equiv
 | 
			
		||||
sat -set-assumes -prove-asserts -verify
 | 
			
		||||
 | 
			
		||||
design -load input3
 | 
			
		||||
equiv_make gold gate equiv
 | 
			
		||||
equiv_simple -set-assumes equiv
 | 
			
		||||
equiv_status -assert equiv
 | 
			
		||||
 | 
			
		||||
delete equiv
 | 
			
		||||
equiv_make gold gate equiv
 | 
			
		||||
equiv_induct -set-assumes equiv
 | 
			
		||||
equiv_status -assert equiv
 | 
			
		||||
 | 
			
		||||
# so long as the assumption doesn't end up after the equiv
 | 
			
		||||
design -reset
 | 
			
		||||
read_verilog -sv <<EOT
 | 
			
		||||
module gold (input [1:0] D, output [1:0] Q);
 | 
			
		||||
assign Q = !D;
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
module gate (input [1:0] D, output [1:0] Q);
 | 
			
		||||
assume property (G == 2'b00);
 | 
			
		||||
wire [1:0] G = ~D;
 | 
			
		||||
assign Q = G;
 | 
			
		||||
endmodule
 | 
			
		||||
EOT
 | 
			
		||||
 | 
			
		||||
chformal -lower
 | 
			
		||||
async2sync
 | 
			
		||||
design -stash input4
 | 
			
		||||
 | 
			
		||||
logger -expect log "model found: FAIL!" 1
 | 
			
		||||
logger -expect log "Found a total of 2 unproven .equiv cells." 2
 | 
			
		||||
 | 
			
		||||
design -load input4
 | 
			
		||||
equiv_make -make_assert gold gate equiv
 | 
			
		||||
prep -top equiv
 | 
			
		||||
sat -set-assumes -prove-asserts
 | 
			
		||||
 | 
			
		||||
design -load input4
 | 
			
		||||
equiv_make gold gate equiv
 | 
			
		||||
equiv_simple -set-assumes equiv
 | 
			
		||||
equiv_status equiv
 | 
			
		||||
 | 
			
		||||
delete equiv
 | 
			
		||||
equiv_make gold gate equiv
 | 
			
		||||
equiv_induct -set-assumes equiv
 | 
			
		||||
equiv_status equiv
 | 
			
		||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue