mirror of
https://github.com/Z3Prover/z3
synced 2025-04-26 18:45:33 +00:00
254 lines
8.6 KiB
C++
254 lines
8.6 KiB
C++
/*++
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
nla_powers.cpp
|
|
|
|
Author:
|
|
Lev Nachmanson (levnach)
|
|
Nikolaj Bjorner (nbjorner)
|
|
|
|
Description:
|
|
Refines bounds on powers.
|
|
|
|
Reference: TOCL-2018, Cimatti et al.
|
|
|
|
|
|
Special cases:
|
|
|
|
1. Exponentiation. x is fixed numeral a.
|
|
|
|
TOCL18 axioms:
|
|
a^y > 0 (if a > 0)
|
|
y = 0 <=> a^y = 1 (if a != 0)
|
|
y < 0 <=> a^y < 1 (if a > 1)
|
|
y > 0 <=> a^y > 1 (if a > 1)
|
|
y != 0 <=> a^y > y + 1 (if a >= 2)
|
|
y1 < y2 <=> a^y1 < a^y2 (**)
|
|
|
|
Other special case:
|
|
|
|
y = 1 <=> a^y = a
|
|
|
|
TOCL18 approach: Polynomial abstractions
|
|
|
|
Taylor: a^y = sum_i ln(a)*y^i/i!
|
|
|
|
Truncation: P(n, a) = sum_{i=0}^n ln(a)*y^i/i! = 1 + ln(a)*y + ln(a)^2*y^2/2 +
|
|
|
|
y = 0: handled by axiom a^y = 1
|
|
y < 0: P(2n-1, y) <= a^y <= P(2n, y), n > 0 because Taylor contribution is negative at odd powers.
|
|
y > 0: P(n, y) <= a^y <= P(n, y)*(1 - y^{n+1}/(n+1)!)
|
|
|
|
|
|
2. Powers. y is fixed positive integer.
|
|
|
|
3. Other
|
|
|
|
General case:
|
|
|
|
For now the solver integrates just weak monotonicity lemmas:
|
|
|
|
- x >= x0 > 0, y >= y0 => x^y >= x0^y0
|
|
- 0 < x <= x0, y <= y0 => x^y <= x0^y0
|
|
|
|
|
|
TODO:
|
|
|
|
- Comprehensive integration for truncation polynomial approximation.
|
|
- TOCL18 approach includes refinement loop based on precision epsilon.
|
|
- accept solvability if r is within a small range of x^y, when x^y is not rational.
|
|
- integrate algebraic numbers, or even extension fields (for 'e').
|
|
- integrate monotonicy axioms (**) by tracking exponents across instances.
|
|
|
|
anum isn't initialized unless nra_solver is invoked.
|
|
there is no proviso for using algebraic numbers outside of the nra solver.
|
|
so either we have a rational refinement version _and_ an algebraic numeral refinement
|
|
loop or we introduce algebraic numerals outside of the nra_solver
|
|
|
|
scoped_anum xval(am()), yval(am()), rval(am());
|
|
|
|
am().set(xval, am_value(x));
|
|
am().set(yval, am_value(y));
|
|
am().set(rval, am_value(r));
|
|
|
|
--*/
|
|
#include "math/lp/nla_core.h"
|
|
|
|
namespace nla {
|
|
|
|
lbool powers::check(lpvar r, lpvar x, lpvar y, vector<lemma>& lemmas) {
|
|
TRACE("nla", tout << r << " == " << x << "^" << y << "\n");
|
|
core& c = m_core;
|
|
if (x == null_lpvar || y == null_lpvar || r == null_lpvar)
|
|
return l_undef;
|
|
// if (c.lra.column_has_term(x) || c.lra.column_has_term(y) || c.lra.column_has_term(r))
|
|
// return l_undef;
|
|
|
|
lemmas.reset();
|
|
|
|
auto x_exp_0 = [&]() {
|
|
new_lemma lemma(c, "x != 0 => x^0 = 1");
|
|
lemma |= ineq(x, llc::EQ, rational::zero());
|
|
lemma |= ineq(y, llc::NE, rational::zero());
|
|
lemma |= ineq(r, llc::EQ, rational::one());
|
|
return l_false;
|
|
};
|
|
|
|
auto zero_exp_y = [&]() {
|
|
new_lemma lemma(c, "y != 0 => 0^y = 0");
|
|
lemma |= ineq(x, llc::NE, rational::zero());
|
|
lemma |= ineq(y, llc::EQ, rational::zero());
|
|
lemma |= ineq(r, llc::EQ, rational::zero());
|
|
return l_false;
|
|
};
|
|
|
|
auto x_gt_0 = [&]() {
|
|
new_lemma lemma(c, "x > 0 => x^y > 0");
|
|
lemma |= ineq(x, llc::LE, rational::zero());
|
|
lemma |= ineq(r, llc::GT, rational::zero());
|
|
return l_false;
|
|
};
|
|
|
|
auto y_lt_1 = [&]() {
|
|
new_lemma lemma(c, "x > 1, y < 0 => x^y < 1");
|
|
lemma |= ineq(x, llc::LE, rational::one());
|
|
lemma |= ineq(y, llc::GE, rational::zero());
|
|
lemma |= ineq(r, llc::LT, rational::one());
|
|
return l_false;
|
|
};
|
|
|
|
auto y_gt_1 = [&]() {
|
|
new_lemma lemma(c, "x > 1, y > 0 => x^y > 1");
|
|
lemma |= ineq(x, llc::LE, rational::one());
|
|
lemma |= ineq(y, llc::LE, rational::zero());
|
|
lemma |= ineq(r, llc::GT, rational::one());
|
|
return l_false;
|
|
};
|
|
|
|
auto x_ge_3 = [&]() {
|
|
new_lemma lemma(c, "x >= 3, y != 0 => x^y > ln(x)y + 1");
|
|
lemma |= ineq(x, llc::LT, rational(3));
|
|
lemma |= ineq(y, llc::EQ, rational::zero());
|
|
lemma |= ineq(lp::lar_term(r, rational::minus_one(), y), llc::GT, rational::one());
|
|
return l_false;
|
|
};
|
|
|
|
bool use_rational = !c.use_nra_model();
|
|
rational xval, yval, rval;
|
|
if (use_rational) {
|
|
xval = c.val(x);
|
|
yval = c.val(y);
|
|
rval = c.val(r);
|
|
}
|
|
else {
|
|
auto& am = c.m_nra.am();
|
|
if (am.is_rational(c.m_nra.value(x)) &&
|
|
am.is_rational(c.m_nra.value(y)) &&
|
|
am.is_rational(c.m_nra.value(r))) {
|
|
am.to_rational(c.m_nra.value(x), xval);
|
|
am.to_rational(c.m_nra.value(y), yval);
|
|
am.to_rational(c.m_nra.value(r), rval);
|
|
use_rational = true;
|
|
}
|
|
}
|
|
|
|
if (use_rational) {
|
|
auto xval = c.val(x);
|
|
auto yval = c.val(y);
|
|
auto rval = c.val(r);
|
|
if (xval != 0 && yval == 0 && rval != 1)
|
|
return x_exp_0();
|
|
else if (xval == 0 && yval != 0 && rval != 0)
|
|
return zero_exp_y();
|
|
else if (xval > 0 && rval <= 0)
|
|
return x_gt_0();
|
|
else if (xval > 1 && yval < 0 && rval >= 1)
|
|
return y_lt_1();
|
|
else if (xval > 1 && yval > 0 && rval <= 1)
|
|
return y_gt_1();
|
|
else if (xval >= 3 && yval != 0 && rval <= yval + 1)
|
|
return x_ge_3();
|
|
else if (xval > 0 && yval.is_unsigned()) {
|
|
auto r2val = power(xval, yval.get_unsigned());
|
|
if (rval == r2val)
|
|
return l_true;
|
|
if (c.random() % 2 == 0) {
|
|
new_lemma lemma(c, "x == x0, y == y0 => r = x0^y0");
|
|
lemma |= ineq(x, llc::NE, xval);
|
|
lemma |= ineq(y, llc::NE, yval);
|
|
lemma |= ineq(r, llc::EQ, r2val);
|
|
return l_false;
|
|
}
|
|
if (yval > 0 && r2val > rval) {
|
|
new_lemma lemma(c, "x >= x0 > 0, y >= y0 > 0 => r >= x0^y0");
|
|
lemma |= ineq(x, llc::LT, xval);
|
|
lemma |= ineq(y, llc::LT, yval);
|
|
lemma |= ineq(r, llc::GE, r2val);
|
|
return l_false;
|
|
}
|
|
if (r2val < rval) {
|
|
new_lemma lemma(c, "0 < x <= x0, y <= y0 => r <= x0^y0");
|
|
lemma |= ineq(x, llc::LE, rational::zero());
|
|
lemma |= ineq(x, llc::GT, xval);
|
|
lemma |= ineq(y, llc::GT, yval);
|
|
lemma |= ineq(r, llc::LE, r2val);
|
|
return l_false;
|
|
}
|
|
}
|
|
if (xval > 0 && yval > 0 && !yval.is_int()) {
|
|
auto ynum = numerator(yval);
|
|
auto yden = denominator(yval);
|
|
// r = x^{yn/yd}
|
|
// <=>
|
|
// r^yd = x^yn
|
|
if (ynum.is_unsigned() && yden.is_unsigned()) {
|
|
auto ryd = power(rval, yden.get_unsigned());
|
|
auto xyn = power(xval, ynum.get_unsigned());
|
|
if (ryd == xyn)
|
|
return l_true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!use_rational) {
|
|
auto& am = c.m_nra.am();
|
|
scoped_anum xval(am), yval(am), rval(am);
|
|
am.set(xval, c.m_nra.value(x));
|
|
am.set(yval, c.m_nra.value(y));
|
|
am.set(rval, c.m_nra.value(r));
|
|
if (xval != 0 && yval == 0 && rval != 1)
|
|
return x_exp_0();
|
|
else if (xval == 0 && yval != 0 && rval != 0)
|
|
return zero_exp_y();
|
|
else if (xval > 0 && rval <= 0)
|
|
return x_gt_0();
|
|
else if (xval > 1 && yval < 0 && rval >= 1)
|
|
return y_lt_1();
|
|
else if (xval > 1 && yval > 0 && rval <= 1)
|
|
return y_gt_1();
|
|
else if (xval >= 3 && yval != 0 && rval <= yval + 1)
|
|
return x_ge_3();
|
|
else if (xval > 0 && yval > 0 && am.is_rational(yval)) {
|
|
rational yr;
|
|
am.to_rational(yval, yr);
|
|
auto ynum = numerator(yr);
|
|
auto yden = denominator(yr);
|
|
// r = x^{yn/yd}
|
|
// <=>
|
|
// r^yd = x^yn
|
|
if (ynum.is_unsigned() && yden.is_unsigned()) {
|
|
am.set(rval, power(rval, yden.get_unsigned()));
|
|
am.set(xval, power(xval, ynum.get_unsigned()));
|
|
if (rval == xval)
|
|
return l_true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return l_undef;
|
|
}
|
|
|
|
|
|
}
|