forked from libre-chip/fayalite
Add test module exercising formal verification.
This commit is contained in:
parent
3d5d8c54b6
commit
c1f1a8b749
133
crates/fayalite/tests/formal.rs
Normal file
133
crates/fayalite/tests/formal.rs
Normal file
|
@ -0,0 +1,133 @@
|
|||
// SPDX-License-Identifier: LGPL-3.0-or-later
|
||||
// See Notices.txt for copyright information
|
||||
//! Formal tests in Fayalite
|
||||
|
||||
use fayalite::{
|
||||
cli::FormalMode,
|
||||
clock::{Clock, ClockDomain},
|
||||
expr::{CastTo, HdlPartialEq},
|
||||
firrtl::ExportOptions,
|
||||
formal::{any_seq, formal_reset, hdl_assert, hdl_assume},
|
||||
hdl_module,
|
||||
int::{Bool, UInt},
|
||||
module::{connect, connect_any, reg_builder, wire},
|
||||
reset::ToReset,
|
||||
testing::assert_formal,
|
||||
};
|
||||
|
||||
/// Test hidden state
|
||||
///
|
||||
/// Hidden state can cause problems for induction, since the formal engine
|
||||
/// can assign invalid values to the state registers, making it traverse
|
||||
/// valid but unreachable states.
|
||||
///
|
||||
/// One solution is to go sufficiently in the past so the engine is forced
|
||||
/// to eventually take a reachable state. This may be hampered by
|
||||
/// existence of loops, then assumptions may be added to break them.
|
||||
///
|
||||
/// Another solution is to "open the black box" and add additional
|
||||
/// assertions involving the hidden state, so that the unreachable states
|
||||
/// become invalid as well.
|
||||
///
|
||||
/// Both approaches are taken here.
|
||||
///
|
||||
/// See [Claire Wolf's presentation] and [Zipcpu blog article].
|
||||
///
|
||||
/// [Claire Wolf's presentation]: https://web.archive.org/web/20200115081517fw_/http://www.clifford.at/papers/2017/smtbmc-sby/
|
||||
/// [Zipcpu blog article]: https://zipcpu.com/blog/2018/03/10/induction-exercise.html
|
||||
mod hidden_state {
|
||||
use super::*;
|
||||
/// Test hidden state by shift registers
|
||||
///
|
||||
/// The code implement the ideas from an article in the [Zipcpu blog]. Two
|
||||
/// shift registers are fed from the same input, so they should always have
|
||||
/// the same value. However the only observable is a comparison of their
|
||||
/// last bit, all the others are hidden. To complicate matters, an enable
|
||||
/// signal causes a loop in state space.
|
||||
///
|
||||
/// [Zipcpu blog]: https://zipcpu.com/blog/2018/03/10/induction-exercise.html
|
||||
#[test]
|
||||
fn shift_register() {
|
||||
enum ConstraintMode {
|
||||
WithExtraAssertions,
|
||||
WithExtraAssumptions,
|
||||
}
|
||||
use ConstraintMode::*;
|
||||
#[hdl_module]
|
||||
fn test_module(constraint_mode: ConstraintMode) {
|
||||
#[hdl]
|
||||
let clk: Clock = m.input();
|
||||
#[hdl]
|
||||
let cd = wire();
|
||||
connect(
|
||||
cd,
|
||||
#[hdl]
|
||||
ClockDomain {
|
||||
clk,
|
||||
rst: formal_reset().to_reset(),
|
||||
},
|
||||
);
|
||||
// input signal for the shift registers
|
||||
#[hdl]
|
||||
let i: Bool = wire();
|
||||
connect(i, any_seq(Bool));
|
||||
// shift enable signal
|
||||
#[hdl]
|
||||
let en: Bool = wire();
|
||||
connect(en, any_seq(Bool));
|
||||
// comparison output
|
||||
#[hdl]
|
||||
let o: Bool = wire();
|
||||
// shift registers, with enable
|
||||
#[hdl]
|
||||
let r1 = reg_builder().clock_domain(cd).reset(0u8);
|
||||
#[hdl]
|
||||
let r2 = reg_builder().clock_domain(cd).reset(0u8);
|
||||
#[hdl]
|
||||
if en {
|
||||
connect_any(r1, (r1 << 1) | i.cast_to(UInt[1]));
|
||||
connect_any(r2, (r2 << 1) | i.cast_to(UInt[1]));
|
||||
}
|
||||
// compare last bits of both shift registers
|
||||
connect(o, r1[7].cmp_eq(r2[7]));
|
||||
|
||||
// what we want to prove: last bits are always equal
|
||||
hdl_assert(clk, o, "");
|
||||
|
||||
// additional terms below are only needed to assist with the induction proof
|
||||
match constraint_mode {
|
||||
WithExtraAssertions => {
|
||||
// "Open the box": add assertions about hidden state.
|
||||
// In this case, the hidden bits are also always equal.
|
||||
hdl_assert(clk, r1.cmp_eq(r2), "");
|
||||
}
|
||||
WithExtraAssumptions => {
|
||||
// Break the loop, do not allow "en" to remain low forever
|
||||
#[hdl]
|
||||
let past_en_reg = reg_builder().clock_domain(cd).reset(false);
|
||||
connect(past_en_reg, en);
|
||||
hdl_assume(clk, past_en_reg | en, "");
|
||||
}
|
||||
}
|
||||
}
|
||||
// we need a minimum of 16 steps so we can constrain all eight shift register bits,
|
||||
// given that we are allowed to disable the shift once every two cycles.
|
||||
assert_formal(
|
||||
"shift_register_with_assumptions",
|
||||
test_module(WithExtraAssumptions),
|
||||
FormalMode::Prove,
|
||||
16,
|
||||
None,
|
||||
ExportOptions::default(),
|
||||
);
|
||||
// here a couple of cycles is enough
|
||||
assert_formal(
|
||||
"shift_register_with_assertions",
|
||||
test_module(WithExtraAssertions),
|
||||
FormalMode::Prove,
|
||||
2,
|
||||
None,
|
||||
ExportOptions::default(),
|
||||
);
|
||||
}
|
||||
}
|
Loading…
Reference in a new issue