mirror of
https://github.com/YosysHQ/sby.git
synced 2025-04-05 22:14:08 +00:00
685 lines
25 KiB
Python
685 lines
25 KiB
Python
#
|
|
# SymbiYosys (sby) -- Front-end for Yosys-based formal verification flows
|
|
#
|
|
# Copyright (C) 2022 Jannis Harder <jix@yosyshq.com> <me@jix.one>
|
|
#
|
|
# Permission to use, copy, modify, and/or distribute this software for any
|
|
# purpose with or without fee is hereby granted, provided that the above
|
|
# copyright notice and this permission notice appear in all copies.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
#
|
|
|
|
import os
|
|
import re
|
|
import subprocess
|
|
from shutil import rmtree, which
|
|
from time import monotonic
|
|
from sby_core import SbyAbort, SbyTask
|
|
|
|
|
|
class SbyAutotuneConfig:
|
|
"""Autotune configuration parsed from the sby file or an external autotune config
|
|
file.
|
|
"""
|
|
def __init__(self):
|
|
self.timeout = None
|
|
self.soft_timeout = 60
|
|
self.wait_percentage = 50
|
|
self.wait_seconds = 10
|
|
self.parallel = "auto"
|
|
|
|
self.presat = None
|
|
self.incr = "auto"
|
|
self.incr_threshold = 20
|
|
self.mem = "auto"
|
|
self.mem_threshold = 10240
|
|
self.forall = "auto"
|
|
|
|
def config_line(self, log, line, file_kind="sby file"):
|
|
option, *arg = line.split(None, 1)
|
|
if not arg:
|
|
log.error(f"{file_kind} syntax error: {line}")
|
|
arg = arg[0].strip()
|
|
|
|
BOOL_OR_ANY = {"on": True, "off": False, "any": None}
|
|
BOOL_ANY_OR_AUTO = {"on": True, "off": False, "any": None, "auto": "auto"}
|
|
ON_ANY_OR_AUTO = {"on": True, "any": None, "auto": "auto"}
|
|
|
|
def enum_option(values):
|
|
if arg not in values:
|
|
values_str = ', '.join(repr(value) for value in sorted(values))
|
|
log.error(f"{file_kind}: invalid value '{arg}' for autotune option {option}, valid values are: {values_str}")
|
|
return values[arg]
|
|
|
|
def int_option():
|
|
try:
|
|
return int(arg)
|
|
except ValueError:
|
|
log.error(f"{file_kind}: invalid value '{arg}' for autotune option {option}, expected an integer value")
|
|
|
|
if option == "timeout":
|
|
self.timeout = "none" if arg == "none" else int_option()
|
|
elif option == "soft_timeout":
|
|
self.soft_timeout = int_option()
|
|
elif option == "wait":
|
|
self.wait_percentage = 0
|
|
self.wait_seconds = 0
|
|
for part in arg.split("+"):
|
|
part = part.strip()
|
|
if part.endswith("%"):
|
|
self.wait_percentage += int(part[:-1].strip())
|
|
else:
|
|
self.wait_seconds += int(part)
|
|
elif option == "parallel":
|
|
self.parallel = "auto" if arg == "auto" else int_option()
|
|
elif option == "presat":
|
|
self.presat = enum_option(BOOL_OR_ANY)
|
|
elif option == "incr":
|
|
self.incr = enum_option(BOOL_ANY_OR_AUTO)
|
|
elif option == "incr_threshold":
|
|
self.incr_threshold = int_option()
|
|
elif option == "mem":
|
|
self.mem = enum_option(ON_ANY_OR_AUTO)
|
|
elif option == "mem_threshold":
|
|
self.mem_threshold = int_option()
|
|
elif option == "forall":
|
|
self.forall = enum_option(ON_ANY_OR_AUTO)
|
|
else:
|
|
log.error(f"{file_kind} syntax error: {line}")
|
|
|
|
def parse_file(self, log, file):
|
|
for line in file:
|
|
line = re.sub(r"\s*(\s#.*)?$", "", line)
|
|
if line == "" or line[0] == "#":
|
|
continue
|
|
self.config_line(log, line.rstrip(), "autotune configuration file")
|
|
|
|
class SbyAutotuneCandidate:
|
|
"""An engine configuration to try and its current state during autotuning.
|
|
"""
|
|
def __init__(self, autotune, engine):
|
|
self.autotune = autotune
|
|
self.engine = engine
|
|
|
|
self.state = "pending"
|
|
self.engine_idx = None
|
|
self.info = f"{' '.join(self.engine)}:"
|
|
self.suspended = 0
|
|
self.suspend = 1
|
|
|
|
self.engine_retcode = None
|
|
self.engine_status = None
|
|
self.total_adjusted_time = None
|
|
|
|
self.soft_timeout = self.autotune.config.soft_timeout
|
|
|
|
if tuple(self.engine) not in self.autotune.candidate_engines:
|
|
self.autotune.active_candidates.append(self)
|
|
self.autotune.candidate_engines.add(tuple(self.engine))
|
|
|
|
def set_engine_idx(self, idx):
|
|
self.engine_idx = idx
|
|
self.info = f"engine_{idx} ({' '.join(self.engine)}):"
|
|
|
|
def set_running(self):
|
|
assert not self.suspended
|
|
assert self.state == "pending"
|
|
assert self in self.autotune.active_candidates
|
|
self.state = "running"
|
|
|
|
def retry_later(self):
|
|
assert self.state == "running"
|
|
assert self in self.autotune.active_candidates
|
|
self.state = "pending"
|
|
self.soft_timeout *= 2
|
|
self.suspended = self.suspend
|
|
|
|
def timed_out(self):
|
|
assert self.state == "running"
|
|
self.autotune.active_candidates.remove(self)
|
|
self.state = "timeout"
|
|
|
|
def failed(self):
|
|
assert self.state == "running"
|
|
self.autotune.active_candidates.remove(self)
|
|
self.autotune.failed_candidates.append(self)
|
|
self.state = "failed"
|
|
|
|
def finished(self):
|
|
assert self.state == "running"
|
|
self.autotune.active_candidates.remove(self)
|
|
self.autotune.finished_candidates.append(self)
|
|
self.state = "finished"
|
|
|
|
def threads(self):
|
|
if self.autotune.config.mode == "prove" and self.engine[0] == "smtbmc":
|
|
return 2
|
|
return 1
|
|
|
|
|
|
class SbyAutotune:
|
|
"""Performs automatic engine selection for a given task.
|
|
"""
|
|
def __init__(self, task, config_file=None):
|
|
self.task_exit_callback = task.exit_callback
|
|
task.exit_callback = lambda: None
|
|
task.check_timeout = lambda: None
|
|
task.status = "TIMEOUT"
|
|
task.retcode = 8
|
|
|
|
task.proc_failed = self.proc_failed
|
|
|
|
self.config = None
|
|
|
|
if config_file:
|
|
with open(config_file) as config:
|
|
self.config.parse_file(task, config)
|
|
|
|
self.task = task
|
|
|
|
self.done = False
|
|
self.threads_running = 0
|
|
|
|
self.next_engine_idx = 0
|
|
|
|
self.model_requests = {}
|
|
|
|
self.timeout = None
|
|
self.best_time = None
|
|
self.have_pending_candidates = False
|
|
|
|
self.active_candidates = []
|
|
self.finished_candidates = []
|
|
self.failed_candidates = []
|
|
|
|
self.candidate_engines = set()
|
|
|
|
def available(self, tool):
|
|
if not which(tool):
|
|
return False
|
|
|
|
if tool == "btorsim":
|
|
error_msg = subprocess.run(
|
|
["btorsim", "--vcd"],
|
|
capture_output=True,
|
|
text=True,
|
|
).stderr
|
|
if "invalid command line option" in error_msg:
|
|
self.log('found version of "btorsim" is too old and does not support the --vcd option')
|
|
return False
|
|
|
|
return True
|
|
|
|
def candidate(self, *engine):
|
|
flat_engine = []
|
|
def flatten(part):
|
|
if part is None:
|
|
return
|
|
elif isinstance(part, (tuple, list)):
|
|
for subpart in part:
|
|
flatten(subpart)
|
|
else:
|
|
flat_engine.append(part)
|
|
|
|
flatten(engine)
|
|
|
|
SbyAutotuneCandidate(self, flat_engine)
|
|
|
|
def configure(self):
|
|
self.config.mode = self.task.opt_mode
|
|
self.config.skip = self.task.opt_skip
|
|
|
|
if self.config.incr == "auto":
|
|
self.config.incr = None
|
|
if self.config.mode != "live":
|
|
steps = self.task.opt_depth - (self.config.skip or 0)
|
|
if steps > self.config.incr_threshold:
|
|
self.log(f"checking more than {self.config.incr_threshold} timesteps ({steps}), disabling nonincremental smtbmc")
|
|
self.config.incr = True
|
|
|
|
if self.config.mem == "auto":
|
|
self.config.mem = None
|
|
if self.task.design is None:
|
|
self.log("warning: unknown amount of memory bits in design")
|
|
elif self.task.design.memory_bits > self.config.mem_threshold:
|
|
self.log(
|
|
f"more than {self.config.mem_threshold} bits of memory in design ({self.task.design.memory_bits} bits), "
|
|
"disabling engines without native memory support"
|
|
)
|
|
self.config.mem = True
|
|
|
|
if self.config.forall == "auto":
|
|
self.config.forall = None
|
|
if self.task.design.forall:
|
|
self.log("design uses $allconst/$allseq, disabling engines without forall support")
|
|
self.config.forall = True
|
|
|
|
if self.config.mode not in ["bmc", "prove"]:
|
|
self.config.presat = None
|
|
|
|
if self.config.parallel == "auto":
|
|
try:
|
|
self.config.parallel = len(os.sched_getaffinity(0))
|
|
except AttributeError:
|
|
self.config.parallel = os.cpu_count() # TODO is this correct?
|
|
|
|
if self.config.timeout is None:
|
|
self.config.timeout = self.task.opt_timeout
|
|
elif self.config.timeout == "none":
|
|
self.config.timeout = None
|
|
|
|
def build_candidates(self):
|
|
if self.config.mode == "live":
|
|
# Not much point in autotuning here...
|
|
self.candidate("aiger", "suprove")
|
|
return
|
|
|
|
if self.config.presat is None:
|
|
presat_flags = [None, "--nopresat"]
|
|
elif self.config.presat:
|
|
presat_flags = [None]
|
|
else:
|
|
presat_flags = ["--nopresat"]
|
|
|
|
if self.config.incr is None:
|
|
noincr_flags = [None, ["--", "--noincr"]]
|
|
elif self.config.incr:
|
|
noincr_flags = [None]
|
|
else:
|
|
noincr_flags = [["--", "--noincr"]]
|
|
|
|
if self.config.forall:
|
|
self.log('disabling engines "smtbmc boolector" and "smtbmc bitwuzla" as they do not support forall')
|
|
else:
|
|
for solver in ["boolector", "bitwuzla"]:
|
|
if not self.available(solver):
|
|
self.log(f'disabling engine "smtbmc {solver}" as the solver "{solver}" was not found')
|
|
continue
|
|
for noincr in noincr_flags:
|
|
for presat in presat_flags:
|
|
self.candidate("smtbmc", presat, solver, noincr)
|
|
|
|
if not self.available("btorsim"):
|
|
self.log('disabling engine "btor" as the "btorsim" tool was not found')
|
|
elif self.config.forall:
|
|
self.log('disabling engine "btor" as it does not support forall')
|
|
else:
|
|
if self.config.mode in ["bmc", "cover"]:
|
|
if not self.available("btormc"):
|
|
self.log('disabling engine "btor btormc" as the "btormc" tool was not found')
|
|
elif self.config.presat:
|
|
self.log('disabling engine "btor btormc" as it does not support presat checking')
|
|
else:
|
|
self.candidate("btor", "btormc")
|
|
|
|
if self.config.mode == "bmc":
|
|
if not self.available("pono"):
|
|
self.log('disabling engine "btor btormc" as the "btormc" tool was not found')
|
|
elif self.config.presat:
|
|
self.log('disabling engine "btor pono" as it does not support presat checking')
|
|
elif self.config.skip:
|
|
self.log('disabling engine "btor pono" as it does not support the "skip" option')
|
|
else:
|
|
self.candidate("btor", "pono")
|
|
|
|
for solver in ["yices", "z3"]:
|
|
if not self.available(solver):
|
|
self.log(f'disabling engine "smtbmc {solver}" as the solver "{solver}" was not found')
|
|
continue
|
|
for unroll in ["--unroll", "--nounroll"]:
|
|
if solver == "yices" and self.config.forall:
|
|
self.log('disabling engine "smtbmc yices" due to limited forall support')
|
|
# TODO yices implicitly uses --noincr for forall problems and
|
|
# requires --stbv which does not play well with memory, still test it?
|
|
continue
|
|
|
|
stmode = "--stdt" if self.config.forall else None
|
|
|
|
for noincr in noincr_flags:
|
|
for presat in presat_flags:
|
|
self.candidate("smtbmc", presat, stmode, unroll, solver, noincr)
|
|
|
|
if self.config.mode not in ["bmc", "prove"]:
|
|
pass
|
|
elif self.config.presat:
|
|
self.log('disabling engines "abc" and "aiger" as they do not support presat checking')
|
|
elif self.config.forall:
|
|
self.log('disabling engines "abc" and "aiger" as they do not support forall')
|
|
elif self.config.mem:
|
|
self.log('disabling engines "abc" and "aiger" as they do not support memory')
|
|
elif self.config.skip:
|
|
self.log('disabling engines "abc" and "aiger" as they do not support the "skip" option')
|
|
elif self.config.mode == "bmc":
|
|
self.candidate("abc", "bmc3")
|
|
|
|
if not self.available("aigbmc"):
|
|
self.log('disabling engine "aiger aigbmc" as the "aigbmc" tool was not found')
|
|
else:
|
|
self.candidate("aiger", "aigbmc")
|
|
# abc sim3 will never finish
|
|
elif self.config.mode == "prove":
|
|
self.candidate("abc", "pdr")
|
|
|
|
if not self.available("suprove"):
|
|
self.log('disabling engine "aiger suprove" as the "suprove" tool was not found')
|
|
else:
|
|
self.candidate("aiger", "suprove")
|
|
# avy seems to crash in the presence of assumptions
|
|
|
|
def log(self, message):
|
|
self.task.log(message)
|
|
|
|
def run(self):
|
|
self.task.handle_non_engine_options()
|
|
self.config = self.task.autotune_config or SbyAutotuneConfig()
|
|
|
|
if "expect" not in self.task.options:
|
|
self.task.expect = ["PASS", "FAIL"]
|
|
# TODO check that solvers produce consistent results?
|
|
|
|
if "TIMEOUT" in self.task.expect:
|
|
self.task.error("cannot autotune a task with option 'expect timeout'")
|
|
|
|
if self.task.reusedir:
|
|
rmtree(f"{self.task.workdir}/model", ignore_errors=True)
|
|
else:
|
|
self.task.copy_src()
|
|
|
|
self.model(None, "prep")
|
|
self.task.taskloop.run()
|
|
|
|
if self.task.status == "ERROR":
|
|
return
|
|
|
|
self.configure()
|
|
|
|
self.build_candidates()
|
|
if not self.active_candidates:
|
|
self.error("no supported engines found for the current configuration and design")
|
|
self.log(f"testing {len(self.active_candidates)} engine configurations...")
|
|
|
|
self.start_engines()
|
|
self.task.taskloop.run()
|
|
|
|
self.finished_candidates.sort(key=lambda candidate: candidate.total_adjusted_time)
|
|
|
|
if self.failed_candidates:
|
|
self.log("failed engines:")
|
|
for candidate in self.failed_candidates:
|
|
self.log(
|
|
f" engine_{candidate.engine_idx}: {' '.join(candidate.engine)}"
|
|
f" (returncode={candidate.engine_retcode} status={candidate.engine_status})"
|
|
)
|
|
|
|
if self.finished_candidates:
|
|
self.log("finished engines:")
|
|
for place, candidate in list(enumerate(self.finished_candidates, 1))[::-1]:
|
|
self.log(
|
|
f" #{place}: engine_{candidate.engine_idx}: {' '.join(candidate.engine)}"
|
|
f" ({candidate.total_adjusted_time} seconds, status={candidate.engine_status})"
|
|
)
|
|
|
|
if self.finished_candidates:
|
|
self.task.status = "AUTOTUNED"
|
|
self.task.retcode = 0
|
|
elif self.failed_candidates:
|
|
self.task.status = "FAIL"
|
|
self.task.retcode = 2
|
|
|
|
self.task_exit_callback()
|
|
|
|
def next_candidate(self, peek=False):
|
|
# peek=True is used to check whether we need to timeout running candidates to
|
|
# give other candidates a chance.
|
|
can_retry = None
|
|
|
|
for candidate in self.active_candidates:
|
|
if candidate.state == "pending":
|
|
if not candidate.suspended:
|
|
return candidate
|
|
if can_retry is None or can_retry.suspended > candidate.suspended:
|
|
can_retry = candidate
|
|
|
|
if can_retry and not peek:
|
|
shift = can_retry.suspended
|
|
for candidate in self.active_candidates:
|
|
if candidate.state == "pending":
|
|
candidate.suspended -= shift
|
|
|
|
return can_retry
|
|
|
|
def start_engines(self):
|
|
self.task.taskloop.poll_now = True
|
|
|
|
while self.threads_running < self.config.parallel:
|
|
candidate = self.next_candidate()
|
|
if candidate is None:
|
|
self.have_pending_candidates = False
|
|
return
|
|
|
|
candidate_threads = candidate.threads()
|
|
if self.threads_running:
|
|
if self.threads_running + candidate_threads > self.config.parallel:
|
|
break
|
|
|
|
candidate.set_running()
|
|
candidate.set_engine_idx(self.next_engine_idx)
|
|
self.next_engine_idx += 1
|
|
|
|
try:
|
|
engine_task = SbyAutotuneTask(self, candidate)
|
|
pending = sum(c.state == "pending" for c in self.active_candidates)
|
|
self.log(f"{candidate.info} starting... ({pending} configurations pending)")
|
|
self.threads_running += candidate_threads
|
|
engine_task.setup_procs(False)
|
|
except SbyAbort:
|
|
pass
|
|
|
|
self.have_pending_candidates = bool(self.next_candidate(peek=True))
|
|
|
|
def engine_finished(self, engine_task):
|
|
self.threads_running -= engine_task.candidate.threads()
|
|
|
|
candidate = engine_task.candidate
|
|
|
|
time = candidate.total_adjusted_time
|
|
|
|
if engine_task.status == "TIMEOUT":
|
|
if self.timeout is None or time < self.timeout:
|
|
candidate.retry_later()
|
|
self.log(f"{candidate.info} timeout ({time} seconds, will be retried if necessary)")
|
|
else:
|
|
candidate.timed_out()
|
|
self.log(f"{candidate.info} timeout ({time} seconds)")
|
|
elif engine_task.retcode:
|
|
candidate.failed()
|
|
self.log(f"{candidate.info} failed (returncode={candidate.engine_retcode} status={candidate.engine_status})")
|
|
else:
|
|
candidate.finished()
|
|
|
|
self.log(f"{candidate.info} succeeded (status={candidate.engine_status})")
|
|
|
|
if self.best_time is None:
|
|
self.log(f"{candidate.info} took {time} seconds (first engine to finish)")
|
|
self.best_time = time
|
|
elif time < self.best_time:
|
|
self.log(f"{candidate.info} took {time} seconds (best candidate, previous best: {self.best_time} seconds)")
|
|
self.best_time = time
|
|
else:
|
|
self.log(f"{candidate.info} took {time} seconds")
|
|
|
|
new_timeout = int(time + self.config.wait_seconds + time * self.config.wait_percentage // 100)
|
|
|
|
if self.timeout is None or new_timeout < self.timeout:
|
|
self.timeout = new_timeout
|
|
|
|
self.start_engines()
|
|
|
|
def model(self, engine_task, name):
|
|
if self.task not in self.task.taskloop.tasks:
|
|
self.task.taskloop.tasks.append(self.task)
|
|
if name in self.model_requests:
|
|
request = self.model_requests[name]
|
|
else:
|
|
self.model_requests[name] = request = SbyModelRequest(self, name)
|
|
|
|
request.attach_engine_task(engine_task)
|
|
|
|
return request.procs
|
|
|
|
def proc_failed(self, proc):
|
|
for name, request in self.model_requests.items():
|
|
if proc in request.procs:
|
|
for task in request.engine_tasks:
|
|
task = task or self.task
|
|
task.status = "ERROR"
|
|
task.log(f"could not prepare model '{name}', see toplevel logfile")
|
|
task.terminate()
|
|
pass
|
|
|
|
|
|
class SbyModelRequest:
|
|
"""Handles sharing and canceling of model generation from several SbyAutotuneTask
|
|
instances.
|
|
"""
|
|
def __init__(self, autotune, name):
|
|
self.autotune = autotune
|
|
self.name = name
|
|
self.engine_tasks = []
|
|
|
|
autotune.log(f"model '{name}': preparing now...")
|
|
|
|
self.make_model()
|
|
|
|
def make_model(self):
|
|
self.start_time = monotonic()
|
|
self.total_time = None
|
|
self.min_time = 0
|
|
|
|
self.procs = self.autotune.task.model(self.name)
|
|
for proc in self.procs:
|
|
proc.register_dep(self)
|
|
|
|
def attach_engine_task(self, engine_task):
|
|
if self.total_time is None:
|
|
if engine_task:
|
|
if self.start_time is None:
|
|
model_time = 0
|
|
extra_time = self.min_time
|
|
else:
|
|
model_time = monotonic() - self.start_time
|
|
extra_time = max(0, self.min_time - model_time)
|
|
|
|
engine_task.model_time += model_time
|
|
|
|
engine_task.check_timeout(extra_time)
|
|
|
|
if self.start_time is None:
|
|
self.make_model()
|
|
|
|
self.engine_tasks.append(engine_task)
|
|
if engine_task:
|
|
engine_task.model_requests.append(self)
|
|
|
|
else:
|
|
if engine_task:
|
|
engine_task.model_time += self.total_time
|
|
|
|
def detach_engine_task(self, engine_task):
|
|
self.engine_tasks.remove(engine_task)
|
|
if not self.engine_tasks and self.total_time is None:
|
|
self.autotune.log(f"cancelled model '{self.name}'")
|
|
del self.autotune.task.models[self.name]
|
|
for proc in self.procs:
|
|
proc.terminate(True)
|
|
|
|
self.min_time = max(self.min_time, monotonic() - self.start_time)
|
|
self.start_time = None
|
|
|
|
self.procs = []
|
|
|
|
def poll(self):
|
|
if self.total_time is None and all(proc.finished for proc in self.procs):
|
|
self.autotune.log(f"prepared model '{self.name}'")
|
|
|
|
self.total_time = self.min_time = monotonic() - self.start_time
|
|
|
|
|
|
class SbyAutotuneTask(SbyTask):
|
|
"""Task that shares the workdir with a parent task, runs in parallel to other
|
|
autotune tasks and can be cancelled independent from other autotune tasks while
|
|
sharing model generation with other tasks.
|
|
"""
|
|
def __init__(self, autotune, candidate):
|
|
task = autotune.task
|
|
self.autotune = autotune
|
|
self.candidate = candidate
|
|
super().__init__(
|
|
sbyconfig=None,
|
|
workdir=task.workdir,
|
|
early_logs=[],
|
|
reusedir=True,
|
|
taskloop=task.taskloop,
|
|
logfile=open(f"{task.workdir}/engine_{candidate.engine_idx}_autotune.txt", "a"),
|
|
)
|
|
self.task_local_abort = True
|
|
self.log_targets = [self.logfile]
|
|
self.exe_paths = autotune.task.exe_paths
|
|
self.reusedir = False
|
|
self.design = autotune.task.design
|
|
|
|
self.model_time = 0
|
|
self.model_requests = []
|
|
|
|
self.exit_callback = self.autotune_exit_callback
|
|
|
|
|
|
def parse_config(self, f):
|
|
super().parse_config(f)
|
|
self.engines = []
|
|
|
|
def engine_list(self):
|
|
return [(self.candidate.engine_idx, self.candidate.engine)]
|
|
|
|
def copy_src(self):
|
|
pass
|
|
|
|
def model(self, model_name):
|
|
self.log(f"using model '{model_name}'")
|
|
return self.autotune.model(self, model_name)
|
|
|
|
def autotune_exit_callback(self):
|
|
self.summarize()
|
|
|
|
self.candidate.total_adjusted_time = int(monotonic() - self.start_clock_time + self.model_time)
|
|
self.candidate.engine_retcode = self.retcode
|
|
self.candidate.engine_status = self.status
|
|
|
|
self.autotune.engine_finished(self)
|
|
for request in self.model_requests:
|
|
request.detach_engine_task(self)
|
|
|
|
def check_timeout(self, extra_time=0):
|
|
model_time = self.model_time + extra_time
|
|
total_adjusted_time = int(monotonic() - self.start_clock_time + model_time)
|
|
|
|
if self.autotune.timeout is not None:
|
|
timeout = self.autotune.timeout
|
|
else:
|
|
if not self.autotune.have_pending_candidates:
|
|
return
|
|
timeout = self.candidate.soft_timeout
|
|
|
|
if not self.timeout_reached and total_adjusted_time >= timeout:
|
|
self.log(f"Reached autotune TIMEOUT ({timeout} seconds). Terminating all subprocesses.")
|
|
self.status = "TIMEOUT"
|
|
self.total_adjusted_time = total_adjusted_time
|
|
self.terminate(timeout=True)
|