mirror of
https://github.com/YosysHQ/sby.git
synced 2025-04-06 22:34:07 +00:00
Add inductive invariants example
Signed-off-by: Claire Xenia Wolf <claire@clairexen.net>
This commit is contained in:
parent
ab9d4fd3cf
commit
4a07e026dd
3
docs/examples/indinv/.gitignore
vendored
Normal file
3
docs/examples/indinv/.gitignore
vendored
Normal file
|
@ -0,0 +1,3 @@
|
|||
/prove_p0_k/
|
||||
/prove_p0_p[0123]/
|
||||
/prove_p23_p[0123]/
|
120
docs/examples/indinv/README.md
Normal file
120
docs/examples/indinv/README.md
Normal file
|
@ -0,0 +1,120 @@
|
|||
Proving and Using Inductive Invariants for Interval Property Checking
|
||||
=====================================================================
|
||||
|
||||
Inductive invariants are boolean functions over the design state, that
|
||||
1. return true for every reachable state (=invariants), and
|
||||
2. if they return true for a state then they will also return true
|
||||
for every state reachable from the given state (=inductive).
|
||||
Formally, inductive invariants are sets of states that are closed under
|
||||
the state transition function (=inductive), and contain the entire set
|
||||
of reachable states (=invariants).
|
||||
|
||||
A user-friendly set of features to support Inductive Invariants (and Interval
|
||||
Property Checking) is in development. Until this is completed we recommend
|
||||
the following technique for proving and using inductive invariants.
|
||||
|
||||
Consider the following circuit (stripped-down [example.sv](example.sv)):
|
||||
|
||||
```SystemVerilog
|
||||
module example(input logic clk, output reg [4:0] state);
|
||||
initial state = 27;
|
||||
always_ff @(posedge clk) state <= (5'd 2 * state - 5'd 1) ^ (state & 5'd 7);
|
||||
always_comb assert (state != 0);
|
||||
endmodule
|
||||
```
|
||||
|
||||
For better understanding of this circuit we provide the complete state graph
|
||||
for that example design (as generated by [example.py](example.py)):
|
||||
|
||||
```
|
||||
The 5-bit function f(x) produces 2 loops:
|
||||
f = lambda x: (2*x-1) ^ (x&7)
|
||||
|
||||
4-Element Loop:
|
||||
31 ->- 26 ->- 17 ->- 0 ->- 31
|
||||
8 Lead-Ins:
|
||||
0 -<- 1 -<- 2
|
||||
`<- 18
|
||||
17 -<- 10 -<- 7
|
||||
`<- 23
|
||||
26 -<- 15 -<- 8
|
||||
`<- 24
|
||||
31 -<- 16 -<- 9
|
||||
`<- 25
|
||||
|
||||
4-Element Loop:
|
||||
28 ->- 19 ->- 6 ->- 13 ->- 28
|
||||
8 Lead-Ins:
|
||||
6 -<- 3 -<- 4
|
||||
`<- 20
|
||||
13 -<- 22 -<- 11
|
||||
`<- 27
|
||||
19 -<- 12 -<- 5
|
||||
`<- 21
|
||||
28 -<- 29 -<- 14
|
||||
`<- 30
|
||||
|
||||
Loop Membership:
|
||||
(31, 26, 17, 0) |***....****....****....****....*|
|
||||
(28, 19, 6, 13) |...****....****....****....****.|
|
||||
```
|
||||
|
||||
We can see that there are two distinct sets of states. The assertion `state != 0` holds
|
||||
because the init state 27 is in the second set of states, and the zero-state is in the
|
||||
first set of states. Let's call the `state != 0` property `p0`:
|
||||
|
||||
```SystemVerilog
|
||||
let p0 = (state != 0);
|
||||
```
|
||||
|
||||
So `state != 0` is a true invariant for our circuit, but it is not an inductive invariant,
|
||||
because we can go from a state for which `state != 0` is true to a state for
|
||||
which it is false. Specifically there are two such states for this circuit: 1 and 17
|
||||
|
||||
(The property `state != 0` is k-inductive for k=4, but for this example we are
|
||||
only interested in 1-induction.)
|
||||
|
||||
However, the following property would be inductive, as can be easily confirmed
|
||||
by looking up the 4 states in the state chart above.
|
||||
|
||||
```SystemVerilog
|
||||
let p1 = (state == 28 || state == 19 || state == 6 || state == 13);
|
||||
```
|
||||
|
||||
Or, using more fancy SystemVerilog syntax:
|
||||
|
||||
```SystemVerilog
|
||||
let p1 = (state inside {28, 19, 6, 13});
|
||||
```
|
||||
|
||||
But `p1` is not an invariant of our circuit, as can be easily seen: The initial
|
||||
state 27 is not one of the 4 states included in our property.
|
||||
|
||||
We can of course add additional states to our property until it covers the entire
|
||||
path from the initial state to state 13:
|
||||
|
||||
```SystemVerilog
|
||||
let p2 = (state inside {28, 19, 6, 13, 22, 27});
|
||||
```
|
||||
|
||||
The property `p2` is an inductive invariant. Actually, it is an exact
|
||||
description of the reachable state space. (As such it is by definition an
|
||||
invariant of the circuit, and inductive.)
|
||||
|
||||
However, in real-world verification problems we can't usually enumerate states
|
||||
like this. Instead, we need to find more generic functions that are inductive
|
||||
invariants of the circuit. In almost all cases those will be functions that
|
||||
over-estimate the set of reachable states, instead of describing it exact.
|
||||
|
||||
One such function for the above design would be the following property.
|
||||
|
||||
```SystemVerilog
|
||||
let p3 = (state[0] & state[1]) ^ state[2];
|
||||
```
|
||||
|
||||
The SBY file [prove_p23.sby](prove_p23.sby) demonstrates how to prove that `p2`
|
||||
and `p3` are inductive invariants. (Trying to prove `p0` or `p1` in that manner
|
||||
fails, as they are not inductive invariants.)
|
||||
|
||||
And finally [prove_p0.sby](prove_p0.sby) demonstrates how to prove the original
|
||||
property `p0`, using the inductive invariants we found to strengthen the proof.
|
96
docs/examples/indinv/example.py
Normal file
96
docs/examples/indinv/example.py
Normal file
|
@ -0,0 +1,96 @@
|
|||
from collections import defaultdict
|
||||
import inspect
|
||||
|
||||
N = 32
|
||||
f = lambda x: (2*x-1) ^ (x&7)
|
||||
|
||||
table = [f(i) & (N-1) for i in range(N)]
|
||||
rtable = [table.count(i) for i in range(N)]
|
||||
|
||||
def getPath(v):
|
||||
if table[v] is None:
|
||||
return [v]
|
||||
bak = table[v]
|
||||
table[v] = None
|
||||
r = [v] + getPath(bak)
|
||||
table[v] = bak
|
||||
return r
|
||||
|
||||
def getPaths():
|
||||
visited = set()
|
||||
paths = list()
|
||||
for i in range(N):
|
||||
if rtable[i] == 0:
|
||||
paths.append(getPath(i))
|
||||
for path in paths:
|
||||
for i in path:
|
||||
visited.add(i)
|
||||
for i in range(N):
|
||||
if i not in visited:
|
||||
paths.append(getPath(i))
|
||||
for j in paths[-1]:
|
||||
visited.add(j)
|
||||
return paths
|
||||
|
||||
pathsByLidx = defaultdict(set)
|
||||
loopsByIdx = dict()
|
||||
loopsByLidx = dict()
|
||||
|
||||
for path in getPaths():
|
||||
i = path.index(path[-1])+1
|
||||
head, loop, lidx = tuple(path[:i]), tuple(path[i:]), max(path[i:])
|
||||
pathsByLidx[lidx].add((head, loop))
|
||||
|
||||
print()
|
||||
print("The %d-bit function f(x) produces %d loops:" % (N.bit_length()-1, len(pathsByLidx)))
|
||||
print(" ", inspect.getsource(f).strip())
|
||||
|
||||
for lidx, paths in pathsByLidx.items():
|
||||
loop = None
|
||||
for path in paths:
|
||||
for i in path[0] + path[1]:
|
||||
loopsByIdx[i] = lidx
|
||||
if loop is None or path[1][0] > loop[0]:
|
||||
loop = path[1]
|
||||
|
||||
loopsByLidx[lidx] = loop
|
||||
|
||||
print()
|
||||
print("%d-Element Loop:" % len(loop))
|
||||
print(" ", " ->- ".join(["%2d" % i for i in loop + (loop[0],)]))
|
||||
|
||||
lines = []
|
||||
lastPath = []
|
||||
for path in sorted([tuple(reversed(p[0])) for p in paths]):
|
||||
line = ""
|
||||
for i in range(len(path)):
|
||||
if i < len(lastPath) and lastPath[i] == path[i]:
|
||||
line += " %s " % (" " if i == 0 else "| ")
|
||||
else:
|
||||
line += " %s %2d" % (" " if i == 0 else "`<-" if len(lastPath) else "-<-", path[i])
|
||||
lastPath = []
|
||||
lastPath = path
|
||||
lines.append(line)
|
||||
|
||||
for i in range(len(lines)-1, -1, -1):
|
||||
line, nextline = list(lines[i]), "" if i == len(lines)-1 else lines[i+1]
|
||||
if len(nextline) < len(line): nextline = nextline.ljust(len(line))
|
||||
|
||||
for k in range(len(line)):
|
||||
if line[k] == "|" and nextline[k] in " -":
|
||||
line[k] = " "
|
||||
|
||||
lines[i] = "".join(line)
|
||||
|
||||
print("%d Lead-Ins:" % len(lines))
|
||||
for line in lines:
|
||||
print(line)
|
||||
|
||||
print()
|
||||
print("Loop Membership:")
|
||||
for lidx in pathsByLidx:
|
||||
print("%18s |" % (loopsByLidx[lidx],), end="")
|
||||
for i in range(N):
|
||||
print("*" if loopsByIdx[i] == lidx else ".", end="")
|
||||
print("|")
|
||||
print()
|
18
docs/examples/indinv/example.sv
Normal file
18
docs/examples/indinv/example.sv
Normal file
|
@ -0,0 +1,18 @@
|
|||
module example(clk, state);
|
||||
input logic clk;
|
||||
output logic [4:0] state = 27;
|
||||
|
||||
always_ff @(posedge clk) state <= (5'd 2 * state - 5'd 1) ^ (state & 5'd 7);
|
||||
|
||||
let p0 = (state != 0);
|
||||
let p1 = (state inside {28, 19, 6, 13});
|
||||
let p2 = (state inside {28, 19, 6, 13, 22, 27});
|
||||
let p3 = (state[0] & state[1]) ^ state[2];
|
||||
|
||||
`ifdef ASSERT_PX
|
||||
always_comb assert (`ASSERT_PX);
|
||||
`endif
|
||||
`ifdef ASSUME_PX
|
||||
always_comb assume (`ASSUME_PX);
|
||||
`endif
|
||||
endmodule
|
27
docs/examples/indinv/prove_p0.sby
Normal file
27
docs/examples/indinv/prove_p0.sby
Normal file
|
@ -0,0 +1,27 @@
|
|||
[tasks]
|
||||
: p0
|
||||
: p1
|
||||
p2
|
||||
p3
|
||||
k
|
||||
|
||||
[options]
|
||||
mode prove
|
||||
k: depth 6
|
||||
~k: depth 1
|
||||
|
||||
[engines]
|
||||
smtbmc
|
||||
|
||||
[script]
|
||||
read -verific
|
||||
read -define ASSERT_PX=p0
|
||||
p0: read -define ASSUME_PX=p0
|
||||
p1: read -define ASSUME_PX=p1
|
||||
p2: read -define ASSUME_PX=p2
|
||||
p3: read -define ASSUME_PX=p3
|
||||
read -sv example.sv
|
||||
prep -top example
|
||||
|
||||
[files]
|
||||
example.sv
|
26
docs/examples/indinv/prove_p23.sby
Normal file
26
docs/examples/indinv/prove_p23.sby
Normal file
|
@ -0,0 +1,26 @@
|
|||
[tasks]
|
||||
: p0 unknown
|
||||
: p1 failing
|
||||
p2
|
||||
p3
|
||||
|
||||
[options]
|
||||
mode prove
|
||||
depth 1
|
||||
unknown: expect unknown
|
||||
failing: expect fail
|
||||
|
||||
[engines]
|
||||
smtbmc
|
||||
|
||||
[script]
|
||||
read -verific
|
||||
p0: read -define ASSERT_PX=p0
|
||||
p1: read -define ASSERT_PX=p1
|
||||
p2: read -define ASSERT_PX=p2
|
||||
p3: read -define ASSERT_PX=p3
|
||||
read -sv example.sv
|
||||
prep -top example
|
||||
|
||||
[files]
|
||||
example.sv
|
Loading…
Reference in a new issue