WIP writing docs -- refactor #[hdl] docs to be a module tree for easier navigation

This commit is contained in:
Jacob Lifshay 2024-07-18 00:13:28 -07:00
parent 190e440b35
commit 153dc261e3
Signed by: programmerjake
SSH key fingerprint: SHA256:B1iRVvUJkvd7upMIiMqn6OyxvD2SgJkAH3ZnUOj6z+c
18 changed files with 403 additions and 252 deletions

View file

@ -15,4 +15,4 @@ jobs:
with:
save-if: ${{ github.ref == 'refs/heads/master' }}
- run: cargo test
- run: cargo doc
- run: cargo doc --features=unstable-doc

View file

@ -27,3 +27,9 @@ trybuild = { workspace = true }
[build-dependencies]
fayalite-visit-gen = { workspace = true }
[features]
unstable-doc = []
[package.metadata.docs.rs]
features = ["unstable-doc"]

View file

@ -0,0 +1,29 @@
#![doc = include_str!("../README.md")]
//!
//! # Organization
//!
//! All Fayalite-based designs are organized as one or more [modules][`module::Module`]
//! -- modules are created by writing a Rust function with the
//! [`#[hdl_module]` attribute][hdl_module]. You can then invoke the function to create a module.
//! You use the implicitly-added [`m: ModuleBuilder`][`module::ModuleBuilder`] variable in that
//! function to add inputs/outputs and other components to that module.
//!
//! ```
//! # use fayalite::{hdl_module, int::UInt};
//! #
//! #[hdl_module]
//! pub fn example_module() {
//! #[hdl]
//! let an_input: UInt<10> = m.input(); // create an input that is a 10-bit unsigned integer
//! #[hdl]
//! let some_output: UInt<10> = m.output();
//! m.connect(some_output, an_input); // assigns the value of `an_input` to `some_output`
//! }
//! ```
pub mod modules;
pub mod semantics;
#[allow(unused)]
use crate::{hdl_module, module};

View file

@ -0,0 +1,19 @@
//! # Fayalite Modules
//!
//! The [`#[hdl_module]`][`crate::hdl_module`] attribute is applied to a Rust
//! function so that that function creates a [`Module`][`crate::module::Module`] when called.
//! In the function body it will implicitly create a
//! variable [`m: ModuleBuilder`][`crate::module::ModuleBuilder`].
//! # Module Kinds
//!
//! There are two different kinds of modules:
//!
//! * [Normal modules][`normal_module`]. These are used for general Fayalite-based code.
//! * [Extern modules][`extern_module`]. These are for when you want to use modules written in
//! some other language, such as Verilog.
//!
//! See also: [Module Bodies][`module_bodies`]
pub mod extern_module;
pub mod module_bodies;
pub mod normal_module;

View file

@ -0,0 +1,19 @@
//! These are for when you want to use modules written in
//! some other language, such as Verilog.
//!
//! You create an extern module by using an [`#[hdl_module(extern)]`][crate::hdl_module] attribute
//! on your module function. You then create [inputs/outputs] like for normal modules, then you
//! can set the verilog name and parameters using [`ModuleBuilder`] methods:
//!
//! * [`verilog_name()`][`ModuleBuilder::verilog_name`]
//! * [`parameter_int()`][`ModuleBuilder::parameter_int`]
//! * [`parameter_str()`][`ModuleBuilder::parameter_str`]
//! * [`parameter_raw_verilog()`][`ModuleBuilder::parameter_raw_verilog`]
//! * [`parameter()`][`ModuleBuilder::parameter`]
//!
//! These use the [`ExternModule`][`crate::module::ExternModule`] tag type.
//!
//! [inputs/outputs]: crate::_docs::modules::module_bodies::hdl_let_statements::inputs_outputs
#[allow(unused)]
use crate::module::ModuleBuilder;

View file

@ -0,0 +1,8 @@
//! # Module Function Bodies
//!
//! The `#[hdl_module]` attribute lets you have statements/expressions with `#[hdl]` annotations
//! and `_hdl`-suffixed literals in the module function's body
pub mod hdl_if_statements;
pub mod hdl_let_statements;
pub mod hdl_literals;

View file

@ -0,0 +1,3 @@
//! # `#[hdl] if` Statements
//!
//! FIXME

View file

@ -0,0 +1,7 @@
//! ## `#[hdl] let` statements
pub mod inputs_outputs;
pub mod instances;
pub mod memories;
pub mod registers;
pub mod wires;

View file

@ -0,0 +1,17 @@
//! ### Inputs/Outputs
//!
//! Inputs/Outputs follow [connection semantics], which are unlike assignments in software,
//! so you should read it.
//!
//! ```
//! # use fayalite::{hdl_module, int::UInt, array::Array};
//! # #[hdl_module]
//! # fn module() {
//! #[hdl]
//! let my_input: UInt<10> = m.input();
//! #[hdl]
//! let my_output: Array<[UInt<10>; 3]> = m.output();
//! # }
//! ```
//!
//! [connection semantics]: crate::_docs::semantics::connection_semantics

View file

@ -0,0 +1,23 @@
//! ### Module Instances
//!
//! module instances are kinda like the hardware equivalent of calling a function,
//! you can create them like so:
//!
//! ```
//! # use fayalite::{hdl_module, int::UInt, array::Array};
//! # #[hdl_module]
//! # fn module() {
//! #[hdl]
//! let my_instance = m.instance(some_module());
//! // now you can use `my_instance`'s inputs/outputs like so:
//! #[hdl]
//! let v: UInt<3> = m.input();
//! m.connect(my_instance.a, v);
//! #[hdl_module]
//! fn some_module() {
//! #[hdl]
//! let a: UInt<3> = m.input();
//! // ...
//! }
//! # }
//! ```

View file

@ -0,0 +1,101 @@
//! # Memories
//!
//! Memories are optimized for storing large amounts of data.
//!
//! When you create a memory, you get a [`MemBuilder`], which you
//! can then use to add memory ports, which is how you can read/write the memory.
//!
//! There are several different ways to create a memory:
//!
//! ## using [`ModuleBuilder::memory()`]
//!
//! This way you have to set the [`depth`][`MemBuilder::depth`] separately.
//!
//! ```
//! # use fayalite::{hdl_module, int::UInt, clock::ClockDomain};
//! # #[hdl_module]
//! # fn module() {
//! // first, we need some IO
//! #[hdl]
//! let cd: ClockDomain = m.input();
//! #[hdl]
//! let read_addr: UInt<8> = m.input();
//! #[hdl]
//! let read_data: UInt<8> = m.output();
//!
//! // now create the memory
//! #[hdl]
//! let mut my_memory = m.memory();
//! my_memory.depth(256); // the memory has 256 elements
//!
//! let read_port = my_memory.new_read_port();
//!
//! // connect up the read port
//! m.connect_any(read_port.addr, read_addr);
//! m.connect(read_port.en, 1_hdl_u1);
//! m.connect(read_port.clk, cd.clk);
//! m.connect(read_data, read_port.data);
//!
//! // we need more IO for the write port
//! #[hdl]
//! let write_addr: UInt<8> = m.input();
//! #[hdl]
//! let do_write: UInt<1> = m.input();
//! #[hdl]
//! let write_data: UInt<8> = m.input();
//!
//! let write_port = my_memory.new_write_port();
//!
//! m.connect_any(write_port.addr, write_addr);
//! m.connect(write_port.en, do_write);
//! m.connect(write_port.clk, cd.clk);
//! m.connect(write_port.data, write_port.data);
//! m.connect(write_port.mask, 1_hdl_u1);
//! # }
//! ```
//!
//! ## using [`ModuleBuilder::memory_array()`]
//!
//! this allows you to specify the memory's underlying array type directly.
//!
//! ```
//! # use fayalite::{hdl_module, int::UInt, memory::MemBuilder};
//! # #[hdl_module]
//! # fn module() {
//! #[hdl]
//! let mut my_memory: MemBuilder<[UInt<8>; 256]> = m.memory_array();
//!
//! let read_port = my_memory.new_read_port();
//! // ...
//! let write_port = my_memory.new_write_port();
//! // ...
//! # }
//! ```
//!
//! ## using [`ModuleBuilder::memory_with_init()`]
//!
//! This allows you to deduce the memory's array type from the data used to initialize the memory.
//!
//! ```
//! # use fayalite::{hdl_module, int::UInt};
//! # #[hdl_module]
//! # fn module() {
//! # #[hdl]
//! # let read_addr: UInt<2> = m.input();
//! #[hdl]
//! let mut my_memory = m.memory_with_init(
//! #[hdl]
//! [0x12_hdl_u8, 0x34_hdl_u8, 0x56_hdl_u8, 0x78_hdl_u8],
//! );
//!
//! let read_port = my_memory.new_read_port();
//! // note that `read_addr` is `UInt<2>` since the memory only has 4 elements
//! m.connect_any(read_port.addr, read_addr);
//! // ...
//! let write_port = my_memory.new_write_port();
//! // ...
//! # }
//! ```
#[allow(unused)]
use crate::{memory::MemBuilder, module::ModuleBuilder};

View file

@ -0,0 +1,25 @@
//! ### Registers
//!
//! Registers are memory devices that will change their state only on a clock
//! edge (or when being reset). They retain their state when not connected to.
//!
//! Registers follow [connection semantics], which are unlike assignments in software, so you should read it.
//!
//! ```
//! # use fayalite::{hdl_module, int::UInt, array::Array, clock::ClockDomain};
//! # #[hdl_module]
//! # fn module() {
//! # let v = true;
//! #[hdl]
//! let cd: ClockDomain = m.input();
//! #[hdl]
//! let my_register: UInt<8> = m.reg_builder().clock_domain(cd).reset(8_hdl_u8);
//! #[hdl]
//! if v {
//! // my_register is only changed when both `v` is set and `cd`'s clock edge occurs.
//! m.connect(my_register, 0x45_hdl_u8);
//! }
//! # }
//! ```
//!
//! [connection semantics]: crate::_docs::semantics::connection_semantics

View file

@ -0,0 +1,29 @@
//! ### Wires
//!
//! Wires are kinda like variables, but unlike registers,
//! they have no memory (they're combinatorial).
//! You must [connect][`ModuleBuilder::connect`] to all wires, so they have a defined value.
//!
//! Wires follow [connection semantics], which are unlike assignments in software, so you should read it.
//!
//! ```
//! # use fayalite::{hdl_module, int::UInt, array::Array, clock::ClockDomain};
//! # #[hdl_module]
//! # fn module() {
//! # let v = true;
//! #[hdl]
//! let cd: ClockDomain = m.input();
//! #[hdl]
//! let my_register: UInt<8> = m.reg_builder().clock_domain(cd).reset(8_hdl_u8);
//! #[hdl]
//! if v {
//! // my_register is only changed when both `v` is set and `cd`'s clock edge occurs.
//! m.connect(my_register, 0x45_hdl_u8);
//! }
//! # }
//! ```
//!
//! [connection semantics]: crate::_docs::semantics::connection_semantics
#[allow(unused)]
use crate::module::ModuleBuilder;

View file

@ -0,0 +1,17 @@
//! # `_hdl`-suffixed literals
//!
//! You can have integer literals with an arbitrary number of bits like so:
//!
//! ```
//! # #[fayalite::hdl_module]
//! # fn module() {
//! let a = 0x1234_hdl_u14; // a UInt<14> with value 0x1234
//! let b = 0x7_hdl_i3; // a SInt<3> with value 0x7
//! let lf = b'\n'_hdl; // a UInt<8> with value b'\n' -- aka. 0x0A
//! let large_a = b'A'_hdl; // a UInt<8> with value b'A' -- aka. 0x41
//! let n5 = -5_hdl_i4; // a SInt<4> with value -5
//! let n1 = -1_hdl_i200; // a SInt<200> with value -1
//! let v = 0xfedcba9876543210_fedcba9876543210_fedcba9876543210_hdl_u192; // a UInt<192>
//! let empty = 0_hdl_u0; // a UInt<0>
//! # }
//! ```

View file

@ -0,0 +1,6 @@
//! # Normal Modules
//!
//! These use the [`NormalModule`][`crate::module::NormalModule`] tag type.
//!
//! See also: [Extern Modules][`super::extern_module`]
//! See also: [Module Bodies][`super::module_bodies`]

View file

@ -0,0 +1,7 @@
//! # Fayalite Semantics
//!
//! Fayalite's semantics are based on [FIRRTL]. Due to their significance, some of the semantics are also documented here.
//!
//! [FIRRTL]: https://github.com/chipsalliance/firrtl-spec
pub mod connection_semantics;

View file

@ -0,0 +1,81 @@
//! # Connection Semantics
//!
//! Fayalite's connection semantics are unlike assignments in software, so be careful!
//!
//! Fayalite's connection semantics follow [FIRRTL]'s Last-Connect-Semantics and
//! Conditional-Last-Connect-Semantics:
//!
//! Basically, every [wire] behaves as if you ran all connections in a module, and everywhere
//! the wire is read from, it takes on the value it has at the end of the module, with every
//! connect (except those in any kind of [conditional block] where the condition doesn't hold,
//! such as an [`#[hdl] if`][if] with a false condition).
//! overwriting the appropriate portion of the wire.
//!
//! Any other things that are connected to (on the LHS of a
//! [`connect()`] or [`connect_any()`] call) have analogous connection semantics.
//!
//! This description is intended to match [FIRRTL]'s description, so if they conflict with
//! each other, please report it as a bug in Fayalite.
//!
//! Connection Semantics Example:
//!
//! ```
//! # use fayalite::module_hdl;
//! # #[module_hdl]
//! # fn module() {
//! #[hdl]
//! let a: UInt<8> = m.wire();
//! #[hdl]
//! let b: UInt<8> = m.output();
//!
//! // doesn't actually affect anything, since `a` is completely overwritten later
//! m.connect(a, 5_hdl_u8);
//!
//! // here `a` has value `7` since the last connection assigns
//! // `7` to `a`, so `b` has value `7` too.
//! m.connect(b, a);
//!
//! // this is the last `connect` to `a`, so this `connect` determines `a`'s value
//! m.connect(a, 7_hdl_u8);
//! # }
//! ```
//!
//! # Conditional Connection Semantics
//!
//! ```
//! # use fayalite::module_hdl;
//! # #[module_hdl]
//! # fn module() {
//! #[hdl]
//! let cond: UInt<1> = m.input();
//! #[hdl]
//! let a: UInt<8> = m.wire();
//! #[hdl]
//! let b: UInt<8> = m.output();
//!
//! // this is the last `connect` to `a` when `cond` is `0`
//! m.connect(a, 5_hdl_u8);
//!
//! // here `a` has value `7` if `cond` is `1` since the last connection assigns
//! // `7` to `a`, so `b` has value `7` too, otherwise `a` (and therefore `b`)
//! // have value `5` since then the connection assigning `7` is in a
//! // conditional block where the condition doesn't hold.
//! m.connect(b, a);
//!
//! #[hdl]
//! if cond {
//! // this is the last `connect` to `a` when `cond` is `1`
//! m.connect(a, 7_hdl_u8);
//! }
//! # }
//! ```
//!
//! [conditional block]: self#conditional-connection-semantics
//! [`connect()`]: ModuleBuilder::connect
//! [`connect_any()`]: ModuleBuilder::connect_any
//! [wire]: crate::_docs::modules::module_bodies::hdl_let_statements::wires
//! [if]: crate::_docs::modules::module_bodies::hdl_if_statements
//! [FIRRTL]: https://github.com/chipsalliance/firrtl-spec
#[allow(unused)]
use crate::module::ModuleBuilder;

View file

@ -4,28 +4,7 @@
// TODO: enable:
// #![warn(missing_docs)]
#![doc = include_str!("../README.md")]
//!
//! # Organization
//!
//! All Fayalite-based designs are organized as one or more [modules][`module::Module`]
//! -- modules are created by writing a Rust function with the
//! [`#[hdl_module]` attribute][hdl_module]. You can then invoke the function to create a module.
//! You use the implicitly-added [`m: ModuleBuilder`][`module::ModuleBuilder`] variable in that
//! function to add inputs/outputs and other components to that module.
//!
//! ```
//! # use fayalite::{hdl_module, int::UInt};
//! #
//! #[hdl_module]
//! pub fn example_module() {
//! #[hdl]
//! let an_input: UInt<10> = m.input(); // create an input that is a 10-bit unsigned integer
//! #[hdl]
//! let some_output: UInt<10> = m.output();
//! m.connect(some_output, an_input); // assigns the value of `an_input` to `some_output`
//! }
//! ```
//! [Main Documentation][_docs]
extern crate self as fayalite;
@ -39,237 +18,12 @@ pub use std as __std;
/// In the function body it will implicitly create a
/// variable [`m: ModuleBuilder`][`module::ModuleBuilder`].
///
/// # Module Kinds
///
/// There are two different kinds of modules:
///
/// * Normal modules. These are used for general Fayalite-based code.
/// These use the [`NormalModule`][`module::NormalModule`] tag type.
/// * Extern modules. These are for when you want to use modules written in
/// some other language, such as Verilog.
/// You create an extern module by instead using an `#[hdl_module(extern)]` attribute on your
/// module function. You then create inputs/outputs like for normal modules, then you can set
/// the verilog name and parameters using [`ModuleBuilder`][`module::ModuleBuilder`] methods:
///
/// * [`verilog_name()`][`module::ModuleBuilder::verilog_name`]
/// * [`parameter_int()`][`module::ModuleBuilder::parameter_int`]
/// * [`parameter_str()`][`module::ModuleBuilder::parameter_str`]
/// * [`parameter_raw_verilog()`][`module::ModuleBuilder::parameter_raw_verilog`]
/// * [`parameter()`][`module::ModuleBuilder::parameter`]
///
/// These use the [`ExternModule`][`module::ExternModule`] tag type.
///
/// # Module Function Bodies
///
/// The `#[hdl_module]` attribute lets you have statements/expressions with `#[hdl]` annotations
/// and `_hdl_` integer literals in the function body:
///
/// ## `_hdl_` integer literals
///
/// You can have integer literals with an arbitrary number of bits like so:
///
/// ```
/// # #[fayalite::hdl_module]
/// # fn module() {
/// let a = 0x1234_hdl_u14; // a UInt<14> with value 0x1234
/// let b = 0x7_hdl_i3; // a SInt<3> with value 0x7
/// let lf = b'\n'_hdl; // a UInt<8> with value b'\n' -- aka. 0x0A
/// let large_a = b'A'_hdl; // a UInt<8> with value b'A' -- aka. 0x41
/// let n5 = -5_hdl_i4; // a SInt<4> with value -5
/// let n1 = -1_hdl_i200; // a SInt<200> with value -1
/// let v = 0xfedcba9876543210_fedcba9876543210_fedcba9876543210_hdl_u192; // a UInt<192>
/// let empty = 0_hdl_u0; // a UInt<0>
/// # }
/// ```
///
/// ## `#[hdl] let` statements
///
/// ### Inputs/Outputs
///
/// ```
/// # use fayalite::{hdl_module, int::UInt, array::Array};
/// # #[hdl_module]
/// # fn module() {
/// #[hdl]
/// let my_input: UInt<10> = m.input();
/// #[hdl]
/// let my_output: Array<[UInt<10>; 3]> = m.output();
/// # }
/// ```
///
/// ### Module Instances
///
/// module instances are kinda like the hardware equivalent of calling a function,
/// you can create them like so:
///
/// ```
/// # use fayalite::{hdl_module, int::UInt, array::Array};
/// # #[hdl_module]
/// # fn module() {
/// #[hdl]
/// let my_instance = m.instance(some_module());
/// // now you can use `my_instance`'s inputs/outputs like so:
/// #[hdl]
/// let v: UInt<3> = m.input();
/// m.connect(my_instance.a, v);
/// #[hdl_module]
/// fn some_module() {
/// #[hdl]
/// let a: UInt<3> = m.input();
/// // ...
/// }
/// # }
/// ```
///
/// ### Registers
///
/// Registers are memory devices that will change their state only on a clock
/// edge (or when being reset). They retain their state when not connected to.
///
/// ```
/// # use fayalite::{hdl_module, int::UInt, array::Array, clock::ClockDomain};
/// # #[hdl_module]
/// # fn module() {
/// # let v = true;
/// #[hdl]
/// let cd: ClockDomain = m.input();
/// #[hdl]
/// let my_register: UInt<8> = m.reg_builder().clock_domain(cd).reset(8_hdl_u8);
/// #[hdl]
/// if v {
/// // my_register is only changed when both `v` is set and `cd`'s clock edge occurs.
/// m.connect(my_register, 0x45_hdl_u8);
/// }
/// # }
/// ```
///
/// ### Wires
///
/// Wires are kinda like variables, but unlike registers,
/// they have no memory (they're combinatorial).
/// You must [connect][`module::ModuleBuilder::connect`] to all wires, so they have a defined value.
///
/// ```
/// # use fayalite::{hdl_module, int::UInt, array::Array, clock::ClockDomain};
/// # #[hdl_module]
/// # fn module() {
/// # let v = true;
/// #[hdl]
/// let cd: ClockDomain = m.input();
/// #[hdl]
/// let my_register: UInt<8> = m.reg_builder().clock_domain(cd).reset(8_hdl_u8);
/// #[hdl]
/// if v {
/// // my_register is only changed when both `v` is set and `cd`'s clock edge occurs.
/// m.connect(my_register, 0x45_hdl_u8);
/// }
/// # }
/// ```
///
/// ### Memories
///
/// Memories are optimized for storing large amounts of data.
///
/// When you create a memory, you get a [`MemBuilder`][`memory::MemBuilder`], which you
/// can then use to add memory ports, which is how you can read/write the memory.
///
/// There are several different ways to create a memory:
///
/// ### using [`ModuleBuilder::memory()`][`module::ModuleBuilder::memory`]
///
/// This way you have to set the [`depth`][`memory::MemBuilder::depth`] separately.
///
/// ```
/// # use fayalite::{hdl_module, int::UInt, clock::ClockDomain};
/// # #[hdl_module]
/// # fn module() {
/// // first, we need some IO
/// #[hdl]
/// let cd: ClockDomain = m.input();
/// #[hdl]
/// let read_addr: UInt<8> = m.input();
/// #[hdl]
/// let read_data: UInt<8> = m.output();
///
/// // now create the memory
/// #[hdl]
/// let mut my_memory = m.memory();
/// my_memory.depth(256); // the memory has 256 elements
///
/// let read_port = my_memory.new_read_port();
///
/// // connect up the read port
/// m.connect_any(read_port.addr, read_addr);
/// m.connect(read_port.en, 1_hdl_u1);
/// m.connect(read_port.clk, cd.clk);
/// m.connect(read_data, read_port.data);
///
/// // we need more IO for the write port
/// #[hdl]
/// let write_addr: UInt<8> = m.input();
/// #[hdl]
/// let do_write: UInt<1> = m.input();
/// #[hdl]
/// let write_data: UInt<8> = m.input();
///
/// let write_port = my_memory.new_write_port();
///
/// m.connect_any(write_port.addr, write_addr);
/// m.connect(write_port.en, do_write);
/// m.connect(write_port.clk, cd.clk);
/// m.connect(write_port.data, write_port.data);
/// m.connect(write_port.mask, 1_hdl_u1);
/// # }
/// ```
///
/// ### using [`ModuleBuilder::memory_array()`][`module::ModuleBuilder::memory_array`]
///
/// this allows you to specify the memory's underlying array type directly.
///
/// ```
/// # use fayalite::{hdl_module, int::UInt, memory::MemBuilder};
/// # #[hdl_module]
/// # fn module() {
/// #[hdl]
/// let mut my_memory: MemBuilder<[UInt<8>; 256]> = m.memory_array();
///
/// let read_port = my_memory.new_read_port();
/// // ...
/// let write_port = my_memory.new_write_port();
/// // ...
/// # }
/// ```
///
/// ### using [`ModuleBuilder::memory_with_init()`][`module::ModuleBuilder::memory_with_init`]
///
/// This allows you to deduce the memory's array type from the data used to initialize the memory.
///
/// ```
/// # use fayalite::{hdl_module, int::UInt};
/// # #[hdl_module]
/// # fn module() {
/// # #[hdl]
/// # let read_addr: UInt<2> = m.input();
/// #[hdl]
/// let mut my_memory = m.memory_with_init(
/// #[hdl]
/// [0x12_hdl_u8, 0x34_hdl_u8, 0x56_hdl_u8, 0x78_hdl_u8],
/// );
///
/// let read_port = my_memory.new_read_port();
/// // note that `read_addr` is `UInt<2>` since the memory only has 4 elements
/// m.connect_any(read_port.addr, read_addr);
/// // ...
/// let write_port = my_memory.new_write_port();
/// // ...
/// # }
/// ```
///
/// # `#[hdl]` expressions/statements:
///
/// FIXME: finish writing
/// See [Fayalite Modules][crate::_docs::modules]
pub use fayalite_proc_macros::hdl_module;
#[cfg(feature = "unstable-doc")]
pub mod _docs;
pub mod annotations;
pub mod array;
pub mod bundle;