mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
4301 lines
154 KiB
C++
4301 lines
154 KiB
C++
/*++
|
|
Copyright (c) 2016 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
theory_lra.cpp
|
|
|
|
Abstract:
|
|
|
|
<abstract>
|
|
|
|
Author:
|
|
|
|
Lev Nachmanson (levnach) 2016-25-3
|
|
Nikolaj Bjorner (nbjorner)
|
|
|
|
Revision History:
|
|
|
|
|
|
--*/
|
|
#include "util/stopwatch.h"
|
|
#include "math/lp/indexed_value.h"
|
|
#include "math/lp/lar_solver.h"
|
|
#include "math/lp/nla_solver.h"
|
|
#include "math/lp/lp_types.h"
|
|
#include "math/lp/lp_api.h"
|
|
#include "math/polynomial/algebraic_numbers.h"
|
|
#include "math/polynomial/polynomial.h"
|
|
#include "util/nat_set.h"
|
|
#include "util/optional.h"
|
|
#include "util/inf_rational.h"
|
|
#include "util/cancel_eh.h"
|
|
#include "util/scoped_timer.h"
|
|
#include "util/nat_set.h"
|
|
#include "ast/ast_pp.h"
|
|
#include "model/numeral_factory.h"
|
|
#include "smt/smt_theory.h"
|
|
#include "smt/smt_context.h"
|
|
#include "smt/theory_lra.h"
|
|
#include "smt/smt_model_generator.h"
|
|
#include "smt/arith_eq_adapter.h"
|
|
#include "util/nat_set.h"
|
|
#include "ast/converters/generic_model_converter.h"
|
|
#include "ast/ast_pp.h"
|
|
#include "ast/ast_ll_pp.h"
|
|
#include "util/cancel_eh.h"
|
|
#include "util/scoped_timer.h"
|
|
#include "util/distribution.h"
|
|
|
|
typedef lp::lpvar lpvar;
|
|
|
|
|
|
namespace smt {
|
|
|
|
typedef lp_api::bound<literal> api_bound;
|
|
|
|
typedef ptr_vector<api_bound> lp_bounds;
|
|
|
|
class theory_lra::imp {
|
|
|
|
struct scope {
|
|
unsigned m_bounds_lim;
|
|
unsigned m_asserted_qhead;
|
|
unsigned m_asserted_atoms_lim;
|
|
};
|
|
|
|
struct delayed_atom {
|
|
unsigned m_bv;
|
|
bool m_is_true;
|
|
delayed_atom(unsigned b, bool t): m_bv(b), m_is_true(t) {}
|
|
};
|
|
|
|
class resource_limit : public lp::lp_resource_limit {
|
|
imp& m_imp;
|
|
public:
|
|
resource_limit(imp& i): m_imp(i) { }
|
|
bool get_cancel_flag() override { return !m_imp.m.inc(); }
|
|
};
|
|
|
|
theory_lra& th;
|
|
ast_manager& m;
|
|
arith_util a;
|
|
arith_eq_adapter m_arith_eq_adapter;
|
|
vector<rational> m_columns;
|
|
|
|
|
|
// temporary values kept during internalization
|
|
struct internalize_state {
|
|
expr_ref_vector m_terms;
|
|
vector<rational> m_coeffs;
|
|
svector<theory_var> m_vars;
|
|
ptr_vector<expr> m_to_ensure_enode, m_to_ensure_var;
|
|
internalize_state(ast_manager& m): m_terms(m) {}
|
|
void reset() {
|
|
m_terms.reset();
|
|
m_coeffs.reset();
|
|
m_vars.reset();
|
|
m_to_ensure_enode.reset();
|
|
m_to_ensure_var.reset();
|
|
}
|
|
};
|
|
ptr_vector<internalize_state> m_internalize_states;
|
|
unsigned m_internalize_head;
|
|
|
|
class scoped_internalize_state {
|
|
imp& m_imp;
|
|
internalize_state& m_st;
|
|
|
|
internalize_state& push_internalize(imp& i) {
|
|
if (i.m_internalize_head == i.m_internalize_states.size()) {
|
|
i.m_internalize_states.push_back(alloc(internalize_state, i.m));
|
|
}
|
|
internalize_state& st = *i.m_internalize_states[i.m_internalize_head++];
|
|
st.reset();
|
|
return st;
|
|
}
|
|
public:
|
|
scoped_internalize_state(imp& i): m_imp(i), m_st(push_internalize(i)) {}
|
|
~scoped_internalize_state() { --m_imp.m_internalize_head; }
|
|
expr_ref_vector& terms() { return m_st.m_terms; }
|
|
vector<rational>& coeffs() { return m_st.m_coeffs; }
|
|
svector<theory_var>& vars() { return m_st.m_vars; }
|
|
ptr_vector<expr>& to_ensure_enode() { return m_st.m_to_ensure_enode; }
|
|
ptr_vector<expr>& to_ensure_var() { return m_st.m_to_ensure_var; }
|
|
void push(expr* e, rational c) { m_st.m_terms.push_back(e); m_st.m_coeffs.push_back(c); }
|
|
void set_back(unsigned i) {
|
|
if (terms().size() == i + 1) return;
|
|
terms()[i] = terms().back();
|
|
coeffs()[i] = coeffs().back();
|
|
terms().pop_back();
|
|
coeffs().pop_back();
|
|
}
|
|
};
|
|
|
|
typedef vector<std::pair<rational, lpvar>> var_coeffs;
|
|
|
|
var_coeffs m_left_side; // constraint left side
|
|
lpvar m_one_var;
|
|
lpvar m_zero_var;
|
|
lpvar m_rone_var;
|
|
lpvar m_rzero_var;
|
|
|
|
enum constraint_source {
|
|
inequality_source,
|
|
equality_source,
|
|
definition_source,
|
|
null_source
|
|
};
|
|
svector<constraint_source> m_constraint_sources;
|
|
svector<literal> m_inequalities; // asserted rows corresponding to inequality literals.
|
|
svector<enode_pair> m_equalities; // asserted rows corresponding to equalities.
|
|
svector<theory_var> m_definitions; // asserted rows corresponding to definitions
|
|
|
|
svector<delayed_atom> m_asserted_atoms;
|
|
ptr_vector<expr> m_not_handled;
|
|
ptr_vector<app> m_underspecified;
|
|
ptr_vector<app> m_bv_terms;
|
|
vector<ptr_vector<api_bound> > m_use_list; // bounds where variables are used.
|
|
|
|
// attributes for incremental version:
|
|
u_map<api_bound*> m_bool_var2bound;
|
|
vector<lp_bounds> m_bounds;
|
|
unsigned_vector m_unassigned_bounds;
|
|
unsigned_vector m_bounds_trail;
|
|
unsigned m_asserted_qhead;
|
|
|
|
svector<unsigned> m_bv_to_propagate; // Boolean variables that can be propagated
|
|
|
|
svector<std::pair<theory_var, theory_var> > m_assume_eq_candidates;
|
|
unsigned m_assume_eq_head;
|
|
indexed_uint_set m_tmp_var_set;
|
|
|
|
unsigned m_num_conflicts;
|
|
|
|
// non-linear arithmetic
|
|
scoped_ptr<nla::solver> m_nla;
|
|
|
|
// integer arithmetic
|
|
scoped_ptr<lp::int_solver> m_lia;
|
|
|
|
|
|
struct var_value_eq {
|
|
imp & m_th;
|
|
var_value_eq(imp & th):m_th(th) {}
|
|
bool operator()(theory_var v1, theory_var v2) const {
|
|
if (m_th.is_int(v1) != m_th.is_int(v2)) {
|
|
return false;
|
|
}
|
|
return m_th.is_eq(v1, v2);
|
|
}
|
|
};
|
|
|
|
bool use_nra_model() const {
|
|
return m_nla && m_nla->use_nra_model();
|
|
}
|
|
|
|
struct var_value_hash {
|
|
imp & m_th;
|
|
var_value_hash(imp & th):m_th(th) {}
|
|
unsigned operator()(theory_var v) const {
|
|
if (m_th.use_nra_model())
|
|
return m_th.is_int(v);
|
|
else
|
|
return (unsigned)std::hash<lp::impq>()(m_th.get_ivalue(v));
|
|
}
|
|
};
|
|
int_hashtable<var_value_hash, var_value_eq> m_model_eqs;
|
|
|
|
|
|
svector<scope> m_scopes;
|
|
lp_api::stats m_stats;
|
|
arith_factory* m_factory;
|
|
scoped_ptr<lp::lar_solver> m_solver;
|
|
resource_limit m_resource_limit;
|
|
lp_bounds m_new_bounds;
|
|
symbol m_farkas;
|
|
vector<parameter> m_bound_params;
|
|
std_vector<lp::implied_bound> m_implied_bounds;
|
|
lp::lp_bound_propagator<imp> m_bp;
|
|
|
|
context& ctx() const { return th.get_context(); }
|
|
theory_id get_id() const { return th.get_id(); }
|
|
theory_arith_params const& params() const { return ctx().get_fparams(); }
|
|
bool is_int(theory_var v) const { return is_int(get_enode(v)); }
|
|
bool is_int(enode* n) const { return a.is_int(n->get_expr()); }
|
|
bool is_real(theory_var v) const { return is_real(get_enode(v)); }
|
|
bool is_real(enode* n) const { return a.is_real(n->get_expr()); }
|
|
enode* get_enode(theory_var v) const { return th.get_enode(v); }
|
|
enode* get_enode(expr* e) const { return ctx().get_enode(e); }
|
|
expr* get_owner(theory_var v) const { return get_enode(v)->get_expr(); }
|
|
enode_pp pp(enode* n) const { return enode_pp(n, ctx()); }
|
|
enode_pp pp(theory_var v) const { return pp(get_enode(v)); }
|
|
mk_bounded_pp bpp(expr* e) { return mk_bounded_pp(e, m); }
|
|
|
|
lpvar add_const(int c, lpvar& var, bool is_int) {
|
|
if (var != UINT_MAX)
|
|
return var;
|
|
app_ref cnst(a.mk_numeral(rational(c), is_int), m);
|
|
mk_enode(cnst);
|
|
theory_var v = mk_var(cnst);
|
|
var = lp().add_var(v, is_int);
|
|
lp().push();
|
|
add_def_constraint_and_equality(var, lp::GE, rational(c));
|
|
add_def_constraint_and_equality(var, lp::LE, rational(c));
|
|
TRACE("arith", tout << "add " << cnst << ", var = " << var << "\n";);
|
|
return var;
|
|
}
|
|
|
|
lpvar get_one(bool is_int) {
|
|
return add_const(1, is_int ? m_one_var : m_rone_var, is_int);
|
|
}
|
|
|
|
lpvar get_zero(bool is_int) {
|
|
return add_const(0, is_int ? m_zero_var : m_rzero_var, is_int);
|
|
}
|
|
|
|
void ensure_nla() {
|
|
if (!m_nla) {
|
|
m_nla = alloc(nla::solver, *m_solver.get(), ctx().get_params(), m.limit());
|
|
for (auto const& _s : m_scopes) {
|
|
(void)_s;
|
|
m_nla->push();
|
|
}
|
|
std::function<bool(lpvar)> is_relevant = [&](lpvar v) {
|
|
theory_var u = lp().local_to_external(v);
|
|
return ctx().is_relevant(th.get_enode(u));
|
|
};
|
|
m_nla->set_relevant(is_relevant);
|
|
|
|
}
|
|
}
|
|
|
|
void found_unsupported(expr* n) {
|
|
ctx().push_trail(push_back_vector<ptr_vector<expr>>(m_not_handled));
|
|
TRACE("arith", tout << "unsupported " << mk_pp(n, m) << "\n");
|
|
m_not_handled.push_back(n);
|
|
}
|
|
|
|
void found_underspecified(expr* n) {
|
|
if (a.is_underspecified(n)) {
|
|
TRACE("arith", tout << "Unhandled: " << mk_pp(n, m) << "\n";);
|
|
ctx().push_trail(push_back_vector<ptr_vector<app>>(m_underspecified));
|
|
m_underspecified.push_back(to_app(n));
|
|
}
|
|
expr* e = nullptr, *x = nullptr, *y = nullptr;
|
|
if (a.is_div(n, x, y)) {
|
|
e = a.mk_div0(x, y);
|
|
}
|
|
else if (a.is_idiv(n, x, y)) {
|
|
e = a.mk_idiv0(x, y);
|
|
}
|
|
else if (a.is_rem(n, x, y)) {
|
|
n = a.mk_rem(x, a.mk_int(0));
|
|
e = a.mk_rem0(x, a.mk_int(0));
|
|
}
|
|
else if (a.is_mod(n, x, y)) {
|
|
n = a.mk_mod(x, a.mk_int(0));
|
|
e = a.mk_mod0(x, a.mk_int(0));
|
|
}
|
|
else if (a.is_power(n, x, y)) {
|
|
e = a.mk_power0(x, y);
|
|
}
|
|
if (e) {
|
|
literal lit = th.mk_eq(e, n, false);
|
|
ctx().mark_as_relevant(lit);
|
|
ctx().assign(lit, nullptr);
|
|
}
|
|
|
|
}
|
|
|
|
void linearize_term(expr* term, scoped_internalize_state& st) {
|
|
st.push(term, rational::one());
|
|
linearize(st);
|
|
}
|
|
|
|
void linearize_ineq(expr* lhs, expr* rhs, scoped_internalize_state& st) {
|
|
st.push(lhs, rational::one());
|
|
st.push(rhs, rational::minus_one());
|
|
linearize(st);
|
|
}
|
|
|
|
theory_var internalize_numeral(app* n, rational const& val) {
|
|
|
|
if (!ctx().e_internalized(n))
|
|
mk_enode(n);
|
|
theory_var v = mk_var(n);
|
|
lpvar vi = get_lpvar(v);
|
|
if (vi == UINT_MAX) {
|
|
vi = lp().add_var(v, a.is_int(n));
|
|
add_def_constraint_and_equality(vi, lp::GE, val);
|
|
add_def_constraint_and_equality(vi, lp::LE, val);
|
|
register_fixed_var(v, val);
|
|
}
|
|
return v;
|
|
}
|
|
|
|
|
|
void linearize(scoped_internalize_state& st) {
|
|
expr_ref_vector & terms = st.terms();
|
|
svector<theory_var>& vars = st.vars();
|
|
vector<rational>& coeffs = st.coeffs();
|
|
rational r;
|
|
expr* n1, *n2;
|
|
unsigned index = 0;
|
|
while (index < terms.size()) {
|
|
SASSERT(index >= vars.size());
|
|
expr* n = terms.get(index);
|
|
st.to_ensure_enode().push_back(n);
|
|
if (a.is_add(n)) {
|
|
for (expr* arg : *to_app(n)) {
|
|
st.push(arg, coeffs[index]);
|
|
}
|
|
st.set_back(index);
|
|
}
|
|
else if (a.is_sub(n)) {
|
|
unsigned sz = to_app(n)->get_num_args();
|
|
terms[index] = to_app(n)->get_arg(0);
|
|
for (unsigned i = 1; i < sz; ++i) {
|
|
st.push(to_app(n)->get_arg(i), -coeffs[index]);
|
|
}
|
|
}
|
|
else if (a.is_mul(n, n1, n2) && a.is_extended_numeral(n1, r)) {
|
|
coeffs[index] *= r;
|
|
terms[index] = n2;
|
|
st.to_ensure_enode().push_back(n1);
|
|
}
|
|
else if (a.is_mul(n, n1, n2) && a.is_extended_numeral(n2, r)) {
|
|
coeffs[index] *= r;
|
|
terms[index] = n1;
|
|
st.to_ensure_enode().push_back(n2);
|
|
}
|
|
else if (a.is_mul(n)) {
|
|
theory_var v = internalize_mul(to_app(n));
|
|
coeffs[vars.size()] = coeffs[index];
|
|
vars.push_back(v);
|
|
++index;
|
|
}
|
|
else if (a.is_power(n, n1, n2) && is_app(n1) && a.is_extended_numeral(n2, r) && r.is_unsigned() && r.is_pos() && r <= 10) {
|
|
theory_var v = internalize_power(to_app(n), to_app(n1), r.get_unsigned());
|
|
coeffs[vars.size()] = coeffs[index];
|
|
vars.push_back(v);
|
|
++index;
|
|
}
|
|
else if (a.is_numeral(n, r)) {
|
|
theory_var v = internalize_numeral(to_app(n), r);
|
|
coeffs[vars.size()] = coeffs[index];
|
|
vars.push_back(v);
|
|
++index;
|
|
}
|
|
else if (a.is_uminus(n, n1)) {
|
|
coeffs[index].neg();
|
|
terms[index] = n1;
|
|
}
|
|
else if (a.is_to_real(n, n1)) {
|
|
terms[index] = n1;
|
|
if (!ctx().e_internalized(n)) {
|
|
app* t = to_app(n);
|
|
VERIFY(internalize_term(to_app(n1)));
|
|
mk_enode(t);
|
|
theory_var v = mk_var(n);
|
|
theory_var w = mk_var(n1);
|
|
lpvar vj = register_theory_var_in_lar_solver(v);
|
|
lpvar wj = register_theory_var_in_lar_solver(w);
|
|
auto lu_constraints = lp().add_equality(vj, wj);
|
|
add_def_constraint(lu_constraints.first);
|
|
add_def_constraint(lu_constraints.second);
|
|
}
|
|
}
|
|
else if (is_app(n) && a.get_family_id() == to_app(n)->get_family_id()) {
|
|
bool is_first = !ctx().e_internalized(n);
|
|
app* t = to_app(n);
|
|
internalize_args(t);
|
|
mk_enode(t);
|
|
theory_var v = mk_var(n);
|
|
coeffs[vars.size()] = coeffs[index];
|
|
vars.push_back(v);
|
|
++index;
|
|
if (!is_first) {
|
|
// skip recursive internalization
|
|
}
|
|
else if (a.is_to_int(n, n1)) {
|
|
if (!ctx().relevancy())
|
|
mk_to_int_axiom(t);
|
|
}
|
|
else if (a.is_idiv(n, n1, n2)) {
|
|
if (!a.is_numeral(n2, r) || r.is_zero()) found_underspecified(n);
|
|
app_ref mod(a.mk_mod(n1, n2), m);
|
|
ctx().internalize(mod, false);
|
|
if (ctx().relevancy()) ctx().add_relevancy_dependency(n, mod);
|
|
if (m_nla && !a.is_numeral(n2)) {
|
|
// shortcut to create non-linear division axioms.
|
|
internalize_term(to_app(n));
|
|
internalize_term(to_app(n1));
|
|
internalize_term(to_app(n2));
|
|
theory_var q = mk_var(n);
|
|
theory_var x = mk_var(n1);
|
|
theory_var y = mk_var(n2);
|
|
m_nla->add_idivision(register_theory_var_in_lar_solver(q), register_theory_var_in_lar_solver(x), register_theory_var_in_lar_solver(y));
|
|
}
|
|
if (a.is_numeral(n2) && a.is_bounded(n1)) {
|
|
ensure_nla();
|
|
internalize_term(to_app(n));
|
|
internalize_term(to_app(n1));
|
|
internalize_term(to_app(n2));
|
|
theory_var q = mk_var(n);
|
|
theory_var x = mk_var(n1);
|
|
theory_var y = mk_var(n2);
|
|
m_nla->add_bounded_division(register_theory_var_in_lar_solver(q), register_theory_var_in_lar_solver(x), register_theory_var_in_lar_solver(y));
|
|
}
|
|
}
|
|
else if (a.is_mod(n, n1, n2)) {
|
|
if (!a.is_numeral(n2, r) || r.is_zero()) found_underspecified(n);
|
|
if (!ctx().relevancy()) mk_idiv_mod_axioms(n1, n2);
|
|
}
|
|
else if (a.is_rem(n, n1, n2)) {
|
|
if (!a.is_numeral(n2, r) || r.is_zero()) found_underspecified(n);
|
|
if (!ctx().relevancy()) mk_rem_axiom(n1, n2);
|
|
}
|
|
else if (a.is_div(n, n1, n2)) {
|
|
if (!a.is_numeral(n2, r) || r.is_zero()) found_underspecified(n);
|
|
if (!ctx().relevancy()) mk_div_axiom(n1, n2);
|
|
st.to_ensure_var().push_back(n1);
|
|
st.to_ensure_var().push_back(n2);
|
|
}
|
|
else if (a.is_idiv0(n, n1, n2) || a.is_mod0(n, n1, n2)) {
|
|
st.to_ensure_var().push_back(n1);
|
|
st.to_ensure_var().push_back(n2);
|
|
}
|
|
else if (a.is_power(n, n1, n2)) {
|
|
found_unsupported(n);
|
|
if (!ctx().relevancy()) mk_power_axiom(n, n1, n2);
|
|
st.to_ensure_var().push_back(n1);
|
|
st.to_ensure_var().push_back(n2);
|
|
}
|
|
else if (a.is_band(n) || a.is_shl(n) || a.is_ashr(n) || a.is_lshr(n)) {
|
|
m_bv_terms.push_back(to_app(n));
|
|
ctx().push_trail(push_back_vector(m_bv_terms));
|
|
mk_bv_axiom(to_app(n));
|
|
for (expr* arg : *to_app(n))
|
|
st.to_ensure_var().push_back(arg);
|
|
}
|
|
else if (!a.is_div0(n)) {
|
|
found_unsupported(n);
|
|
}
|
|
else {
|
|
// no-op
|
|
}
|
|
}
|
|
else {
|
|
if (is_app(n)) {
|
|
internalize_args(to_app(n));
|
|
}
|
|
if (m.is_ite(n)) {
|
|
if (!ctx().relevancy()) mk_ite_axiom(n);
|
|
}
|
|
theory_var v = mk_var(n);
|
|
coeffs[vars.size()] = coeffs[index];
|
|
vars.push_back(v);
|
|
++index;
|
|
}
|
|
}
|
|
for (unsigned i = st.to_ensure_enode().size(); i-- > 0; ) {
|
|
expr* n = st.to_ensure_enode()[i];
|
|
if (is_app(n)) {
|
|
mk_enode(to_app(n));
|
|
}
|
|
}
|
|
st.to_ensure_enode().reset();
|
|
for (unsigned i = st.to_ensure_var().size(); i-- > 0; ) {
|
|
expr* n = st.to_ensure_var()[i];
|
|
if (is_app(n)) {
|
|
internalize_term(to_app(n));
|
|
}
|
|
}
|
|
st.to_ensure_var().reset();
|
|
|
|
}
|
|
|
|
void internalize_args(app* t, bool force = false) {
|
|
if (!force && !reflect(t))
|
|
return;
|
|
for (expr* arg : *t) {
|
|
if (!ctx().e_internalized(arg)) {
|
|
ctx().internalize(arg, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
theory_var internalize_power(app* t, app* n, unsigned p) {
|
|
internalize_args(t, true);
|
|
bool _has_var = has_var(t);
|
|
mk_enode(t);
|
|
theory_var v = mk_var(t);
|
|
if (_has_var)
|
|
return v;
|
|
VERIFY(internalize_term(n));
|
|
theory_var w = mk_var(n);
|
|
svector<lpvar> vars;
|
|
for (unsigned i = 0; i < p; ++i)
|
|
vars.push_back(register_theory_var_in_lar_solver(w));
|
|
ensure_nla();
|
|
m_solver->register_existing_terms();
|
|
m_nla->add_monic(register_theory_var_in_lar_solver(v), vars.size(), vars.data());
|
|
return v;
|
|
}
|
|
|
|
theory_var internalize_mul(app* t) {
|
|
SASSERT(a.is_mul(t));
|
|
internalize_args(t, true);
|
|
bool _has_var = has_var(t);
|
|
mk_enode(t);
|
|
theory_var v = mk_var(t);
|
|
|
|
if (!_has_var) {
|
|
svector<lpvar> vars;
|
|
for (expr* n : *t) {
|
|
if (is_app(n)) VERIFY(internalize_term(to_app(n)));
|
|
SASSERT(ctx().e_internalized(n));
|
|
theory_var v = mk_var(n);
|
|
vars.push_back(register_theory_var_in_lar_solver(v));
|
|
}
|
|
TRACE("arith", tout << "v" << v << " := " << bpp(t) << "\n" << vars << "\n";);
|
|
m_solver->register_existing_terms();
|
|
ensure_nla();
|
|
m_nla->add_monic(register_theory_var_in_lar_solver(v), vars.size(), vars.data());
|
|
}
|
|
return v;
|
|
}
|
|
|
|
enode * mk_enode(app * n) {
|
|
TRACE("arith_verbose", tout << bpp(n) << " internalized: " << ctx().e_internalized(n) << "\n";);
|
|
if (reflect(n))
|
|
for (expr* arg : *n)
|
|
if (!ctx().e_internalized(arg))
|
|
th.ensure_enode(arg);
|
|
if (ctx().e_internalized(n)) {
|
|
return get_enode(n);
|
|
}
|
|
else {
|
|
return ctx().mk_enode(n, !reflect(n), false, enable_cgc_for(n));
|
|
}
|
|
}
|
|
|
|
bool enable_cgc_for(app * n) const {
|
|
// Congruence closure is not enabled for (+ ...) and (* ...) applications.
|
|
return !(n->get_family_id() == get_id() && (n->get_decl_kind() == OP_ADD || n->get_decl_kind() == OP_MUL));
|
|
}
|
|
|
|
|
|
void mk_clause(literal l1, literal l2, unsigned num_params, parameter * params) {
|
|
TRACE("arith", literal lits[2]; lits[0] = l1; lits[1] = l2; ctx().display_literals_verbose(tout, 2, lits); tout << "\n";);
|
|
ctx().mk_th_axiom(get_id(), l1, l2, num_params, params);
|
|
}
|
|
|
|
void mk_clause(literal l1, literal l2, literal l3, unsigned num_params, parameter * params) {
|
|
TRACE("arith", literal lits[3]; lits[0] = l1; lits[1] = l2; lits[2] = l3; ctx().display_literals_smt2(tout, 3, lits); tout << "\n";);
|
|
ctx().mk_th_axiom(get_id(), l1, l2, l3, num_params, params);
|
|
}
|
|
|
|
|
|
bool reflect(app* n) const {
|
|
return params().m_arith_reflect || a.is_underspecified(n);
|
|
}
|
|
|
|
bool has_var(expr* n) {
|
|
return ctx().e_internalized(n) && th.is_attached_to_var(get_enode(n));
|
|
}
|
|
|
|
void reserve_bounds(theory_var v) {
|
|
while (m_bounds.size() <= static_cast<unsigned>(v)) {
|
|
m_bounds.push_back(lp_bounds());
|
|
m_unassigned_bounds.push_back(0);
|
|
}
|
|
}
|
|
|
|
theory_var mk_var(expr* n) {
|
|
if (!ctx().e_internalized(n))
|
|
ctx().internalize(n, false);
|
|
enode* e = get_enode(n);
|
|
theory_var v;
|
|
if (th.is_attached_to_var(e))
|
|
v = e->get_th_var(get_id());
|
|
else {
|
|
v = th.mk_var(e);
|
|
SASSERT(m_bounds.size() <= static_cast<unsigned>(v) || m_bounds[v].empty());
|
|
reserve_bounds(v);
|
|
ctx().attach_th_var(e, &th, v);
|
|
}
|
|
SASSERT(null_theory_var != v);
|
|
return v;
|
|
}
|
|
|
|
bool has_int() const { return lp().has_int_var(); }
|
|
|
|
lpvar register_theory_var_in_lar_solver(theory_var v) {
|
|
lpvar lpv = lp().external_to_local(v);
|
|
if (lpv != lp::null_lpvar)
|
|
return lpv;
|
|
return lp().add_var(v, is_int(v));
|
|
}
|
|
|
|
void init_left_side(scoped_internalize_state& st) {
|
|
SASSERT(all_zeros(m_columns));
|
|
svector<theory_var> const& vars = st.vars();
|
|
vector<rational> const& coeffs = st.coeffs();
|
|
for (unsigned i = 0; i < vars.size(); ++i) {
|
|
theory_var var = vars[i];
|
|
rational const& coeff = coeffs[i];
|
|
if (m_columns.size() <= static_cast<unsigned>(var))
|
|
m_columns.setx(var, coeff, rational::zero());
|
|
else
|
|
m_columns[var] += coeff;
|
|
}
|
|
m_left_side.clear();
|
|
// reset the coefficients after they have been used.
|
|
for (unsigned i = 0; i < vars.size(); ++i) {
|
|
theory_var var = vars[i];
|
|
rational const& r = m_columns[var];
|
|
if (!r.is_zero()) {
|
|
m_left_side.push_back({r, register_theory_var_in_lar_solver(var)});
|
|
m_columns[var].reset();
|
|
}
|
|
}
|
|
SASSERT(all_zeros(m_columns));
|
|
}
|
|
|
|
bool all_zeros(vector<rational> const& v) const {
|
|
return all_of(v, [](rational const& r) { return r.is_zero(); });
|
|
}
|
|
|
|
void add_eq_constraint(lp::constraint_index index, enode* n1, enode* n2) {
|
|
m_constraint_sources.setx(index, equality_source, null_source);
|
|
m_equalities.setx(index, enode_pair(n1, n2), enode_pair(0, 0));
|
|
}
|
|
|
|
void add_ineq_constraint(lp::constraint_index index, literal lit) {
|
|
m_constraint_sources.setx(index, inequality_source, null_source);
|
|
m_inequalities.setx(index, lit, null_literal);
|
|
}
|
|
|
|
void add_def_constraint(lp::constraint_index index) {
|
|
m_constraint_sources.setx(index, definition_source, null_source);
|
|
m_definitions.setx(index, null_theory_var, null_theory_var);
|
|
}
|
|
|
|
void add_def_constraint(lp::constraint_index index, theory_var v) {
|
|
m_constraint_sources.setx(index, definition_source, null_source);
|
|
m_definitions.setx(index, v, null_theory_var);
|
|
}
|
|
|
|
bool is_infeasible() const {
|
|
return lp().get_status() == lp::lp_status::INFEASIBLE;
|
|
}
|
|
|
|
vector<rational> m_fixed_values;
|
|
map<rational, theory_var, rational::hash_proc, rational::eq_proc> m_value2var;
|
|
struct undo_value : public trail {
|
|
imp& s;
|
|
undo_value(imp& s):s(s) {}
|
|
void undo() override {
|
|
s.m_value2var.erase(s.m_fixed_values.back());
|
|
s.m_fixed_values.pop_back();
|
|
}
|
|
};
|
|
|
|
void register_fixed_var(theory_var v, rational const& value) {
|
|
if (m_value2var.contains(value))
|
|
return;
|
|
m_fixed_values.push_back(value);
|
|
m_value2var.insert(value, v);
|
|
ctx().push_trail(undo_value(*this));
|
|
}
|
|
|
|
void add_def_constraint_and_equality(lpvar vi, lp::lconstraint_kind kind,
|
|
const rational& bound) {
|
|
lpvar vi_equal;
|
|
lp::constraint_index ci = lp().add_var_bound_check_on_equal(vi, kind, bound, vi_equal);
|
|
add_def_constraint(ci);
|
|
if (vi_equal != lp::null_lpvar)
|
|
report_equality_of_fixed_vars(vi, vi_equal);
|
|
m_new_def = true;
|
|
}
|
|
|
|
|
|
void del_bounds(unsigned old_size) {
|
|
for (unsigned i = m_bounds_trail.size(); i-- > old_size; ) {
|
|
unsigned v = m_bounds_trail[i];
|
|
api_bound* b = m_bounds[v].back();
|
|
// del_use_lists(b);
|
|
dealloc(b);
|
|
m_bounds[v].pop_back();
|
|
}
|
|
m_bounds_trail.shrink(old_size);
|
|
}
|
|
|
|
void updt_unassigned_bounds(theory_var v, int inc) {
|
|
TRACE("arith_verbose", tout << "v" << v << " " << m_unassigned_bounds[v] << " += " << inc << "\n";);
|
|
ctx().push_trail(vector_value_trail<unsigned, false>(m_unassigned_bounds, v));
|
|
m_unassigned_bounds[v] += inc;
|
|
}
|
|
|
|
bool is_unit_var(scoped_internalize_state& st) {
|
|
return st.vars().size() == 1 && st.coeffs()[0].is_one();
|
|
}
|
|
|
|
|
|
theory_var internalize_def(app* term, scoped_internalize_state& st) {
|
|
TRACE("arith", tout << expr_ref(term, m) << "\n";);
|
|
if (ctx().e_internalized(term)) {
|
|
IF_VERBOSE(0, verbose_stream() << "repeated term\n";);
|
|
return mk_var(term);
|
|
}
|
|
linearize_term(term, st);
|
|
if (is_unit_var(st)) {
|
|
return st.vars()[0];
|
|
}
|
|
else {
|
|
theory_var v = mk_var(term);
|
|
SASSERT(null_theory_var != v);
|
|
st.coeffs().resize(st.vars().size() + 1);
|
|
st.coeffs()[st.vars().size()] = rational::minus_one();
|
|
st.vars().push_back(v);
|
|
return v;
|
|
}
|
|
}
|
|
|
|
// term - v = 0
|
|
theory_var internalize_def(app* term) {
|
|
scoped_internalize_state st(*this);
|
|
linearize_term(term, st);
|
|
return internalize_linearized_def(term, st);
|
|
}
|
|
|
|
lpvar get_lpvar(expr* e) {
|
|
theory_var v = mk_var(e);
|
|
m_solver->register_existing_terms();
|
|
return register_theory_var_in_lar_solver(v);
|
|
}
|
|
|
|
lpvar get_lpvar(enode* n) {
|
|
return get_lpvar(n->get_expr());
|
|
}
|
|
|
|
lpvar get_lpvar(theory_var v) const {
|
|
return v == null_theory_var ? lp::null_lpvar : lp().external_to_local(v);
|
|
}
|
|
|
|
theory_var internalize_linearized_def(app* term, scoped_internalize_state& st) {
|
|
theory_var v = mk_var(term);
|
|
TRACE("arith_internalize", tout << "v" << v << " " << bpp(term) << "\n";);
|
|
|
|
if (is_unit_var(st) && v == st.vars()[0])
|
|
return st.vars()[0];
|
|
|
|
init_left_side(st);
|
|
lpvar vi = get_lpvar(v);
|
|
|
|
if (vi == UINT_MAX) {
|
|
if (m_left_side.empty()) {
|
|
vi = lp().add_var(v, a.is_int(term));
|
|
add_def_constraint_and_equality(vi, lp::GE, rational(0));
|
|
add_def_constraint_and_equality(vi, lp::LE, rational(0));
|
|
}
|
|
else {
|
|
vi = lp().add_term(m_left_side, v);
|
|
SASSERT(lp().column_has_term(vi));
|
|
TRACE("arith_verbose",
|
|
tout << "v" << v << " := " << mk_pp(term, m)
|
|
<< " slack: " << vi << " scopes: " << m_scopes.size() << "\n";
|
|
lp().print_term(lp().get_term(vi), tout) << "\n";);
|
|
}
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
|
|
public:
|
|
imp(theory_lra& th, ast_manager& m):
|
|
th(th), m(m),
|
|
a(m),
|
|
m_arith_eq_adapter(th, a),
|
|
m_internalize_head(0),
|
|
m_one_var(UINT_MAX),
|
|
m_zero_var(UINT_MAX),
|
|
m_rone_var(UINT_MAX),
|
|
m_rzero_var(UINT_MAX),
|
|
m_asserted_qhead(0),
|
|
m_assume_eq_head(0),
|
|
m_num_conflicts(0),
|
|
m_model_eqs(DEFAULT_HASHTABLE_INITIAL_CAPACITY, var_value_hash(*this), var_value_eq(*this)),
|
|
m_solver(nullptr),
|
|
m_resource_limit(*this),
|
|
m_farkas("farkas"),
|
|
m_bp(*this, m_implied_bounds),
|
|
m_bounded_range_idx(0),
|
|
m_bounded_range_lit(null_literal),
|
|
m_bound_terms(m),
|
|
m_bound_predicate(m)
|
|
{
|
|
m_bound_params.push_back(parameter(m_farkas));
|
|
m_bound_params.push_back(parameter(rational(1)));
|
|
m_bound_params.push_back(parameter(rational(1)));
|
|
|
|
}
|
|
|
|
~imp() {
|
|
del_bounds(0);
|
|
std::for_each(m_internalize_states.begin(), m_internalize_states.end(), delete_proc<internalize_state>());
|
|
}
|
|
|
|
lp::lar_solver& lp(){ return *m_solver.get(); }
|
|
const lp::lar_solver& lp() const { return *m_solver.get(); }
|
|
|
|
void init() {
|
|
if (m_solver) return;
|
|
|
|
m_model_is_initialized = false;
|
|
m_solver = alloc(lp::lar_solver);
|
|
// initialize 0, 1 variables:
|
|
get_one(true);
|
|
get_one(false);
|
|
get_zero(true);
|
|
get_zero(false);
|
|
|
|
lp().updt_params(ctx().get_params());
|
|
lp().settings().set_resource_limit(m_resource_limit);
|
|
lp().settings().bound_propagation() = bound_prop_mode::BP_NONE != propagation_mode();
|
|
|
|
// todo : do not use m_arith_branch_cut_ratio for deciding on cheap cuts
|
|
unsigned branch_cut_ratio = ctx().get_fparams().m_arith_branch_cut_ratio;
|
|
lp().set_cut_strategy(branch_cut_ratio);
|
|
|
|
lp().settings().int_run_gcd_test() = ctx().get_fparams().m_arith_gcd_test;
|
|
lp().settings().set_random_seed(ctx().get_fparams().m_random_seed);
|
|
m_lia = alloc(lp::int_solver, *m_solver.get());
|
|
}
|
|
|
|
void internalize_is_int(app * n) {
|
|
SASSERT(a.is_is_int(n));
|
|
(void) mk_enode(n);
|
|
if (!ctx().relevancy())
|
|
mk_is_int_axiom(n);
|
|
}
|
|
|
|
bool internalize_atom(app * atom, bool gate_ctx) {
|
|
TRACE("arith_internalize", tout << bpp(atom) << "\n";);
|
|
SASSERT(!ctx().b_internalized(atom));
|
|
expr* n1, *n2;
|
|
rational r;
|
|
lp_api::bound_kind k;
|
|
theory_var v = null_theory_var;
|
|
bool_var bv = ctx().mk_bool_var(atom);
|
|
m_bool_var2bound.erase(bv);
|
|
ctx().set_var_theory(bv, get_id());
|
|
if (a.is_le(atom, n1, n2) && a.is_extended_numeral(n2, r) && is_app(n1)) {
|
|
v = internalize_def(to_app(n1));
|
|
k = lp_api::upper_t;
|
|
}
|
|
else if (a.is_ge(atom, n1, n2) && a.is_extended_numeral(n2, r) && is_app(n1)) {
|
|
v = internalize_def(to_app(n1));
|
|
k = lp_api::lower_t;
|
|
}
|
|
else if (a.is_le(atom, n1, n2) && a.is_extended_numeral(n1, r) && is_app(n2)) {
|
|
v = internalize_def(to_app(n2));
|
|
k = lp_api::lower_t;
|
|
}
|
|
else if (a.is_ge(atom, n1, n2) && a.is_extended_numeral(n1, r) && is_app(n2)) {
|
|
v = internalize_def(to_app(n2));
|
|
k = lp_api::upper_t;
|
|
}
|
|
else if (a.is_is_int(atom)) {
|
|
internalize_is_int(atom);
|
|
return true;
|
|
}
|
|
else {
|
|
TRACE("arith", tout << "Could not internalize " << mk_pp(atom, m) << "\n";);
|
|
found_unsupported(atom);
|
|
return true;
|
|
}
|
|
|
|
if (is_int(v) && !r.is_int())
|
|
r = (k == lp_api::upper_t) ? floor(r) : ceil(r);
|
|
|
|
api_bound* b = mk_var_bound(bv, v, k, r);
|
|
m_bounds[v].push_back(b);
|
|
updt_unassigned_bounds(v, +1);
|
|
m_bounds_trail.push_back(v);
|
|
m_bool_var2bound.insert(bv, b);
|
|
mk_bound_axioms(*b);
|
|
TRACE("arith_internalize", tout << "Internalized " << bv << ": " << bpp(atom) << "\n";);
|
|
return true;
|
|
}
|
|
|
|
bool internalize_term(app * term) {
|
|
if (ctx().e_internalized(term) && th.is_attached_to_var(ctx().get_enode(term))) {
|
|
// skip
|
|
}
|
|
else {
|
|
internalize_def(term);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool is_arith(enode* n) {
|
|
return n && n->get_th_var(get_id()) != null_theory_var;
|
|
}
|
|
|
|
void internalize_eq_eh(app * atom, bool_var) {
|
|
if (!ctx().get_fparams().m_arith_eager_eq_axioms)
|
|
return;
|
|
expr* lhs = nullptr, *rhs = nullptr;
|
|
VERIFY(m.is_eq(atom, lhs, rhs));
|
|
enode * n1 = get_enode(lhs);
|
|
enode * n2 = get_enode(rhs);
|
|
|
|
if (is_arith(n1) && is_arith(n2) && n1 != n2)
|
|
m_arith_eq_adapter.mk_axioms(n1, n2);
|
|
}
|
|
|
|
void assign_eh(bool_var v, bool is_true) {
|
|
TRACE("arith", tout << "assign p" << literal(v, !is_true) << ": " << bpp(ctx().bool_var2expr(v)) << "\n";);
|
|
m_asserted_atoms.push_back(delayed_atom(v, is_true));
|
|
}
|
|
|
|
lbool get_phase(bool_var v) {
|
|
api_bound* b;
|
|
if (!m_bool_var2bound.find(v, b)) {
|
|
return l_undef;
|
|
}
|
|
lp::lconstraint_kind k = lp::EQ;
|
|
switch (b->get_bound_kind()) {
|
|
case lp_api::lower_t:
|
|
k = lp::GE;
|
|
break;
|
|
case lp_api::upper_t:
|
|
k = lp::LE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
auto vi = register_theory_var_in_lar_solver(b->get_var());
|
|
if (vi == lp::null_lpvar) {
|
|
return l_undef;
|
|
}
|
|
return lp().compare_values(vi, k, b->get_value()) ? l_true : l_false;
|
|
}
|
|
|
|
void initialize_value(expr* var, expr* value) {
|
|
rational r;
|
|
if (!a.is_numeral(value, r)) {
|
|
IF_VERBOSE(5, verbose_stream() << "numeric constant expected in initialization " << mk_pp(var, m) << " := " << mk_pp(value, m) << "\n");
|
|
return;
|
|
}
|
|
lp().move_lpvar_to_value(get_lpvar(var), r);
|
|
}
|
|
|
|
void new_eq_eh(theory_var v1, theory_var v2) {
|
|
TRACE("arith", tout << "eq " << v1 << " == " << v2 << "\n";);
|
|
if (!is_int(v1) && !is_real(v1))
|
|
return;
|
|
m_arith_eq_adapter.new_eq_eh(v1, v2);
|
|
}
|
|
|
|
bool use_diseqs() const {
|
|
return true;
|
|
}
|
|
|
|
void new_diseq_eh(theory_var v1, theory_var v2) {
|
|
TRACE("arith", tout << "v" << v1 << " != " << "v" << v2 << "\n";);
|
|
++m_stats.m_assert_diseq;
|
|
m_arith_eq_adapter.new_diseq_eh(v1, v2);
|
|
}
|
|
|
|
void apply_sort_cnstr(enode* n, sort*) {
|
|
TRACE("arith", tout << "sort constraint: " << pp(n) << "\n";);
|
|
#if 0
|
|
if (!th.is_attached_to_var(n))
|
|
mk_var(n->get_owner());
|
|
#endif
|
|
}
|
|
|
|
void push_scope_eh() {
|
|
m_scopes.push_back(scope());
|
|
scope& sc = m_scopes.back();
|
|
sc.m_bounds_lim = m_bounds_trail.size();
|
|
sc.m_asserted_qhead = m_asserted_qhead;
|
|
sc.m_asserted_atoms_lim = m_asserted_atoms.size();
|
|
lp().push();
|
|
if (m_nla)
|
|
m_nla->push();
|
|
}
|
|
|
|
void pop_scope_eh(unsigned num_scopes) {
|
|
if (num_scopes == 0)
|
|
return;
|
|
unsigned old_size = m_scopes.size() - num_scopes;
|
|
del_bounds(m_scopes[old_size].m_bounds_lim);
|
|
m_asserted_atoms.shrink(m_scopes[old_size].m_asserted_atoms_lim);
|
|
m_asserted_qhead = m_scopes[old_size].m_asserted_qhead;
|
|
m_scopes.resize(old_size);
|
|
lp().pop(num_scopes);
|
|
// VERIFY(l_false != make_feasible());
|
|
m_new_bounds.reset();
|
|
m_bv_to_propagate.reset();
|
|
if (m_nla)
|
|
m_nla->pop(num_scopes);
|
|
TRACE("arith", tout << "num scopes: " << num_scopes << " new scope level: " << m_scopes.size() << "\n";);
|
|
}
|
|
|
|
void restart_eh() {
|
|
m_arith_eq_adapter.restart_eh();
|
|
#if 1
|
|
// experiment
|
|
if (m_lia) {
|
|
std::function<bool(unsigned)> is_root = [&](unsigned j) {
|
|
theory_var v = lp().local_to_external(j);
|
|
if (v < 0)
|
|
return false;
|
|
auto* n = get_enode(v);
|
|
if (!th.is_relevant_and_shared(n))
|
|
return false;
|
|
if (n->is_root())
|
|
return true;
|
|
theory_var w = n->get_root()->get_th_var(get_id());
|
|
return w == v;
|
|
};
|
|
m_lia->simplify(is_root);
|
|
for (auto const& [i, j, e] : m_lia->equalities())
|
|
add_eq(i, j, e, false);
|
|
}
|
|
#endif
|
|
if (m_nla)
|
|
m_nla->simplify();
|
|
}
|
|
|
|
void relevant_eh(app* n) {
|
|
expr* n1, *n2;
|
|
if (a.is_mod(n, n1, n2))
|
|
mk_idiv_mod_axioms(n1, n2);
|
|
else if (a.is_rem(n, n1, n2))
|
|
mk_rem_axiom(n1, n2);
|
|
else if (a.is_div(n, n1, n2))
|
|
mk_div_axiom(n1, n2);
|
|
else if (a.is_to_int(n))
|
|
mk_to_int_axiom(n);
|
|
else if (a.is_is_int(n))
|
|
mk_is_int_axiom(n);
|
|
else if (m.is_ite(n))
|
|
mk_ite_axiom(n);
|
|
else if (a.is_power(n, n1, n2))
|
|
mk_power_axiom(n, n1, n2);
|
|
}
|
|
|
|
void mk_power_axiom(expr* p, expr* x, expr* y) {
|
|
rational r;
|
|
// r > 0 => r^y > 0
|
|
if (a.is_extended_numeral(x, r) && r > 0) {
|
|
expr_ref zero(a.mk_real(0), m);
|
|
mk_axiom(~mk_literal(a.mk_le(p, zero)));
|
|
}
|
|
bool can_be_underspecified = false;
|
|
if (a.is_numeral(x, r) && r == 0 && (!a.is_numeral(y, r) || r == 0))
|
|
can_be_underspecified = true;
|
|
if (!a.is_extended_numeral(x, r) &&
|
|
!a.is_extended_numeral(y, r))
|
|
can_be_underspecified = true;
|
|
if (can_be_underspecified) {
|
|
literal lit = th.mk_eq(p, a.mk_power0(x, y), false);
|
|
ctx().mark_as_relevant(lit);
|
|
ctx().assign(lit, nullptr);
|
|
}
|
|
}
|
|
|
|
// n < 0 || rem(a, n) = mod(a, n)
|
|
// !n < 0 || rem(a, n) = -mod(a, n)
|
|
void mk_rem_axiom(expr* dividend, expr* divisor) {
|
|
expr_ref zero(a.mk_int(0), m);
|
|
expr_ref rem(a.mk_rem(dividend, divisor), m);
|
|
expr_ref mod(a.mk_mod(dividend, divisor), m);
|
|
expr_ref mmod(a.mk_uminus(mod), m);
|
|
expr_ref degz_expr(a.mk_ge(divisor, zero), m);
|
|
literal dgez = mk_literal(degz_expr);
|
|
literal pos = th.mk_eq(rem, mod, false);
|
|
literal neg = th.mk_eq(rem, mmod, false);
|
|
{
|
|
scoped_trace_stream ts(th, ~dgez, pos);
|
|
mk_axiom(~dgez, pos);
|
|
}
|
|
{
|
|
scoped_trace_stream ts(th, dgez, neg);
|
|
mk_axiom( dgez, neg);
|
|
}
|
|
}
|
|
|
|
// q = 0 or q * (p div q) = p
|
|
void mk_div_axiom(expr* p, expr* q) {
|
|
if (a.is_zero(q)) return;
|
|
literal eqz = th.mk_eq(q, a.mk_real(0), false);
|
|
literal eq = th.mk_eq(a.mk_mul(q, a.mk_div(p, q)), p, false);
|
|
scoped_trace_stream ts(th, eqz, eq);
|
|
mk_axiom(eqz, eq);
|
|
}
|
|
|
|
// to_int (to_real x) = x
|
|
// to_real(to_int(x)) <= x < to_real(to_int(x)) + 1
|
|
void mk_to_int_axiom(app* n) {
|
|
expr* x = nullptr, *y = nullptr;
|
|
VERIFY (a.is_to_int(n, x));
|
|
if (a.is_to_real(x, y)) {
|
|
literal eq = th.mk_eq(y, n, false);
|
|
scoped_trace_stream ts(th, eq);
|
|
mk_axiom(eq);
|
|
}
|
|
else {
|
|
expr_ref to_r(a.mk_to_real(n), m);
|
|
expr_ref lo(a.mk_le(a.mk_sub(to_r, x), a.mk_real(0)), m);
|
|
expr_ref hi(a.mk_ge(a.mk_sub(x, to_r), a.mk_real(1)), m);
|
|
literal llo = mk_literal(lo);
|
|
literal lhi = mk_literal(hi);
|
|
{
|
|
scoped_trace_stream ts(th, llo);
|
|
mk_axiom(llo);
|
|
}
|
|
{
|
|
scoped_trace_stream ts(th, lhi);
|
|
mk_axiom(~lhi);
|
|
}
|
|
}
|
|
}
|
|
|
|
void mk_ite_axiom(expr* n) {
|
|
return;
|
|
expr* c = nullptr, *t = nullptr, *e = nullptr;
|
|
VERIFY(m.is_ite(n, c, t, e));
|
|
literal e1 = th.mk_eq(n, t, false);
|
|
literal e2 = th.mk_eq(n, e, false);
|
|
scoped_trace_stream sts(th, e1, e2);
|
|
mk_axiom(e1, e2);
|
|
}
|
|
|
|
// is_int(x) <=> to_real(to_int(x)) = x
|
|
void mk_is_int_axiom(app* n) {
|
|
expr* x = nullptr;
|
|
VERIFY(a.is_is_int(n, x));
|
|
literal eq = th.mk_eq(a.mk_to_real(a.mk_to_int(x)), x, false);
|
|
literal is_int = ctx().get_literal(n);
|
|
scoped_trace_stream _sts1(th, ~is_int, eq);
|
|
scoped_trace_stream _sts2(th, is_int, ~eq);
|
|
mk_axiom(~is_int, eq);
|
|
mk_axiom(is_int, ~eq);
|
|
|
|
}
|
|
|
|
// create axiom for
|
|
// u = v + r*w,
|
|
/// abs(r) > r >= 0
|
|
void assert_idiv_mod_axioms(theory_var u, theory_var v, theory_var w, rational const& r) {
|
|
app_ref term(m);
|
|
term = a.mk_mul(a.mk_numeral(r, true), get_enode(w)->get_expr());
|
|
term = a.mk_add(get_enode(v)->get_expr(), term);
|
|
term = a.mk_sub(get_enode(u)->get_expr(), term);
|
|
theory_var z = internalize_def(term);
|
|
lpvar zi = register_theory_var_in_lar_solver(z);
|
|
lpvar vi = register_theory_var_in_lar_solver(v);
|
|
add_def_constraint_and_equality(zi, lp::GE, rational::zero());
|
|
add_def_constraint_and_equality(zi, lp::LE, rational::zero());
|
|
add_def_constraint_and_equality(vi, lp::GE, rational::zero());
|
|
add_def_constraint_and_equality(vi, lp::LT, abs(r));
|
|
SASSERT(!is_infeasible());
|
|
TRACE("arith", tout << term << "\n" << lp().constraints(););
|
|
}
|
|
|
|
void mk_idiv_mod_axioms(expr * p, expr * q) {
|
|
if (a.is_zero(q)) {
|
|
return;
|
|
}
|
|
TRACE("arith", tout << expr_ref(p, m) << " " << expr_ref(q, m) << "\n";);
|
|
// if q is zero, then idiv and mod are uninterpreted functions.
|
|
expr_ref div(a.mk_idiv(p, q), m);
|
|
expr_ref mod(a.mk_mod(p, q), m);
|
|
expr_ref zero(a.mk_int(0), m);
|
|
if (a.is_zero(p)) {
|
|
// q != 0 => (= (div 0 q) 0)
|
|
// q != 0 => (= (mod 0 q) 0)
|
|
literal q_ge_0 = mk_literal(a.mk_ge(q, zero));
|
|
literal q_le_0 = mk_literal(a.mk_le(q, zero));
|
|
literal d_ge_0 = mk_literal(a.mk_ge(div, zero));
|
|
literal d_le_0 = mk_literal(a.mk_le(div, zero));
|
|
literal m_ge_0 = mk_literal(a.mk_ge(mod, zero));
|
|
literal m_le_0 = mk_literal(a.mk_le(mod, zero));
|
|
mk_axiom(q_ge_0, d_ge_0);
|
|
mk_axiom(q_ge_0, d_le_0);
|
|
mk_axiom(q_ge_0, m_ge_0);
|
|
mk_axiom(q_ge_0, m_le_0);
|
|
mk_axiom(q_le_0, d_ge_0);
|
|
mk_axiom(q_le_0, d_le_0);
|
|
mk_axiom(q_le_0, m_ge_0);
|
|
mk_axiom(q_le_0, m_le_0);
|
|
return;
|
|
}
|
|
expr_ref mod_r(a.mk_add(a.mk_mul(q, div), mod), m);
|
|
expr_ref eq_r(th.mk_eq_atom(mod_r, p), m);
|
|
ctx().internalize(eq_r, false);
|
|
literal eq = ctx().get_literal(eq_r);
|
|
|
|
rational k(0);
|
|
expr_ref upper(m);
|
|
|
|
if (!a.is_numeral(q, k))
|
|
;
|
|
else if (k.is_pos())
|
|
upper = a.mk_numeral(k - 1, true);
|
|
else if (k.is_neg())
|
|
upper = a.mk_numeral(-k - 1, true);
|
|
|
|
context& c = ctx();
|
|
if (!k.is_zero()) {
|
|
mk_axiom(eq);
|
|
m_arith_eq_adapter.mk_axioms(th.ensure_enode(mod_r), th.ensure_enode(p));
|
|
mk_axiom(mk_literal(a.mk_ge(mod, zero)));
|
|
mk_axiom(mk_literal(a.mk_le(mod, upper)));
|
|
|
|
{
|
|
std::function<void(void)> log = [&,this]() {
|
|
th.log_axiom_unit(m.mk_implies(m.mk_not(m.mk_eq(q, zero)), c.bool_var2expr(eq.var())));
|
|
th.log_axiom_unit(m.mk_implies(m.mk_not(m.mk_eq(q, zero)), a.mk_ge(mod, zero)));
|
|
th.log_axiom_unit(m.mk_implies(m.mk_not(m.mk_eq(q, zero)), a.mk_le(mod, upper)));
|
|
};
|
|
if_trace_stream _ts(m, log);
|
|
}
|
|
}
|
|
else {
|
|
|
|
expr_ref abs_q(m.mk_ite(a.mk_ge(q, zero), q, a.mk_uminus(q)), m);
|
|
expr_ref mone(a.mk_int(-1), m);
|
|
expr_ref modmq(a.mk_sub(mod, abs_q), m);
|
|
literal eqz = mk_literal(m.mk_eq(q, zero));
|
|
literal mod_ge_0 = mk_literal(a.mk_ge(mod, zero));
|
|
literal mod_lt_q = mk_literal(a.mk_le(modmq, mone));
|
|
|
|
// q = 0 or p = (p mod q) + q * (p div q)
|
|
// q = 0 or (p mod q) >= 0
|
|
// q = 0 or (p mod q) < abs(q)
|
|
|
|
mk_axiom(eqz, eq);
|
|
mk_axiom(eqz, mod_ge_0);
|
|
mk_axiom(eqz, mod_lt_q);
|
|
m_arith_eq_adapter.mk_axioms(th.ensure_enode(mod_r), th.ensure_enode(p));
|
|
|
|
if (a.is_zero(p)) {
|
|
mk_axiom(eqz, mk_literal(m.mk_eq(div, zero)));
|
|
mk_axiom(eqz, mk_literal(m.mk_eq(mod, zero)));
|
|
}
|
|
// (or (= y 0) (<= (* y (div x y)) x))
|
|
else if (!a.is_numeral(q)) {
|
|
expr_ref div_ge(m);
|
|
div_ge = a.mk_ge(a.mk_sub(p, a.mk_mul(q, div)), zero);
|
|
ctx().get_rewriter()(div_ge);
|
|
mk_axiom(eqz, mk_literal(div_ge));
|
|
TRACE("arith", tout << eqz << " " << div_ge << "\n");
|
|
}
|
|
|
|
|
|
#if 0
|
|
|
|
/*literal div_ge_0 = */ mk_literal(a.mk_ge(div, zero));
|
|
/*literal div_le_0 = */ mk_literal(a.mk_le(div, zero));
|
|
/*literal p_ge_0 = */ mk_literal(a.mk_ge(p, zero));
|
|
/*literal p_le_0 = */ mk_literal(a.mk_le(p, zero));
|
|
|
|
// q >= 0 or p = (p mod q) + q * (p div q)
|
|
// q <= 0 or p = (p mod q) + q * (p div q)
|
|
// q >= 0 or (p mod q) >= 0
|
|
// q <= 0 or (p mod q) >= 0
|
|
// q <= 0 or (p mod q) < q
|
|
// q >= 0 or (p mod q) < -q
|
|
literal q_ge_0 = mk_literal(a.mk_ge(q, zero));
|
|
literal q_le_0 = mk_literal(a.mk_le(q, zero));
|
|
literal mod_ge_0 = mk_literal(a.mk_ge(mod, zero));
|
|
|
|
mk_axiom(q_ge_0, eq);
|
|
mk_axiom(q_le_0, eq);
|
|
mk_axiom(q_ge_0, mod_ge_0);
|
|
mk_axiom(q_le_0, mod_ge_0);
|
|
mk_axiom(q_le_0, ~mk_literal(a.mk_ge(a.mk_sub(mod, q), zero)));
|
|
mk_axiom(q_ge_0, ~mk_literal(a.mk_ge(a.mk_add(mod, q), zero)));
|
|
#endif
|
|
|
|
#if 0
|
|
// seem expensive
|
|
|
|
mk_axiom(q_le_0, ~p_ge_0, div_ge_0);
|
|
mk_axiom(q_le_0, ~p_le_0, div_le_0);
|
|
mk_axiom(q_ge_0, ~p_ge_0, div_le_0);
|
|
mk_axiom(q_ge_0, ~p_le_0, div_ge_0);
|
|
|
|
mk_axiom(q_le_0, p_ge_0, ~div_ge_0);
|
|
mk_axiom(q_le_0, p_le_0, ~div_le_0);
|
|
mk_axiom(q_ge_0, p_ge_0, ~div_le_0);
|
|
mk_axiom(q_ge_0, p_le_0, ~div_ge_0);
|
|
#endif
|
|
|
|
#if 0
|
|
std::function<void(void)> log = [&,this]() {
|
|
th.log_axiom_unit(m.mk_implies(m.mk_not(m.mk_eq(q, zero)), c.bool_var2expr(eq.var())));
|
|
th.log_axiom_unit(m.mk_implies(m.mk_not(m.mk_eq(q, zero)), c.bool_var2expr(mod_ge_0.var())));
|
|
th.log_axiom_unit(m.mk_implies(a.mk_lt(q, zero), a.mk_lt(a.mk_sub(mod, q), zero)));
|
|
th.log_axiom_unit(m.mk_implies(a.mk_lt(q, zero), a.mk_lt(a.mk_add(mod, q), zero)));
|
|
};
|
|
if_trace_stream _ts(m, log);
|
|
#endif
|
|
#if 0
|
|
th.log_axiom_unit(m.mk_implies(m.mk_and(a.mk_gt(q, zero), c.bool_var2expr(p_ge_0.var())), c.bool_var2expr(div_ge_0.var())));
|
|
th.log_axiom_unit(m.mk_implies(m.mk_and(a.mk_gt(q, zero), c.bool_var2expr(p_le_0.var())), c.bool_var2expr(div_le_0.var())));
|
|
th.log_axiom_unit(m.mk_implies(m.mk_and(a.mk_lt(q, zero), c.bool_var2expr(p_ge_0.var())), c.bool_var2expr(div_le_0.var())));
|
|
th.log_axiom_unit(m.mk_implies(m.mk_and(a.mk_lt(q, zero), c.bool_var2expr(p_le_0.var())), c.bool_var2expr(div_ge_0.var())));
|
|
#endif
|
|
}
|
|
if (params().m_arith_enum_const_mod && k.is_pos() && k < rational(8)) {
|
|
unsigned _k = k.get_unsigned();
|
|
literal_buffer lits;
|
|
expr_ref_vector exprs(m);
|
|
for (unsigned j = 0; j < _k; ++j) {
|
|
literal mod_j = th.mk_eq(mod, a.mk_int(j), false);
|
|
lits.push_back(mod_j);
|
|
exprs.push_back(c.bool_var2expr(mod_j.var()));
|
|
ctx().mark_as_relevant(mod_j);
|
|
}
|
|
scoped_trace_stream _st(th, lits);
|
|
ctx().mk_th_axiom(get_id(), lits.size(), lits.begin());
|
|
}
|
|
}
|
|
|
|
void mk_axiom(literal l) {
|
|
ctx().mk_th_axiom(get_id(), false_literal, l);
|
|
if (ctx().relevancy()) {
|
|
ctx().mark_as_relevant(l);
|
|
}
|
|
}
|
|
|
|
void mk_axiom(literal l1, literal l2) {
|
|
if (l1 == false_literal) {
|
|
mk_axiom(l2);
|
|
return;
|
|
}
|
|
mk_clause(l1, l2, 0, nullptr);
|
|
if (ctx().relevancy()) {
|
|
ctx().mark_as_relevant(l1);
|
|
ctx().add_rel_watch(~l1, ctx().bool_var2expr(l2.var())); // mark consequent as relevant if antecedent is false.
|
|
}
|
|
}
|
|
|
|
void mk_axiom(literal l1, literal l2, literal l3) {
|
|
mk_clause(l1, l2, l3, 0, nullptr);
|
|
if (ctx().relevancy()) {
|
|
ctx().mark_as_relevant(l1);
|
|
ctx().mark_as_relevant(l2);
|
|
ctx().mark_as_relevant(l3);
|
|
}
|
|
}
|
|
|
|
literal mk_literal(expr* e) {
|
|
expr_ref pinned(e, m);
|
|
TRACE("mk_bool_var", tout << pinned << " " << pinned->get_id() << "\n";);
|
|
if (!ctx().e_internalized(e)) {
|
|
ctx().internalize(e, false);
|
|
}
|
|
return ctx().get_literal(e);
|
|
}
|
|
|
|
|
|
void init_search_eh() {
|
|
m_arith_eq_adapter.init_search_eh();
|
|
m_num_conflicts = 0;
|
|
}
|
|
|
|
bool can_get_value(theory_var v) const {
|
|
return is_registered_var(v) && m_model_is_initialized;
|
|
}
|
|
|
|
bool is_registered_var(theory_var v) const {
|
|
return v != null_theory_var && lp().external_is_used(v);
|
|
}
|
|
|
|
void ensure_column(enode* n) {
|
|
ensure_column(n->get_th_var(get_id()));
|
|
}
|
|
|
|
void ensure_column(theory_var v) {
|
|
if (!lp().external_is_used(v) && v != null_theory_var)
|
|
register_theory_var_in_lar_solver(v);
|
|
}
|
|
|
|
mutable vector<std::pair<lp::lpvar, rational>> m_todo_terms;
|
|
|
|
lp::impq get_ivalue(theory_var v) const {
|
|
SASSERT(is_registered_var(v));
|
|
return lp().get_column_value(get_lpvar(v));
|
|
}
|
|
|
|
rational get_value(theory_var v) const {
|
|
return is_registered_var(v) ? lp().get_value(get_lpvar(v)) : rational::zero();
|
|
}
|
|
|
|
bool m_model_is_initialized{ false };
|
|
|
|
void init_variable_values() {
|
|
m_model_is_initialized = false;
|
|
if (m.inc() && m_solver.get() && th.get_num_vars() > 0) {
|
|
ctx().push_trail(value_trail<bool>(m_model_is_initialized));
|
|
m_model_is_initialized = lp().init_model();
|
|
TRACE("arith", display(tout << "update variable values " << m_model_is_initialized << "\n"););
|
|
}
|
|
}
|
|
|
|
void random_update() {
|
|
if (m_nla && m_nla->need_check())
|
|
return;
|
|
m_tmp_var_set.reset();
|
|
m_model_eqs.reset();
|
|
svector<lpvar> vars;
|
|
theory_var sz = static_cast<theory_var>(th.get_num_vars());
|
|
for (theory_var v = 0; v < sz; ++v) {
|
|
enode * n1 = get_enode(v);
|
|
if (!th.is_relevant_and_shared(n1)) {
|
|
continue;
|
|
}
|
|
ensure_column(v);
|
|
lp::lpvar vj = lp().external_to_local(v);
|
|
SASSERT(vj != lp::null_lpvar);
|
|
theory_var other = m_model_eqs.insert_if_not_there(v);
|
|
if (other == v) {
|
|
continue;
|
|
}
|
|
enode * n2 = get_enode(other);
|
|
if (n1->get_root() == n2->get_root())
|
|
continue;
|
|
if (!lp().column_is_fixed(vj)) {
|
|
vars.push_back(vj);
|
|
}
|
|
else if (!m_tmp_var_set.contains(other) ) {
|
|
lp::lpvar other_j = lp().external_to_local(other);
|
|
if (!lp().column_is_fixed(other_j)) {
|
|
m_tmp_var_set.insert(other);
|
|
vars.push_back(other_j);
|
|
}
|
|
}
|
|
}
|
|
TRACE("arith",
|
|
for (theory_var v = 0; v < sz; ++v)
|
|
if (th.is_relevant_and_shared(get_enode(v)))
|
|
tout << "v" << v << " ";
|
|
tout << "\n"; );
|
|
if (!vars.empty()) {
|
|
lp().random_update(vars.size(), vars.data());
|
|
}
|
|
}
|
|
|
|
bool assume_eqs() {
|
|
|
|
if (delayed_assume_eqs())
|
|
return true;
|
|
|
|
TRACE("arith_verbose", display(tout););
|
|
random_update();
|
|
m_model_eqs.reset();
|
|
|
|
theory_var sz = static_cast<theory_var>(th.get_num_vars());
|
|
unsigned old_sz = m_assume_eq_candidates.size();
|
|
unsigned num_candidates = 0;
|
|
int start = ctx().get_random_value();
|
|
for (theory_var i = 0; i < sz; ++i) {
|
|
theory_var v = (i + start) % sz;
|
|
enode* n1 = get_enode(v);
|
|
if (!th.is_relevant_and_shared(n1))
|
|
continue;
|
|
ensure_column(v);
|
|
if (!is_registered_var(v))
|
|
continue;
|
|
theory_var other = m_model_eqs.insert_if_not_there(v);
|
|
if (other == v)
|
|
continue;
|
|
enode* n2 = get_enode(other);
|
|
if (n1->get_root() == n2->get_root())
|
|
continue;
|
|
m_assume_eq_candidates.push_back({v, other});
|
|
num_candidates++;
|
|
}
|
|
|
|
if (num_candidates > 0)
|
|
ctx().push_trail(restore_vector(m_assume_eq_candidates, old_sz));
|
|
|
|
return delayed_assume_eqs();
|
|
}
|
|
|
|
bool delayed_assume_eqs() {
|
|
if (m_assume_eq_head == m_assume_eq_candidates.size())
|
|
return false;
|
|
|
|
ctx().push_trail(value_trail<unsigned>(m_assume_eq_head));
|
|
while (m_assume_eq_head < m_assume_eq_candidates.size()) {
|
|
auto const [v1, v2] = m_assume_eq_candidates[m_assume_eq_head];
|
|
enode* n1 = get_enode(v1);
|
|
enode* n2 = get_enode(v2);
|
|
m_assume_eq_head++;
|
|
CTRACE("arith",
|
|
is_eq(v1, v2) && n1->get_root() != n2->get_root(),
|
|
tout << "assuming eq: v" << v1 << " = v" << v2 << "\n";);
|
|
if (is_eq(v1, v2) && n1->get_root() != n2->get_root() && th.assume_eq(n1, n2)) {
|
|
++m_stats.m_assume_eqs;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool is_eq(theory_var v1, theory_var v2) {
|
|
if (use_nra_model())
|
|
return m_nla->am().eq(nl_value(v1, m_nla->tmp1()), nl_value(v2, m_nla->tmp2()));
|
|
else
|
|
return get_ivalue(v1) == get_ivalue(v2);
|
|
}
|
|
|
|
bool has_delayed_constraints() const {
|
|
return !m_asserted_atoms.empty();
|
|
}
|
|
|
|
final_check_status eval_power(expr* e) {
|
|
expr* x = nullptr, * y = nullptr;
|
|
rational r;
|
|
VERIFY(a.is_power(e, x, y));
|
|
if (a.is_numeral(x, r) && r == 0 && a.is_numeral(y, r) && r == 0)
|
|
return FC_DONE;
|
|
if (!m_nla)
|
|
return FC_GIVEUP;
|
|
switch (m_nla->check_power(get_lpvar(e), get_lpvar(x), get_lpvar(y))) {
|
|
case l_true:
|
|
return FC_DONE;
|
|
case l_false:
|
|
add_lemmas();
|
|
return FC_CONTINUE;
|
|
case l_undef:
|
|
return FC_GIVEUP;
|
|
default:
|
|
break;
|
|
}
|
|
return FC_GIVEUP;
|
|
}
|
|
|
|
final_check_status eval_unsupported(expr* e) {
|
|
if (a.is_power(e))
|
|
return eval_power(e);
|
|
if (a.is_power0(e))
|
|
return FC_DONE;
|
|
return FC_GIVEUP;
|
|
}
|
|
|
|
final_check_status final_check_eh() {
|
|
if (propagate_core())
|
|
return FC_CONTINUE;
|
|
m_model_is_initialized = false;
|
|
IF_VERBOSE(12, verbose_stream() << "final-check " << lp().get_status() << "\n");
|
|
lbool is_sat = l_true;
|
|
SASSERT(lp().ax_is_correct());
|
|
if (!lp().is_feasible() || lp().has_changed_columns())
|
|
is_sat = make_feasible();
|
|
final_check_status st = FC_DONE;
|
|
bool int_undef = false;
|
|
switch (is_sat) {
|
|
case l_true:
|
|
TRACE("arith", display(tout));
|
|
|
|
switch (check_lia()) {
|
|
case FC_DONE:
|
|
break;
|
|
case FC_CONTINUE:
|
|
return FC_CONTINUE;
|
|
case FC_GIVEUP:
|
|
int_undef = true;
|
|
TRACE("arith", tout << "check-lia giveup\n";);
|
|
if (ctx().get_fparams().m_arith_ignore_int)
|
|
st = FC_CONTINUE;
|
|
break;
|
|
}
|
|
|
|
switch (check_nla()) {
|
|
case FC_DONE:
|
|
break;
|
|
case FC_CONTINUE:
|
|
return FC_CONTINUE;
|
|
case FC_GIVEUP:
|
|
TRACE("arith", tout << "check-nra giveup\n";);
|
|
st = FC_GIVEUP;
|
|
break;
|
|
}
|
|
|
|
if (assume_eqs()) {
|
|
++m_stats.m_assume_eqs;
|
|
return FC_CONTINUE;
|
|
}
|
|
|
|
if (!int_undef && !check_bv_terms())
|
|
return FC_CONTINUE;
|
|
|
|
for (expr* e : m_not_handled) {
|
|
if (!ctx().is_relevant(e))
|
|
continue;
|
|
switch (eval_unsupported(e)) {
|
|
case FC_CONTINUE:
|
|
st = FC_CONTINUE;
|
|
break;
|
|
case FC_GIVEUP:
|
|
TRACE("arith", tout << "give up " << mk_pp(e, m) << "\n");
|
|
if (st != FC_CONTINUE)
|
|
st = FC_GIVEUP;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (st == FC_CONTINUE)
|
|
break;
|
|
}
|
|
return st;
|
|
case l_false:
|
|
get_infeasibility_explanation_and_set_conflict();
|
|
return FC_CONTINUE;
|
|
case l_undef:
|
|
TRACE("arith", tout << "check feasible is undef\n";);
|
|
return m.inc() ? FC_CONTINUE : FC_GIVEUP;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
TRACE("arith", tout << "default giveup\n";);
|
|
return FC_GIVEUP;
|
|
}
|
|
|
|
// create an eq atom representing "term = offset"
|
|
app_ref mk_eq(lp::lar_term const& term, rational const& offset) {
|
|
u_map<rational> coeffs;
|
|
term2coeffs(term, coeffs);
|
|
bool isint = offset.is_int();
|
|
for (auto const& kv : coeffs) isint &= is_int(kv.m_key) && kv.m_value.is_int();
|
|
app_ref t = coeffs2app(coeffs, rational::zero(), isint);
|
|
app_ref s(a.mk_numeral(offset, isint), m);
|
|
if (s == t) {
|
|
return app_ref(m.mk_true(), m);
|
|
}
|
|
else {
|
|
app_ref atom(m.mk_eq(t, s), m);
|
|
ctx().internalize(atom, true);
|
|
ctx().mark_as_relevant(atom.get());
|
|
return atom;
|
|
}
|
|
}
|
|
// create a bound atom representing term >= k is lower_bound is true, and term <= k if it is false
|
|
expr_ref mk_bound(lp::lar_term const& term, rational const& k, bool lower_bound) {
|
|
rational offset;
|
|
expr_ref t(m);
|
|
return mk_bound(term, k, lower_bound, offset, t);
|
|
}
|
|
|
|
expr_ref mk_bound(lp::lar_term const& term, rational const& k, bool lower_bound, rational& offset, expr_ref& t) {
|
|
offset = k;
|
|
u_map<rational> coeffs;
|
|
term2coeffs(term, coeffs);
|
|
bool is_int = true;
|
|
rational lc = denominator(k);
|
|
for (auto const& kv : coeffs) {
|
|
theory_var w = kv.m_key;
|
|
expr* o = get_enode(w)->get_expr();
|
|
is_int = a.is_int(o);
|
|
if (!is_int) break;
|
|
lc = lcm(lc, denominator(kv.m_value));
|
|
}
|
|
|
|
// ensure that coefficients are integers when all variables are integers as well.
|
|
if (is_int && !lc.is_one()) {
|
|
SASSERT(lc.is_pos());
|
|
offset *= lc;
|
|
for (auto& kv : coeffs) kv.m_value *= lc;
|
|
}
|
|
|
|
if (is_int) {
|
|
// 3x + 6y >= 5 -> x + 3y >= 5/3, then x + 3y >= 2
|
|
// 3x + 6y <= 5 -> x + 3y <= 1
|
|
rational g = gcd_reduce(coeffs);
|
|
if (!g.is_one()) {
|
|
if (lower_bound) {
|
|
TRACE("arith", tout << "lower: " << offset << " / " << g << " = " << offset / g << " >= " << ceil(offset / g) << "\n";);
|
|
offset = ceil(offset / g);
|
|
}
|
|
else {
|
|
TRACE("arith", tout << "upper: " << offset << " / " << g << " = " << offset / g << " <= " << floor(offset / g) << "\n";);
|
|
offset = floor(offset / g);
|
|
}
|
|
}
|
|
}
|
|
if (!coeffs.empty() && coeffs.begin()->m_value.is_neg()) {
|
|
offset.neg();
|
|
lower_bound = !lower_bound;
|
|
for (auto& kv : coeffs) kv.m_value.neg();
|
|
}
|
|
|
|
// CTRACE("arith", is_int,
|
|
// lp().print_term(term, tout << "term: ") << "\n";
|
|
// tout << "offset: " << offset << " gcd: " << g << "\n";);
|
|
|
|
expr_ref atom(m);
|
|
t = coeffs2app(coeffs, rational::zero(), is_int);
|
|
if (lower_bound)
|
|
atom = a.mk_ge(t, a.mk_numeral(offset, is_int));
|
|
else
|
|
atom = a.mk_le(t, a.mk_numeral(offset, is_int));
|
|
|
|
// ctx().get_rewriter()(atom);
|
|
// Note: it is not safe to rewrite atom because the rewriter can
|
|
// destroy structure, such as (div x 24) >= 0 becomes x >= 0 and the internal variable
|
|
// corresponding to (div x 24) is not constrained.
|
|
TRACE("arith", tout << t << ": " << atom << "\n";
|
|
lp().print_term(term, tout << "bound atom: ") << (lower_bound?" >= ":" <= ") << k << "\n";);
|
|
ctx().internalize(atom, true);
|
|
ctx().mark_as_relevant(atom.get());
|
|
return atom;
|
|
}
|
|
|
|
|
|
/**
|
|
* n = (div p q)
|
|
*
|
|
* (div p q) * q + (mod p q) = p, (mod p q) >= 0
|
|
*
|
|
* 0 < q => (p/q <= v(p)/v(q) => n <= floor(v(p)/v(q)))
|
|
* 0 < q => (v(p)/v(q) <= p/q => v(p)/v(q) - 1 < n)
|
|
*
|
|
*/
|
|
|
|
bool check_idiv_bounds() {
|
|
if (!m_nla)
|
|
return true;
|
|
m_nla->check_bounded_divisions();
|
|
add_lemmas();
|
|
return m_nla->lemmas().empty();
|
|
}
|
|
|
|
expr_ref var2expr(lpvar v) {
|
|
std::ostringstream name;
|
|
name << "v" << lp().local_to_external(v);
|
|
return expr_ref(m.mk_const(symbol(name.str()), a.mk_int()), m);
|
|
}
|
|
|
|
expr_ref multerm(rational const& r, expr* e) {
|
|
if (r.is_one()) return expr_ref(e, m);
|
|
return expr_ref(a.mk_mul(a.mk_numeral(r, true), e), m);
|
|
}
|
|
|
|
expr_ref term2expr(lp::lar_term const& term) {
|
|
expr_ref t(m);
|
|
expr_ref_vector ts(m);
|
|
for (lp::lar_term::ival p : term) {
|
|
auto ti = p.j();
|
|
if (lp().column_has_term(ti)) {
|
|
ts.push_back(multerm(p.coeff(), term2expr(lp().get_term(ti))));
|
|
}
|
|
else {
|
|
ts.push_back(multerm(p.coeff(), var2expr(ti)));
|
|
}
|
|
}
|
|
if (ts.size() == 1) {
|
|
t = ts.back();
|
|
}
|
|
else {
|
|
t = a.mk_add(ts.size(), ts.data());
|
|
}
|
|
return t;
|
|
}
|
|
|
|
expr_ref constraint2fml(lp::constraint_index ci) {
|
|
lp::lar_base_constraint const& c = lp().constraints()[ci];
|
|
expr_ref fml(m);
|
|
expr_ref_vector ts(m);
|
|
rational rhs = c.rhs();
|
|
for (auto cv : c.coeffs()) {
|
|
ts.push_back(multerm(cv.first, var2expr(cv.second)));
|
|
}
|
|
switch (c.kind()) {
|
|
case lp::LE: fml = a.mk_le(a.mk_add(ts.size(), ts.data()), a.mk_numeral(rhs, true)); break;
|
|
case lp::LT: fml = a.mk_lt(a.mk_add(ts.size(), ts.data()), a.mk_numeral(rhs, true)); break;
|
|
case lp::GE: fml = a.mk_ge(a.mk_add(ts.size(), ts.data()), a.mk_numeral(rhs, true)); break;
|
|
case lp::GT: fml = a.mk_gt(a.mk_add(ts.size(), ts.data()), a.mk_numeral(rhs, true)); break;
|
|
case lp::EQ: fml = m.mk_eq(a.mk_add(ts.size(), ts.data()), a.mk_numeral(rhs, true)); break;
|
|
case lp::NE:
|
|
SASSERT(false); // unexpected
|
|
break;
|
|
}
|
|
return fml;
|
|
}
|
|
|
|
void dump_cut_lemma(std::ostream& out, lp::lar_term const& term, lp::mpq const& k, lp::explanation const& ex, bool upper) {
|
|
lp().print_term(term, out << "bound: ");
|
|
out << (upper?" <= ":" >= ") << k << "\n";
|
|
for (lp::lar_term::ival p : term) {
|
|
auto ti = p.j();
|
|
out << p.coeff() << " * ";
|
|
if (lp().column_has_term(ti)) {
|
|
lp().print_term(lp().get_term(ti), out) << "\n";
|
|
}
|
|
else {
|
|
out << "v" << lp().local_to_external(ti) << "\n";
|
|
}
|
|
}
|
|
for (auto ev : ex) {
|
|
lp().constraints().display(out << ev.coeff() << ": ", ev.ci());
|
|
}
|
|
expr_ref_vector fmls(m);
|
|
for (auto ev : ex) {
|
|
fmls.push_back(constraint2fml(ev.ci()));
|
|
}
|
|
expr_ref t(term2expr(term), m);
|
|
if (upper) {
|
|
fmls.push_back(m.mk_not(a.mk_ge(t, a.mk_numeral(k, true))));
|
|
}
|
|
else {
|
|
fmls.push_back(m.mk_not(a.mk_le(t, a.mk_numeral(k, true))));
|
|
}
|
|
ast_pp_util visitor(m);
|
|
visitor.collect(fmls);
|
|
visitor.display_decls(out);
|
|
visitor.display_asserts(out, fmls, true);
|
|
out << "(check-sat)\n";
|
|
}
|
|
|
|
final_check_status check_lia() {
|
|
TRACE("arith",);
|
|
if (!m.inc()) {
|
|
TRACE("arith", tout << "canceled\n";);
|
|
return FC_CONTINUE;
|
|
}
|
|
auto cr = m_lia->check(&m_explanation);
|
|
if (cr != lp::lia_move::sat && ctx().get_fparams().m_arith_ignore_int)
|
|
return FC_GIVEUP;
|
|
|
|
switch (cr) {
|
|
case lp::lia_move::sat:
|
|
break;
|
|
|
|
case lp::lia_move::branch: {
|
|
TRACE("arith", tout << "branch\n";);
|
|
bool u = m_lia->is_upper();
|
|
auto const & k = m_lia->get_offset();
|
|
rational offset;
|
|
expr_ref t(m);
|
|
expr_ref b = mk_bound(m_lia->get_term(), k, !u, offset, t);
|
|
if (m.has_trace_stream()) {
|
|
app_ref body(m);
|
|
body = m.mk_or(b, m.mk_not(b));
|
|
th.log_axiom_instantiation(body);
|
|
m.trace_stream() << "[end-of-instance]\n";
|
|
}
|
|
IF_VERBOSE(4, verbose_stream() << "branch " << b << "\n";);
|
|
// branch on term >= k + 1
|
|
// branch on term <= k
|
|
// TBD: ctx().force_phase(ctx().get_literal(b));
|
|
// at this point we have a new unassigned atom that the
|
|
// SAT core assigns a value to
|
|
++m_stats.m_branch;
|
|
return FC_CONTINUE;
|
|
}
|
|
case lp::lia_move::cut: {
|
|
if (ctx().get_fparams().m_arith_ignore_int)
|
|
return FC_GIVEUP;
|
|
TRACE("arith", tout << "cut\n";);
|
|
++m_stats.m_gomory_cuts;
|
|
// m_explanation implies term <= k
|
|
reset_evidence();
|
|
for (auto ev : m_explanation) {
|
|
set_evidence(ev.ci(), m_core, m_eqs);
|
|
}
|
|
// The call mk_bound() can set the m_infeasible_column in lar_solver
|
|
// so the explanation is safer to take before this call.
|
|
expr_ref b = mk_bound(m_lia->get_term(), m_lia->get_offset(), !m_lia->is_upper());
|
|
if (m.has_trace_stream()) {
|
|
th.log_axiom_instantiation(b);
|
|
m.trace_stream() << "[end-of-instance]\n";
|
|
}
|
|
IF_VERBOSE(4, verbose_stream() << "cut " << b << "\n");
|
|
TRACE("arith", dump_cut_lemma(tout, m_lia->get_term(), m_lia->get_offset(), m_explanation, m_lia->is_upper()););
|
|
literal lit(ctx().get_bool_var(b), false);
|
|
TRACE("arith",
|
|
ctx().display_lemma_as_smt_problem(tout << "new cut:\n", m_core.size(), m_core.data(), m_eqs.size(), m_eqs.data(), lit);
|
|
display(tout););
|
|
assign(lit, m_core, m_eqs, m_params);
|
|
return FC_CONTINUE;
|
|
}
|
|
case lp::lia_move::conflict:
|
|
TRACE("arith", tout << "conflict\n";);
|
|
// ex contains unsat core
|
|
set_conflict();
|
|
return FC_CONTINUE;
|
|
case lp::lia_move::undef:
|
|
TRACE("arith", tout << "lia undef\n";);
|
|
return FC_CONTINUE;
|
|
case lp::lia_move::continue_with_check:
|
|
return FC_CONTINUE;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
if (!check_idiv_bounds())
|
|
return FC_CONTINUE;
|
|
|
|
return FC_DONE;
|
|
}
|
|
|
|
nla::lemma m_lemma;
|
|
|
|
literal mk_literal(nla::ineq const& ineq) {
|
|
bool is_lower = true, pos = true, is_eq = false;
|
|
switch (ineq.cmp()) {
|
|
case lp::LE: is_lower = false; pos = false; break;
|
|
case lp::LT: is_lower = true; pos = true; break;
|
|
case lp::GE: is_lower = true; pos = false; break;
|
|
case lp::GT: is_lower = false; pos = true; break;
|
|
case lp::EQ: is_eq = true; pos = false; break;
|
|
case lp::NE: is_eq = true; pos = true; break;
|
|
default: UNREACHABLE();
|
|
}
|
|
TRACE("arith", tout << "is_lower: " << is_lower << " pos " << pos << "\n";);
|
|
expr_ref atom(m);
|
|
// TBD utility: lp::lar_term term = mk_term(ineq.m_poly);
|
|
// then term is used instead of ineq.m_term
|
|
if (is_eq)
|
|
atom = mk_eq(ineq.term(), ineq.rs());
|
|
else
|
|
// create term >= 0 (or term <= 0)
|
|
atom = mk_bound(ineq.term(), ineq.rs(), is_lower);
|
|
return literal(ctx().get_bool_var(atom), pos);
|
|
}
|
|
|
|
void false_case_of_check_nla(const nla::lemma & l) {
|
|
m_lemma = l; //todo avoid the copy
|
|
m_explanation = l.expl();
|
|
literal_vector core;
|
|
for (auto const& ineq : m_lemma.ineqs()) {
|
|
auto lit = mk_literal(ineq);
|
|
core.push_back(~lit);
|
|
}
|
|
set_conflict_or_lemma(core, false);
|
|
}
|
|
|
|
void assume_literal(nla::ineq const& i) {
|
|
auto lit = mk_literal(i);
|
|
ctx().mark_as_relevant(lit);
|
|
ctx().set_true_first_flag(lit.var());
|
|
}
|
|
|
|
final_check_status check_nla_continue() {
|
|
#if Z3DEBUG
|
|
flet f(lp().validate_blocker(), true);
|
|
#endif
|
|
lbool r = m_nla->check();
|
|
switch (r) {
|
|
case l_false:
|
|
add_lemmas();
|
|
return FC_CONTINUE;
|
|
case l_true:
|
|
return FC_DONE;
|
|
default:
|
|
return FC_GIVEUP;
|
|
}
|
|
}
|
|
|
|
final_check_status check_nla() {
|
|
if (!m.inc()) {
|
|
TRACE("arith", tout << "canceled\n";);
|
|
return FC_GIVEUP;
|
|
}
|
|
CTRACE("arith",!m_nla, tout << "no nla\n";);
|
|
if (!m_nla)
|
|
return FC_DONE;
|
|
if (!m_nla->need_check())
|
|
return FC_DONE;
|
|
return check_nla_continue();
|
|
}
|
|
|
|
/**
|
|
\brief We must redefine this method, because theory of arithmetic contains
|
|
underspecified operators such as division by 0.
|
|
(/ a b) is essentially an uninterpreted function when b = 0.
|
|
Thus, 'a' must be considered a shared var if it is the child of an underspecified operator.
|
|
|
|
if merge(a / b, x + y) and a / b is root, then x + y become shared and all z + u in equivalence class of x + y.
|
|
|
|
|
|
TBD: when the set of underspecified subterms is small, compute the shared variables below it.
|
|
Recompute the set if there are merges that invalidate it.
|
|
Use the set to determine if a variable is shared.
|
|
*/
|
|
bool is_shared(theory_var v) const {
|
|
if (m_underspecified.empty())
|
|
return false;
|
|
enode * n = get_enode(v);
|
|
enode * r = n->get_root();
|
|
unsigned usz = m_underspecified.size();
|
|
TRACE("shared", tout << ctx().get_scope_level() << " " << enode_pp(n, ctx()) << " " << v << " underspecified " << usz << " parents " << r->get_num_parents() << "\n";);
|
|
if (r->get_num_parents() > 2*usz) {
|
|
for (unsigned i = 0; i < usz; ++i) {
|
|
app* u = m_underspecified[i];
|
|
unsigned sz = u->get_num_args();
|
|
for (unsigned j = 0; j < sz; ++j)
|
|
if (ctx().get_enode(u->get_arg(j))->get_root() == r)
|
|
return true;
|
|
}
|
|
}
|
|
else {
|
|
for (enode * parent : r->get_const_parents())
|
|
if (a.is_underspecified(parent->get_expr()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool m_new_def = false ;
|
|
|
|
bool adaptive() const { return ctx().get_fparams().m_arith_adaptive; }
|
|
double adaptive_assertion_threshold() const { return ctx().get_fparams().m_arith_adaptive_assertion_threshold; }
|
|
|
|
bool process_atoms() const {
|
|
if (!adaptive())
|
|
return true;
|
|
unsigned total_conflicts = ctx().get_num_conflicts();
|
|
if (total_conflicts < 10)
|
|
return true;
|
|
double f = static_cast<double>(m_num_conflicts)/static_cast<double>(total_conflicts);
|
|
return f >= adaptive_assertion_threshold();
|
|
}
|
|
|
|
bool can_propagate() {
|
|
return process_atoms() && can_propagate_core();
|
|
}
|
|
|
|
bool can_propagate_core() {
|
|
return m_asserted_atoms.size() > m_asserted_qhead || m_new_def || lp().has_changed_columns();
|
|
}
|
|
|
|
bool propagate() {
|
|
return process_atoms() && propagate_core();
|
|
}
|
|
|
|
bool propagate_core() {
|
|
m_model_is_initialized = false;
|
|
flush_bound_axioms();
|
|
propagate_nla();
|
|
if (ctx().inconsistent())
|
|
return true;
|
|
if (!can_propagate_core())
|
|
return false;
|
|
|
|
m_new_def = false;
|
|
while (m_asserted_qhead < m_asserted_atoms.size() && !ctx().inconsistent() && m.inc()) {
|
|
auto [bv, is_true] = m_asserted_atoms[m_asserted_qhead];
|
|
|
|
api_bound* b = nullptr;
|
|
TRACE("arith", tout << "propagate: " << literal(bv, !is_true) << "\n";
|
|
if (!m_bool_var2bound.contains(bv)) tout << "not found\n");
|
|
if (m_bool_var2bound.find(bv, b) && !assert_bound(bv, is_true, *b)) {
|
|
get_infeasibility_explanation_and_set_conflict();
|
|
return true;
|
|
}
|
|
++m_asserted_qhead;
|
|
}
|
|
if (ctx().inconsistent())
|
|
return true;
|
|
|
|
lbool lbl = make_feasible();
|
|
if (!m.inc())
|
|
return true;
|
|
|
|
switch(lbl) {
|
|
case l_false:
|
|
TRACE("arith", tout << "propagation conflict\n";);
|
|
get_infeasibility_explanation_and_set_conflict();
|
|
break;
|
|
case l_true:
|
|
propagate_bounds_with_lp_solver();
|
|
break;
|
|
case l_undef:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void propagate_nla() {
|
|
if (m_nla) {
|
|
m_nla->propagate();
|
|
add_lemmas();
|
|
lp().collect_more_rows_for_lp_propagation();
|
|
}
|
|
}
|
|
|
|
void add_equality(lpvar j, rational const& k, lp::explanation const& exp) {
|
|
TRACE("arith", tout << "equality " << j << " " << k << "\n");
|
|
theory_var v;
|
|
if (k == 1)
|
|
v = m_one_var;
|
|
else if (k == 0)
|
|
v = m_zero_var;
|
|
else if (!m_value2var.find(k, v))
|
|
return;
|
|
theory_var w = lp().local_to_external(j);
|
|
if (w < 0)
|
|
return;
|
|
lpvar i = register_theory_var_in_lar_solver(v);
|
|
add_eq(i, j, exp, true);
|
|
}
|
|
|
|
void add_lemmas() {
|
|
if (m_nla->should_check_feasible()) {
|
|
auto is_sat = make_feasible();
|
|
if (l_false == is_sat) {
|
|
get_infeasibility_explanation_and_set_conflict();
|
|
return;
|
|
}
|
|
}
|
|
for (const nla::ineq& i : m_nla->literals())
|
|
assume_literal(i);
|
|
for (const nla::lemma & l : m_nla->lemmas())
|
|
false_case_of_check_nla(l);
|
|
if (!propagate_eqs())
|
|
return;
|
|
for (auto const& [v, k, e] : m_nla->fixed_equalities())
|
|
add_equality(v, k, e);
|
|
for (auto const& [i, j, e] : m_nla->equalities())
|
|
add_eq(i, j, e, false);
|
|
}
|
|
|
|
bool should_propagate() const {
|
|
return bound_prop_mode::BP_NONE != propagation_mode();
|
|
}
|
|
|
|
bool should_refine_bounds() const {
|
|
return bound_prop_mode::BP_REFINE == propagation_mode() && ctx().at_search_level();
|
|
}
|
|
|
|
void consume(rational const& v, lp::constraint_index j) {
|
|
set_evidence(j, m_core, m_eqs);
|
|
m_explanation.add_pair(j, v);
|
|
}
|
|
|
|
void propagate_bounds_with_lp_solver() {
|
|
if (!should_propagate())
|
|
return;
|
|
|
|
m_bp.init();
|
|
lp().propagate_bounds_for_touched_rows(m_bp);
|
|
|
|
if (!m.inc())
|
|
return;
|
|
if (is_infeasible()) {
|
|
get_infeasibility_explanation_and_set_conflict();
|
|
}
|
|
else {
|
|
for (auto& ib : m_bp.ibounds()) {
|
|
m.inc();
|
|
if (ctx().inconsistent())
|
|
break;
|
|
propagate_lp_solver_bound(ib);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool bound_is_interesting(unsigned vi, lp::lconstraint_kind kind, const rational & bval) const {
|
|
theory_var v = lp().local_to_external(vi);
|
|
if (v == null_theory_var)
|
|
return false;
|
|
|
|
if (should_refine_bounds())
|
|
return true;
|
|
|
|
if (static_cast<unsigned>(v) < m_bounds.size())
|
|
for (api_bound* b : m_bounds[v])
|
|
if (ctx().get_assignment(b->get_lit()) == l_undef &&
|
|
null_literal != is_bound_implied(kind, bval, *b))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
#if 0
|
|
unsigned propagate_lp_solver_bound_dry_run(const lp::implied_bound& be) {
|
|
lpvar vi = be.m_j;
|
|
theory_var v = lp().local_to_external(vi);
|
|
|
|
if (v == null_theory_var)
|
|
return 0;
|
|
|
|
TRACE("arith", tout << "v" << v << " " << be.kind() << " " << be.m_bound << "\n";);
|
|
|
|
reserve_bounds(v);
|
|
|
|
if (m_unassigned_bounds[v] == 0 && !should_refine_bounds()) {
|
|
TRACE("arith", tout << "return\n";);
|
|
return 0;
|
|
}
|
|
lp_bounds const& bounds = m_bounds[v];
|
|
bool first = true;
|
|
unsigned count = 0;
|
|
for (unsigned i = 0; i < bounds.size(); ++i) {
|
|
api_bound* b = bounds[i];
|
|
if (ctx().get_assignment(b->get_lit()) != l_undef)
|
|
continue;
|
|
literal lit = is_bound_implied(be.kind(), be.m_bound, *b);
|
|
if (lit == null_literal)
|
|
continue;
|
|
TRACE("arith", tout << lit << " bound: " << *b << " first: " << first << "\n";);
|
|
ctx().display_literal_verbose(verbose_stream() << "miss ", lit) << "\n";
|
|
display(verbose_stream());
|
|
TRACE("arith", ctx().display_literal_verbose(tout << "miss ", lit) << "\n");
|
|
exit(0);
|
|
|
|
++count;
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
unsigned propagate_lp_solver_bound(const lp::implied_bound& be) {
|
|
lpvar vi = be.m_j;
|
|
theory_var v = lp().local_to_external(vi);
|
|
|
|
if (v == null_theory_var)
|
|
return 0;
|
|
|
|
TRACE("arith", tout << "v" << v << " " << be.kind() << " " << be.m_bound << "\n";);
|
|
|
|
reserve_bounds(v);
|
|
|
|
if (m_unassigned_bounds[v] == 0 && !should_refine_bounds()) {
|
|
TRACE("arith", tout << "return\n";);
|
|
return 0;
|
|
}
|
|
lp_bounds const& bounds = m_bounds[v];
|
|
bool first = true;
|
|
unsigned count = 0;
|
|
for (unsigned i = 0; i < bounds.size(); ++i) {
|
|
api_bound* b = bounds[i];
|
|
if (ctx().get_assignment(b->get_lit()) != l_undef)
|
|
continue;
|
|
literal lit = is_bound_implied(be.kind(), be.m_bound, *b);
|
|
if (lit == null_literal)
|
|
continue;
|
|
TRACE("arith", tout << lit << " bound: " << *b << " first: " << first << "\n";);
|
|
|
|
++count;
|
|
|
|
lp().settings().stats().m_num_of_implied_bounds ++;
|
|
if (first) {
|
|
first = false;
|
|
reset_evidence();
|
|
m_explanation.clear();
|
|
lp().explain_implied_bound(be, m_bp);
|
|
}
|
|
CTRACE("arith", m_unassigned_bounds[v] == 0, tout << "missed bound\n";);
|
|
updt_unassigned_bounds(v, -1);
|
|
TRACE("arith",
|
|
ctx().display_literals_verbose(tout, m_core);
|
|
tout << "\n --> ";
|
|
ctx().display_literal_verbose(tout, lit);
|
|
tout << "\n";
|
|
display_evidence(tout, m_explanation);
|
|
lp().print_implied_bound(be, tout);
|
|
);
|
|
|
|
|
|
DEBUG_CODE(
|
|
for (auto& lit : m_core) {
|
|
VERIFY(ctx().get_assignment(lit) == l_true);
|
|
});
|
|
++m_stats.m_bound_propagations1;
|
|
assign(lit, m_core, m_eqs, m_params);
|
|
}
|
|
|
|
if (should_refine_bounds() && first)
|
|
refine_bound(v, be);
|
|
|
|
return count;
|
|
}
|
|
|
|
void refine_bound(theory_var v, const lp::implied_bound& be) {
|
|
lpvar vi = be.m_j;
|
|
if (lp().column_has_term(vi))
|
|
return;
|
|
expr_ref w(get_enode(v)->get_expr(), m);
|
|
if (a.is_add(w) || a.is_numeral(w) || m.is_ite(w))
|
|
return;
|
|
literal bound = null_literal;
|
|
switch (be.kind()) {
|
|
case lp::LE:
|
|
if (is_int(v) && (lp().column_has_lower_bound(vi) || !lp().column_has_upper_bound(vi)))
|
|
bound = mk_literal(a.mk_le(w, a.mk_numeral(floor(be.m_bound), a.is_int(w))));
|
|
if (is_real(v) && !lp().column_has_upper_bound(vi))
|
|
bound = mk_literal(a.mk_le(w, a.mk_numeral(be.m_bound, a.is_int(w))));
|
|
break;
|
|
case lp::GE:
|
|
if (is_int(v) && (lp().column_has_upper_bound(vi) || !lp().column_has_lower_bound(vi)))
|
|
bound = mk_literal(a.mk_ge(w, a.mk_numeral(ceil(be.m_bound), a.is_int(w))));
|
|
if (is_real(v) && !lp().column_has_lower_bound(vi))
|
|
bound = mk_literal(a.mk_ge(w, a.mk_numeral(be.m_bound, a.is_int(w))));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (bound == null_literal)
|
|
return;
|
|
if (ctx().get_assignment(bound) == l_true)
|
|
return;
|
|
|
|
++m_stats.m_bound_propagations1;
|
|
reset_evidence();
|
|
m_explanation.clear();
|
|
lp().explain_implied_bound(be, m_bp);
|
|
ctx().mark_as_relevant(bound);
|
|
assign(bound, m_core, m_eqs, m_params);
|
|
}
|
|
|
|
bool add_eq(lpvar u, lpvar v, lp::explanation const& e, bool is_fixed) {
|
|
if (ctx().inconsistent())
|
|
return false;
|
|
theory_var uv = lp().local_to_external(u); // variables that are returned should have external representations
|
|
theory_var vv = lp().local_to_external(v); // so maybe better to have them already transformed to external form
|
|
if (uv == null_theory_var)
|
|
return false;
|
|
if (vv == null_theory_var)
|
|
return false;
|
|
enode* n1 = get_enode(uv);
|
|
enode* n2 = get_enode(vv);
|
|
|
|
TRACE("arith", tout << "add-eq " << pp(n1) << " == " << pp(n2) << "\n";);
|
|
if (n1->get_root() == n2->get_root())
|
|
return false;
|
|
expr* e1 = n1->get_expr();
|
|
expr* e2 = n2->get_expr();
|
|
if (e1->get_sort() != e2->get_sort())
|
|
return false;
|
|
if (!is_fixed && !a.is_numeral(e1) && !a.is_numeral(e2) && (m.is_ite(e1) || m.is_ite(e2)))
|
|
return false;
|
|
reset_evidence();
|
|
for (auto ev : e)
|
|
set_evidence(ev.ci(), m_core, m_eqs);
|
|
assign_eq(uv, vv);
|
|
return true;
|
|
}
|
|
|
|
literal_vector m_core2;
|
|
|
|
void assign(literal lit, literal_vector const& core, svector<enode_pair> const& eqs, vector<parameter> const& ps) {
|
|
if (params().m_arith_validate)
|
|
VERIFY(validate_assign(lit));
|
|
if (params().m_arith_dump_lemmas)
|
|
dump_assign_lemma(lit);
|
|
if (false && core.size() < small_lemma_size() && eqs.empty()) {
|
|
m_core2.reset();
|
|
for (auto const& c : core) {
|
|
m_core2.push_back(~c);
|
|
}
|
|
m_core2.push_back(lit);
|
|
justification * js = nullptr;
|
|
if (proofs_enabled()) {
|
|
js = alloc(theory_lemma_justification, get_id(), ctx(), m_core2.size(), m_core2.data(),
|
|
ps.size(), ps.data());
|
|
}
|
|
ctx().mk_clause(m_core2.size(), m_core2.data(), js, CLS_TH_LEMMA, nullptr);
|
|
}
|
|
else {
|
|
ctx().assign(
|
|
lit, ctx().mk_justification(
|
|
ext_theory_propagation_justification(
|
|
get_id(), ctx(), core.size(), core.data(),
|
|
eqs.size(), eqs.data(), lit, ps.size(), ps.data())));
|
|
}
|
|
}
|
|
|
|
literal is_bound_implied(lp::lconstraint_kind k, rational const& value, api_bound const& b) const {
|
|
if ((k == lp::LE || k == lp::LT) && b.get_bound_kind() == lp_api::upper_t && value <= b.get_value()) {
|
|
return b.get_lit();
|
|
}
|
|
if ((k == lp::GE || k == lp::GT) && b.get_bound_kind() == lp_api::lower_t && b.get_value() <= value) {
|
|
return b.get_lit();
|
|
}
|
|
if (k == lp::LE && b.get_bound_kind() == lp_api::lower_t && value < b.get_value()) {
|
|
return ~b.get_lit();
|
|
}
|
|
if (k == lp::LT && b.get_bound_kind() == lp_api::lower_t && value <= b.get_value()) {
|
|
return ~b.get_lit();
|
|
}
|
|
if (k == lp::GE && b.get_bound_kind() == lp_api::upper_t && b.get_value() < value) {
|
|
return ~b.get_lit();
|
|
}
|
|
if (k == lp::GT && b.get_bound_kind() == lp_api::upper_t && b.get_value() <= value) {
|
|
return ~b.get_lit();
|
|
}
|
|
|
|
return null_literal;
|
|
}
|
|
|
|
bool check_bv_terms() {
|
|
for (app* n : m_bv_terms) {
|
|
if (!check_bv_term(n)) {
|
|
++m_stats.m_bv_axioms;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool check_bv_term(app* n) {
|
|
unsigned sz = 0;
|
|
expr* _x = nullptr, * _y = nullptr;
|
|
if (!ctx().is_relevant(ctx().get_enode(n)))
|
|
return true;
|
|
expr_ref vx(m), vy(m),vn(m);
|
|
rational valn, valx, valy;
|
|
bool is_int;
|
|
VERIFY(a.is_band(n, sz, _x, _y) || a.is_shl(n, sz, _x, _y) || a.is_ashr(n, sz, _x, _y) || a.is_lshr(n, sz, _x, _y));
|
|
if (!get_value(ctx().get_enode(_x), vx) || !get_value(ctx().get_enode(_y), vy) || !get_value(ctx().get_enode(n), vn)) {
|
|
IF_VERBOSE(2, verbose_stream() << "could not get value of " << mk_pp(n, m) << "\n");
|
|
found_unsupported(n);
|
|
return true;
|
|
}
|
|
if (!a.is_numeral(vn, valn, is_int) || !is_int || !a.is_numeral(vx, valx, is_int) || !is_int || !a.is_numeral(vy, valy, is_int) || !is_int) {
|
|
IF_VERBOSE(2, verbose_stream() << "could not get value of " << mk_pp(n, m) << "\n");
|
|
found_unsupported(n);
|
|
return true;
|
|
}
|
|
rational N = rational::power_of_two(sz);
|
|
valx = mod(valx, N);
|
|
valy = mod(valy, N);
|
|
expr_ref x(a.mk_mod(_x, a.mk_int(N)), m);
|
|
expr_ref y(a.mk_mod(_y, a.mk_int(N)), m);
|
|
SASSERT(0 <= valn && valn < N);
|
|
|
|
// x mod 2^{i + 1} >= 2^i means the i'th bit is 1.
|
|
auto bitof = [&](expr* x, unsigned i) {
|
|
expr_ref r(m);
|
|
r = a.mk_ge(a.mk_mod(x, a.mk_int(rational::power_of_two(i+1))), a.mk_int(rational::power_of_two(i)));
|
|
return mk_literal(r);
|
|
};
|
|
|
|
if (a.is_band(n)) {
|
|
IF_VERBOSE(2, verbose_stream() << "band: " << mk_bounded_pp(n, m) << " " << valn << " := " << valx << "&" << valy << "\n");
|
|
for (unsigned i = 0; i < sz; ++i) {
|
|
bool xb = valx.get_bit(i);
|
|
bool yb = valy.get_bit(i);
|
|
bool nb = valn.get_bit(i);
|
|
if (xb && yb && !nb)
|
|
ctx().mk_th_axiom(get_id(), ~bitof(x, i), ~bitof(y, i), bitof(n, i));
|
|
else if (nb && !xb)
|
|
ctx().mk_th_axiom(get_id(), ~bitof(n, i), bitof(x, i));
|
|
else if (nb && !yb)
|
|
ctx().mk_th_axiom(get_id(), ~bitof(n, i), bitof(y, i));
|
|
else
|
|
continue;
|
|
return false;
|
|
}
|
|
}
|
|
if (a.is_shl(n)) {
|
|
SASSERT(valy >= 0);
|
|
if (valy >= sz || valy == 0)
|
|
return true;
|
|
unsigned k = valy.get_unsigned();
|
|
sat::literal eq = th.mk_eq(n, a.mk_mod(a.mk_mul(_x, a.mk_int(rational::power_of_two(k))), a.mk_int(N)), false);
|
|
if (ctx().get_assignment(eq) == l_true)
|
|
return true;
|
|
ctx().mk_th_axiom(get_id(), ~th.mk_eq(y, a.mk_int(k), false), eq);
|
|
IF_VERBOSE(2, verbose_stream() << "shl: " << mk_bounded_pp(n, m) << " " << valn << " := " << valx << " << " << valy << "\n");
|
|
return false;
|
|
}
|
|
if (a.is_lshr(n)) {
|
|
SASSERT(valy >= 0);
|
|
if (valy >= sz || valy == 0)
|
|
return true;
|
|
unsigned k = valy.get_unsigned();
|
|
sat::literal eq = th.mk_eq(n, a.mk_idiv(x, a.mk_int(rational::power_of_two(k))), false);
|
|
if (ctx().get_assignment(eq) == l_true)
|
|
return true;
|
|
ctx().mk_th_axiom(get_id(), ~th.mk_eq(y, a.mk_int(k), false), eq);
|
|
IF_VERBOSE(2, verbose_stream() << "lshr: " << mk_bounded_pp(n, m) << " " << valn << " := " << valx << " >>l " << valy << "\n");
|
|
return false;
|
|
}
|
|
if (a.is_ashr(n)) {
|
|
SASSERT(valy >= 0);
|
|
if (valy >= sz || valy == 0)
|
|
return true;
|
|
unsigned k = valy.get_unsigned();
|
|
sat::literal signx = mk_literal(a.mk_ge(x, a.mk_int(N/2)));
|
|
sat::literal eq;
|
|
expr* xdiv2k;
|
|
switch (ctx().get_assignment(signx)) {
|
|
case l_true:
|
|
// x < 0 & y = k -> n = (x div 2^k - 2^{N-k}) mod 2^N
|
|
xdiv2k = a.mk_idiv(x, a.mk_int(rational::power_of_two(k)));
|
|
eq = th.mk_eq(n, a.mk_mod(a.mk_add(xdiv2k, a.mk_int(-rational::power_of_two(sz - k))), a.mk_int(N)), false);
|
|
if (ctx().get_assignment(eq) == l_true)
|
|
return true;
|
|
break;
|
|
case l_false:
|
|
// x >= 0 & y = k -> n = x div 2^k
|
|
xdiv2k = a.mk_idiv(x, a.mk_int(rational::power_of_two(k)));
|
|
eq = th.mk_eq(n, xdiv2k, false);
|
|
if (ctx().get_assignment(eq) == l_true)
|
|
return true;
|
|
break;
|
|
case l_undef:
|
|
ctx().mark_as_relevant(signx);
|
|
return false;
|
|
}
|
|
ctx().mk_th_axiom(get_id(), ~th.mk_eq(y, a.mk_int(k), false), ~signx, eq);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
expr_ref mk_le(expr* x, expr* y) {
|
|
if (a.is_numeral(y))
|
|
return expr_ref(a.mk_le(x, y), m);
|
|
if (a.is_numeral(x))
|
|
return expr_ref(a.mk_ge(y, x), m);
|
|
return expr_ref(a.mk_le(a.mk_sub(x, y), a.mk_numeral(rational(0), x->get_sort())), m);
|
|
}
|
|
|
|
void mk_bv_axiom(app* n) {
|
|
unsigned sz = 0;
|
|
expr* _x = nullptr, * _y = nullptr;
|
|
VERIFY(a.is_band(n, sz, _x, _y) || a.is_shl(n, sz, _x, _y) || a.is_ashr(n, sz, _x, _y) || a.is_lshr(n, sz, _x, _y));
|
|
rational N = rational::power_of_two(sz);
|
|
expr_ref x(a.mk_mod(_x, a.mk_int(N)), m);
|
|
expr_ref y(a.mk_mod(_y, a.mk_int(N)), m);
|
|
|
|
// 0 <= n < 2^sz
|
|
|
|
ctx().mk_th_axiom(get_id(), mk_literal(a.mk_ge(n, a.mk_int(0))));
|
|
ctx().mk_th_axiom(get_id(), mk_literal(a.mk_le(n, a.mk_int(N - 1))));
|
|
|
|
if (a.is_band(n)) {
|
|
|
|
// x&y <= x
|
|
// x&y <= y
|
|
// TODO? x = y => x&y = x
|
|
|
|
ctx().mk_th_axiom(get_id(), mk_literal(mk_le(n, x)));
|
|
ctx().mk_th_axiom(get_id(), mk_literal(mk_le(n, y)));
|
|
}
|
|
else if (a.is_shl(n)) {
|
|
// y >= sz => n = 0
|
|
// y = 0 => n = x
|
|
ctx().mk_th_axiom(get_id(), ~mk_literal(a.mk_ge(y, a.mk_int(sz))), mk_literal(m.mk_eq(n, a.mk_int(0))));
|
|
ctx().mk_th_axiom(get_id(), ~mk_literal(a.mk_eq(y, a.mk_int(0))), mk_literal(m.mk_eq(n, x)));
|
|
}
|
|
else if (a.is_lshr(n)) {
|
|
// y >= sz => n = 0
|
|
// y = 0 => n = x
|
|
ctx().mk_th_axiom(get_id(), ~mk_literal(a.mk_ge(y, a.mk_int(sz))), mk_literal(m.mk_eq(n, a.mk_int(0))));
|
|
ctx().mk_th_axiom(get_id(), ~mk_literal(a.mk_eq(y, a.mk_int(0))), mk_literal(m.mk_eq(n, x)));
|
|
}
|
|
else if (a.is_ashr(n)) {
|
|
// y >= sz & x < 2^{sz-1} => n = 0
|
|
// y >= sz & x >= 2^{sz-1} => n = -1
|
|
// y = 0 => n = x
|
|
auto signx = mk_literal(a.mk_ge(x, a.mk_int(N/2)));
|
|
ctx().mk_th_axiom(get_id(), ~mk_literal(a.mk_ge(a.mk_mod(y, a.mk_int(N)), a.mk_int(sz))), signx, mk_literal(m.mk_eq(n, a.mk_int(0))));
|
|
ctx().mk_th_axiom(get_id(), ~mk_literal(a.mk_ge(a.mk_mod(y, a.mk_int(N)), a.mk_int(sz))), ~signx, mk_literal(m.mk_eq(n, a.mk_int(N-1))));
|
|
ctx().mk_th_axiom(get_id(), ~mk_literal(a.mk_eq(a.mk_mod(y, a.mk_int(N)), a.mk_int(0))), mk_literal(m.mk_eq(n, x)));
|
|
}
|
|
else
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void mk_bound_axioms(api_bound& b) {
|
|
if (!ctx().is_searching()) {
|
|
//
|
|
// NB. We make an assumption that user push calls propagation
|
|
// before internal scopes are pushed. This flushes all newly
|
|
// asserted atoms into the right context.
|
|
//
|
|
m_new_bounds.push_back(&b);
|
|
return;
|
|
}
|
|
theory_var v = b.get_var();
|
|
lp_api::bound_kind kind1 = b.get_bound_kind();
|
|
rational const& k1 = b.get_value();
|
|
lp_bounds & bounds = m_bounds[v];
|
|
|
|
api_bound* end = nullptr;
|
|
api_bound* lo_inf = end, *lo_sup = end;
|
|
api_bound* hi_inf = end, *hi_sup = end;
|
|
|
|
for (api_bound* other : bounds) {
|
|
if (other == &b) continue;
|
|
if (b.get_lit() == other->get_lit()) continue;
|
|
lp_api::bound_kind kind2 = other->get_bound_kind();
|
|
rational const& k2 = other->get_value();
|
|
if (k1 == k2 && kind1 == kind2) {
|
|
// the bounds are equivalent.
|
|
continue;
|
|
}
|
|
|
|
SASSERT(k1 != k2 || kind1 != kind2);
|
|
if (kind2 == lp_api::lower_t) {
|
|
if (k2 < k1) {
|
|
if (lo_inf == end || k2 > lo_inf->get_value()) {
|
|
lo_inf = other;
|
|
}
|
|
}
|
|
else if (lo_sup == end || k2 < lo_sup->get_value()) {
|
|
lo_sup = other;
|
|
}
|
|
}
|
|
else if (k2 < k1) {
|
|
if (hi_inf == end || k2 > hi_inf->get_value()) {
|
|
hi_inf = other;
|
|
}
|
|
}
|
|
else if (hi_sup == end || k2 < hi_sup->get_value()) {
|
|
hi_sup = other;
|
|
}
|
|
}
|
|
if (lo_inf != end) mk_bound_axiom(b, *lo_inf);
|
|
if (lo_sup != end) mk_bound_axiom(b, *lo_sup);
|
|
if (hi_inf != end) mk_bound_axiom(b, *hi_inf);
|
|
if (hi_sup != end) mk_bound_axiom(b, *hi_sup);
|
|
}
|
|
|
|
|
|
void mk_bound_axiom(api_bound& b1, api_bound& b2) {
|
|
literal l1 = b1.get_lit();
|
|
literal l2 = b2.get_lit();
|
|
rational const& k1 = b1.get_value();
|
|
rational const& k2 = b2.get_value();
|
|
lp_api::bound_kind kind1 = b1.get_bound_kind();
|
|
lp_api::bound_kind kind2 = b2.get_bound_kind();
|
|
bool v_is_int = b1.is_int();
|
|
SASSERT(b1.get_var() == b2.get_var());
|
|
if (k1 == k2 && kind1 == kind2) return;
|
|
SASSERT(k1 != k2 || kind1 != kind2);
|
|
parameter coeffs[3] = { parameter(symbol("farkas")),
|
|
parameter(rational(1)), parameter(rational(1)) };
|
|
|
|
if (kind1 == lp_api::lower_t) {
|
|
if (kind2 == lp_api::lower_t) {
|
|
if (k2 <= k1) {
|
|
mk_clause(~l1, l2, 3, coeffs);
|
|
}
|
|
else {
|
|
mk_clause(l1, ~l2, 3, coeffs);
|
|
}
|
|
}
|
|
else if (k1 <= k2) {
|
|
// k1 <= k2, k1 <= x or x <= k2
|
|
mk_clause(l1, l2, 3, coeffs);
|
|
}
|
|
else {
|
|
// k1 > hi_inf, k1 <= x => ~(x <= hi_inf)
|
|
mk_clause(~l1, ~l2, 3, coeffs);
|
|
if (v_is_int && k1 == k2 + rational(1)) {
|
|
// k1 <= x or x <= k1-1
|
|
mk_clause(l1, l2, 3, coeffs);
|
|
}
|
|
}
|
|
}
|
|
else if (kind2 == lp_api::lower_t) {
|
|
if (k1 >= k2) {
|
|
// k1 >= lo_inf, k1 >= x or lo_inf <= x
|
|
mk_clause(l1, l2, 3, coeffs);
|
|
}
|
|
else {
|
|
// k1 < k2, k2 <= x => ~(x <= k1)
|
|
mk_clause(~l1, ~l2, 3, coeffs);
|
|
if (v_is_int && k1 == k2 - rational(1)) {
|
|
// x <= k1 or k1+l <= x
|
|
mk_clause(l1, l2, 3, coeffs);
|
|
}
|
|
|
|
}
|
|
}
|
|
else {
|
|
// kind1 == A_UPPER, kind2 == A_UPPER
|
|
if (k1 >= k2) {
|
|
// k1 >= k2, x <= k2 => x <= k1
|
|
mk_clause(l1, ~l2, 3, coeffs);
|
|
}
|
|
else {
|
|
// k1 <= hi_sup , x <= k1 => x <= hi_sup
|
|
mk_clause(~l1, l2, 3, coeffs);
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef lp_bounds::iterator iterator;
|
|
|
|
void flush_bound_axioms() {
|
|
|
|
CTRACE("arith", !m_new_bounds.empty(), tout << "flush bound axioms\n";);
|
|
|
|
while (!m_new_bounds.empty()) {
|
|
lp_bounds atoms;
|
|
atoms.push_back(m_new_bounds.back());
|
|
m_new_bounds.pop_back();
|
|
theory_var v = atoms.back()->get_var();
|
|
for (unsigned i = 0; i < m_new_bounds.size(); ++i) {
|
|
if (m_new_bounds[i]->get_var() == v) {
|
|
atoms.push_back(m_new_bounds[i]);
|
|
m_new_bounds[i] = m_new_bounds.back();
|
|
m_new_bounds.pop_back();
|
|
--i;
|
|
}
|
|
}
|
|
CTRACE("arith", atoms.size() > 1,
|
|
for (auto* a : atoms) a->display(tout) << "\n";);
|
|
lp_bounds occs(m_bounds[v]);
|
|
|
|
std::sort(atoms.begin(), atoms.end(), compare_bounds());
|
|
std::sort(occs.begin(), occs.end(), compare_bounds());
|
|
|
|
iterator begin1 = occs.begin();
|
|
iterator begin2 = occs.begin();
|
|
iterator end = occs.end();
|
|
begin1 = first(lp_api::lower_t, begin1, end);
|
|
begin2 = first(lp_api::upper_t, begin2, end);
|
|
|
|
iterator lo_inf = begin1, lo_sup = begin1;
|
|
iterator hi_inf = begin2, hi_sup = begin2;
|
|
bool flo_inf, fhi_inf, flo_sup, fhi_sup;
|
|
ptr_addr_hashtable<api_bound> visited;
|
|
for (unsigned i = 0; i < atoms.size(); ++i) {
|
|
api_bound* a1 = atoms[i];
|
|
iterator lo_inf1 = next_inf(a1, lp_api::lower_t, lo_inf, end, flo_inf);
|
|
iterator hi_inf1 = next_inf(a1, lp_api::upper_t, hi_inf, end, fhi_inf);
|
|
iterator lo_sup1 = next_sup(a1, lp_api::lower_t, lo_sup, end, flo_sup);
|
|
iterator hi_sup1 = next_sup(a1, lp_api::upper_t, hi_sup, end, fhi_sup);
|
|
if (lo_inf1 != end) lo_inf = lo_inf1;
|
|
if (lo_sup1 != end) lo_sup = lo_sup1;
|
|
if (hi_inf1 != end) hi_inf = hi_inf1;
|
|
if (hi_sup1 != end) hi_sup = hi_sup1;
|
|
if (!flo_inf) lo_inf = end;
|
|
if (!fhi_inf) hi_inf = end;
|
|
if (!flo_sup) lo_sup = end;
|
|
if (!fhi_sup) hi_sup = end;
|
|
visited.insert(a1);
|
|
if (lo_inf1 != end && lo_inf != end && !visited.contains(*lo_inf)) mk_bound_axiom(*a1, **lo_inf);
|
|
if (lo_sup1 != end && lo_sup != end && !visited.contains(*lo_sup)) mk_bound_axiom(*a1, **lo_sup);
|
|
if (hi_inf1 != end && hi_inf != end && !visited.contains(*hi_inf)) mk_bound_axiom(*a1, **hi_inf);
|
|
if (hi_sup1 != end && hi_sup != end && !visited.contains(*hi_sup)) mk_bound_axiom(*a1, **hi_sup);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct compare_bounds {
|
|
bool operator()(api_bound* a1, api_bound* a2) const { return a1->get_value() < a2->get_value(); }
|
|
};
|
|
|
|
|
|
lp_bounds::iterator first(
|
|
lp_api::bound_kind kind,
|
|
iterator it,
|
|
iterator end) {
|
|
for (; it != end; ++it) {
|
|
api_bound* a = *it;
|
|
if (a->get_bound_kind() == kind) return it;
|
|
}
|
|
return end;
|
|
}
|
|
|
|
lp_bounds::iterator next_inf(
|
|
api_bound* a1,
|
|
lp_api::bound_kind kind,
|
|
iterator it,
|
|
iterator end,
|
|
bool& found_compatible) {
|
|
rational const & k1(a1->get_value());
|
|
iterator result = end;
|
|
found_compatible = false;
|
|
for (; it != end; ++it) {
|
|
api_bound * a2 = *it;
|
|
if (a1 == a2) continue;
|
|
if (a2->get_bound_kind() != kind) continue;
|
|
rational const & k2(a2->get_value());
|
|
found_compatible = true;
|
|
if (k2 <= k1) {
|
|
result = it;
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
lp_bounds::iterator next_sup(
|
|
api_bound* a1,
|
|
lp_api::bound_kind kind,
|
|
iterator it,
|
|
iterator end,
|
|
bool& found_compatible) {
|
|
rational const & k1(a1->get_value());
|
|
found_compatible = false;
|
|
for (; it != end; ++it) {
|
|
api_bound * a2 = *it;
|
|
if (a1 == a2) continue;
|
|
if (a2->get_bound_kind() != kind) continue;
|
|
rational const & k2(a2->get_value());
|
|
found_compatible = true;
|
|
if (k1 < k2) {
|
|
return it;
|
|
}
|
|
}
|
|
return end;
|
|
}
|
|
|
|
// for glb lo': lo' < lo:
|
|
// lo <= x -> lo' <= x
|
|
// lo <= x -> ~(x <= lo')
|
|
// for lub hi': hi' > hi
|
|
// x <= hi -> x <= hi'
|
|
// x <= hi -> ~(x >= hi')
|
|
|
|
void propagate_bound(bool_var bv, bool is_true, api_bound& b) {
|
|
if (bound_prop_mode::BP_NONE == propagation_mode()) {
|
|
return;
|
|
}
|
|
lp_api::bound_kind k = b.get_bound_kind();
|
|
theory_var v = b.get_var();
|
|
inf_rational val = b.get_value(is_true);
|
|
lp_bounds const& bounds = m_bounds[v];
|
|
SASSERT(!bounds.empty());
|
|
if (bounds.size() == 1) return;
|
|
if (m_unassigned_bounds[v] == 0) return;
|
|
bool v_is_int = b.is_int();
|
|
literal lit1(bv, !is_true);
|
|
literal lit2 = null_literal;
|
|
bool find_glb = (is_true == (k == lp_api::lower_t));
|
|
TRACE("arith_verbose", tout << "v" << v << " find_glb: " << find_glb << " is_true: " << is_true << " k: " << k << " is_lower: " << (k == lp_api::lower_t) << "\n";);
|
|
if (find_glb) {
|
|
rational glb;
|
|
api_bound* lb = nullptr;
|
|
for (api_bound* b2 : bounds) {
|
|
if (b2 == &b) continue;
|
|
rational const& val2 = b2->get_value();
|
|
if (((is_true || v_is_int) ? val2 < val : val2 <= val) && (!lb || glb < val2)) {
|
|
lb = b2;
|
|
glb = val2;
|
|
}
|
|
}
|
|
if (!lb) return;
|
|
bool sign = lb->get_bound_kind() != lp_api::lower_t;
|
|
lit2 = lb->get_lit();
|
|
if (sign)
|
|
lit2.neg();
|
|
}
|
|
else {
|
|
rational lub;
|
|
api_bound* ub = nullptr;
|
|
for (api_bound* b2 : bounds) {
|
|
if (b2 == &b) continue;
|
|
rational const& val2 = b2->get_value();
|
|
if (((is_true || v_is_int) ? val < val2 : val <= val2) && (!ub || val2 < lub)) {
|
|
ub = b2;
|
|
lub = val2;
|
|
}
|
|
}
|
|
if (!ub) return;
|
|
bool sign = ub->get_bound_kind() != lp_api::upper_t;
|
|
lit2 = ub->get_lit();
|
|
if (sign)
|
|
lit2.neg();
|
|
}
|
|
updt_unassigned_bounds(v, -1);
|
|
++m_stats.m_bound_propagations2;
|
|
reset_evidence();
|
|
m_core.push_back(lit1);
|
|
TRACE("arith",
|
|
ctx().display_literals_verbose(tout, m_core);
|
|
ctx().display_literal_verbose(tout << " => ", lit2);
|
|
tout << "\n";);
|
|
assign(lit2, m_core, m_eqs, m_bound_params);
|
|
++m_stats.m_bounds_propagations;
|
|
}
|
|
|
|
svector<lp::lpvar> m_todo_vars;
|
|
|
|
void add_use_lists(api_bound* b) {
|
|
theory_var v = b->get_var();
|
|
lpvar vi = register_theory_var_in_lar_solver(v);
|
|
if (!lp().column_has_term(vi)) {
|
|
return;
|
|
}
|
|
m_todo_vars.push_back(vi);
|
|
while (!m_todo_vars.empty()) {
|
|
auto ti = m_todo_vars.back();
|
|
SASSERT(lp().column_has_term(ti));
|
|
m_todo_vars.pop_back();
|
|
lp::lar_term const& term = lp().get_term(ti);
|
|
for (auto p : term) {
|
|
lp::lpvar wi = p.j();
|
|
if (lp().column_has_term(wi)) {
|
|
m_todo_vars.push_back(wi);
|
|
}
|
|
else {
|
|
unsigned w = lp().local_to_external(wi);
|
|
m_use_list.reserve(w + 1, ptr_vector<api_bound>());
|
|
m_use_list[w].push_back(b);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void del_use_lists(api_bound* b) {
|
|
theory_var v = b->get_var();
|
|
lpvar vi = get_lpvar(v);
|
|
if (!lp().column_has_term(vi)) {
|
|
return;
|
|
}
|
|
m_todo_vars.push_back(vi);
|
|
while (!m_todo_vars.empty()) {
|
|
auto ti = m_todo_vars.back();
|
|
SASSERT(lp().column_has_term(ti));
|
|
m_todo_vars.pop_back();
|
|
lp::lar_term const& term = lp().get_term(ti);
|
|
for (auto coeff : term) {
|
|
auto wi = coeff.j();
|
|
if (lp().column_has_term(wi)) {
|
|
m_todo_vars.push_back(wi);
|
|
}
|
|
else {
|
|
unsigned w = lp().local_to_external(wi);
|
|
SASSERT(m_use_list[w].back() == b);
|
|
m_use_list[w].pop_back();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// propagate bounds to compound terms
|
|
// The idea is that if bounds on all variables in an inequality ax + by + cz >= k
|
|
// have been assigned we may know the truth value of the inequality by using simple
|
|
// bounds propagation.
|
|
//
|
|
void propagate_bound_compound(bool_var bv, bool is_true, api_bound& b) {
|
|
theory_var v = b.get_var();
|
|
TRACE("arith", tout << pp(v) << "\n";);
|
|
if (static_cast<unsigned>(v) >= m_use_list.size()) {
|
|
return;
|
|
}
|
|
for (auto const& vb : m_use_list[v]) {
|
|
if (ctx().get_assignment(vb->get_lit()) != l_undef) {
|
|
TRACE("arith_verbose", display_bound(tout << "assigned ", *vb) << "\n";);
|
|
continue;
|
|
}
|
|
inf_rational r;
|
|
// x + y
|
|
// x >= 0, y >= 1 -> x + y >= 1
|
|
// x <= 0, y <= 2 -> x + y <= 2
|
|
literal lit = null_literal;
|
|
if (lp_api::lower_t == vb->get_bound_kind()) {
|
|
if (get_glb(*vb, r) && r >= vb->get_value()) { // vb is assigned true
|
|
lit = vb->get_lit();
|
|
}
|
|
else if (get_lub(*vb, r) && r < vb->get_value()) { // vb is assigned false
|
|
lit = ~vb->get_lit();
|
|
}
|
|
}
|
|
else {
|
|
if (get_glb(*vb, r) && r > vb->get_value()) { // VB <= value < val(VB)
|
|
lit = ~vb->get_lit();
|
|
}
|
|
else if (get_lub(*vb, r) && r <= vb->get_value()) { // val(VB) <= value
|
|
lit = vb->get_lit();
|
|
}
|
|
}
|
|
|
|
// get_glb and get_lub set m_core, m_eqs, m_params
|
|
if (lit != null_literal) {
|
|
TRACE("arith",
|
|
ctx().display_literals_verbose(tout, m_core);
|
|
ctx().display_literal_verbose(tout << "\n --> ", lit) << "\n";
|
|
);
|
|
|
|
|
|
assign(lit, m_core, m_eqs, m_params);
|
|
}
|
|
else {
|
|
TRACE("arith_verbose", display_bound(tout << "skip ", *vb) << "\n";);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool get_lub(api_bound const& b, inf_rational& lub) {
|
|
return get_bound(b, lub, true);
|
|
}
|
|
|
|
bool get_glb(api_bound const& b, inf_rational& glb) {
|
|
return get_bound(b, glb, false);
|
|
}
|
|
|
|
std::ostream& display_bound(std::ostream& out, api_bound const& b) {
|
|
return out << mk_pp(ctx().bool_var2expr(b.get_lit().var()), m);
|
|
}
|
|
|
|
bool get_bound(api_bound const& b, inf_rational& r, bool is_lub) {
|
|
reset_evidence();
|
|
r.reset();
|
|
theory_var v = b.get_var();
|
|
lp::lpvar ti = get_lpvar(v);
|
|
SASSERT(lp().column_has_term(ti));
|
|
lp::lar_term const& term = lp().get_term(ti);
|
|
for (auto const mono : term) {
|
|
auto wi = mono.j();
|
|
u_dependency* ci = nullptr;
|
|
rational value;
|
|
bool is_strict;
|
|
if (lp().column_has_term(wi)) {
|
|
return false;
|
|
}
|
|
if (mono.coeff().is_neg() == is_lub) {
|
|
// -3*x ... <= lub based on lower bound for x.
|
|
if (!lp().has_lower_bound(wi, ci, value, is_strict)) {
|
|
return false;
|
|
}
|
|
if (is_strict) {
|
|
r += inf_rational(rational::zero(), mono.coeff().is_pos());
|
|
}
|
|
}
|
|
else {
|
|
if (!lp().has_upper_bound(wi, ci, value, is_strict)) {
|
|
return false;
|
|
}
|
|
if (is_strict) {
|
|
r += inf_rational(rational::zero(), mono.coeff().is_pos());
|
|
}
|
|
}
|
|
r += value * mono.coeff();
|
|
set_evidence(ci, m_core, m_eqs);
|
|
}
|
|
TRACE("arith_verbose", tout << (is_lub?"lub":"glb") << " is " << r << "\n";);
|
|
return true;
|
|
}
|
|
|
|
lp::lconstraint_kind bound2constraint_kind(bool is_int, lp_api::bound_kind bk, bool is_true) {
|
|
switch (bk) {
|
|
case lp_api::lower_t:
|
|
return is_true ? lp::GE : (is_int ? lp::LE : lp::LT);
|
|
case lp_api::upper_t:
|
|
return is_true ? lp::LE : (is_int ? lp::GE : lp::GT);
|
|
}
|
|
UNREACHABLE();
|
|
return lp::EQ;
|
|
}
|
|
|
|
bool assert_bound(bool_var bv, bool is_true, api_bound& b) {
|
|
TRACE("arith", tout << b << "\n";);
|
|
lp::constraint_index ci = b.get_constraint(is_true);
|
|
lp().activate(ci);
|
|
if (is_infeasible())
|
|
return false;
|
|
lp::lconstraint_kind k = bound2constraint_kind(b.is_int(), b.get_bound_kind(), is_true);
|
|
if (k == lp::LT || k == lp::LE) {
|
|
++m_stats.m_assert_lower;
|
|
}
|
|
else {
|
|
++m_stats.m_assert_upper;
|
|
}
|
|
inf_rational value = b.get_value(is_true);
|
|
if (propagate_eqs() && value.is_rational())
|
|
propagate_eqs(b.column_index(), ci, k, b, value.get_rational());
|
|
return true;
|
|
#if 0
|
|
if (should_propagate())
|
|
lp().add_column_rows_to_touched_rows(b.tv().id());
|
|
#endif
|
|
}
|
|
|
|
api_bound* mk_var_bound(bool_var bv, theory_var v, lp_api::bound_kind bk, rational const& bound) {
|
|
scoped_internalize_state st(*this);
|
|
st.vars().push_back(v);
|
|
st.coeffs().push_back(rational::one());
|
|
init_left_side(st);
|
|
lp::constraint_index cT, cF;
|
|
bool v_is_int = is_int(v);
|
|
auto vi = register_theory_var_in_lar_solver(v);
|
|
|
|
lp::lconstraint_kind kT = bound2constraint_kind(v_is_int, bk, true);
|
|
lp::lconstraint_kind kF = bound2constraint_kind(v_is_int, bk, false);
|
|
|
|
cT = lp().mk_var_bound(vi, kT, bound);
|
|
if (v_is_int) {
|
|
rational boundF = (bk == lp_api::lower_t) ? bound - 1 : bound + 1;
|
|
cF = lp().mk_var_bound(vi, kF, boundF);
|
|
}
|
|
else {
|
|
cF = lp().mk_var_bound(vi, kF, bound);
|
|
}
|
|
add_ineq_constraint(cT, literal(bv, false));
|
|
add_ineq_constraint(cF, literal(bv, true));
|
|
|
|
return alloc(api_bound, literal(bv, false), v, vi, v_is_int, bound, bk, cT, cF);
|
|
}
|
|
|
|
//
|
|
// fixed equalities.
|
|
// A fixed equality is inferred if there are two variables v1, v2 whose
|
|
// upper and lower bounds coincide.
|
|
// Then the equality v1 == v2 is propagated to the core.
|
|
//
|
|
|
|
typedef std::pair<lp::constraint_index, rational> constraint_bound;
|
|
vector<constraint_bound> m_lower_terms;
|
|
vector<constraint_bound> m_upper_terms;
|
|
|
|
void propagate_eqs(lp::lpvar t, lp::constraint_index ci1, lp::lconstraint_kind k, api_bound& b, rational const& value) {
|
|
u_dependency* ci2 = nullptr;
|
|
auto pair = [&]() { return lp().dep_manager().mk_join(lp().dep_manager().mk_leaf(ci1), ci2); };
|
|
if (k == lp::GE && set_lower_bound(t, ci1, value) && has_upper_bound(t, ci2, value)) {
|
|
fixed_var_eh(b.get_var(), t, pair(), value);
|
|
}
|
|
else if (k == lp::LE && set_upper_bound(t, ci1, value) && has_lower_bound(t, ci2, value)) {
|
|
fixed_var_eh(b.get_var(), t, pair(), value);
|
|
}
|
|
}
|
|
|
|
|
|
bool propagate_eqs() const { return params().m_arith_propagate_eqs && m_num_conflicts < params().m_arith_propagation_threshold; }
|
|
|
|
bound_prop_mode propagation_mode() const { return m_num_conflicts < params().m_arith_propagation_threshold ? params().m_arith_bound_prop : bound_prop_mode::BP_NONE; }
|
|
|
|
unsigned small_lemma_size() const { return params().m_arith_small_lemma_size; }
|
|
|
|
bool proofs_enabled() const { return m.proofs_enabled(); }
|
|
|
|
bool set_upper_bound(lp::lpvar t, lp::constraint_index ci, rational const& v) { return set_bound(t, ci, v, false); }
|
|
|
|
bool set_lower_bound(lp::lpvar t, lp::constraint_index ci, rational const& v) { return set_bound(t, ci, v, true); }
|
|
|
|
vector<constraint_bound> m_history;
|
|
|
|
bool set_bound(lp::lpvar tv, lp::constraint_index ci, rational const& v, bool is_lower) {
|
|
if (lp().column_has_term(tv)) {
|
|
auto& vec = is_lower ? m_lower_terms : m_upper_terms;
|
|
if (vec.size() <= tv) {
|
|
vec.resize(tv + 1, constraint_bound(UINT_MAX, rational()));
|
|
}
|
|
constraint_bound& b = vec[tv];
|
|
if (b.first == UINT_MAX || (is_lower? b.second < v : b.second > v)) {
|
|
TRACE("arith", tout << "tighter bound " << tv << "\n";);
|
|
m_history.push_back(vec[tv]);
|
|
ctx().push_trail(history_trail<constraint_bound>(vec, tv, m_history));
|
|
b.first = ci;
|
|
b.second = v;
|
|
}
|
|
return true;
|
|
}
|
|
else {
|
|
// m_solver already tracks bounds on proper variables, but not on terms.
|
|
bool is_strict = false;
|
|
rational b;
|
|
u_dependency* dep = nullptr;
|
|
if (is_lower) {
|
|
return lp().has_lower_bound(tv, dep, b, is_strict) && !is_strict && b == v;
|
|
}
|
|
else {
|
|
return lp().has_upper_bound(tv, dep, b, is_strict) && !is_strict && b == v;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool var_has_bound(lpvar vi, bool is_lower) {
|
|
bool is_strict = false;
|
|
rational b;
|
|
u_dependency* dep;
|
|
if (is_lower) {
|
|
return lp().has_lower_bound(vi, dep, b, is_strict);
|
|
}
|
|
else {
|
|
return lp().has_upper_bound(vi, dep, b, is_strict);
|
|
}
|
|
}
|
|
|
|
bool has_upper_bound(lpvar vi, u_dependency*& ci, rational const& bound) { return has_bound(vi, ci, bound, false); }
|
|
|
|
bool has_lower_bound(lpvar vi, u_dependency*& ci, rational const& bound) { return has_bound(vi, ci, bound, true); }
|
|
|
|
bool has_bound(lpvar vi, u_dependency*& dep, rational const& bound, bool is_lower) {
|
|
if (lp().column_has_term(vi)) {
|
|
theory_var v = lp().local_to_external(vi);
|
|
rational val;
|
|
TRACE("arith", tout << lp().get_variable_name(vi) << " " << v << "\n";);
|
|
if (v != null_theory_var && a.is_numeral(get_owner(v), val) && bound == val) {
|
|
dep = nullptr;
|
|
return bound == val;
|
|
}
|
|
|
|
auto& vec = is_lower ? m_lower_terms : m_upper_terms;
|
|
if (vec.size() > vi) {
|
|
auto const& [ci, coeff] = vec[vi];
|
|
if (ci == UINT_MAX)
|
|
return false;
|
|
dep = lp().dep_manager().mk_leaf(ci);
|
|
return bound == coeff;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
else {
|
|
bool is_strict = false;
|
|
rational b;
|
|
if (is_lower) {
|
|
return lp().has_lower_bound(vi, dep, b, is_strict) && b == bound && !is_strict;
|
|
}
|
|
else {
|
|
return lp().has_upper_bound(vi, dep, b, is_strict) && b == bound && !is_strict;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool is_equal(theory_var x, theory_var y) const {
|
|
return get_enode(x)->get_root() == get_enode(y)->get_root();
|
|
}
|
|
|
|
unsigned get_num_vars() const { return th.get_num_vars(); }
|
|
|
|
void report_equality_of_fixed_vars(unsigned vi1, unsigned vi2) {
|
|
rational bound(0);
|
|
u_dependency* ci1 = nullptr, *ci2 = nullptr, *ci3 = nullptr, *ci4 = nullptr;
|
|
theory_var v1 = lp().local_to_external(vi1);
|
|
theory_var v2 = lp().local_to_external(vi2);
|
|
TRACE("arith", tout << "fixed: " << pp(v1) << " " << pp(v2) << "\n";);
|
|
// we expect lp() to ensure that none of these returns happen.
|
|
if (is_equal(v1, v2))
|
|
return;
|
|
if (is_int(v1) != is_int(v2))
|
|
return;
|
|
if (!has_lower_bound(vi1, ci1, bound))
|
|
return;
|
|
if (!has_upper_bound(vi1, ci2, bound))
|
|
return;
|
|
if (!has_lower_bound(vi2, ci3, bound))
|
|
return;
|
|
if (!has_upper_bound(vi2, ci4, bound))
|
|
return;
|
|
|
|
reset_evidence();
|
|
set_evidence(ci1, m_core, m_eqs);
|
|
set_evidence(ci2, m_core, m_eqs);
|
|
set_evidence(ci3, m_core, m_eqs);
|
|
set_evidence(ci4, m_core, m_eqs);
|
|
++m_stats.m_fixed_eqs;
|
|
assign_eq(v1, v2);
|
|
}
|
|
|
|
void assign_eq(theory_var v1, theory_var v2) {
|
|
enode* x = get_enode(v1);
|
|
enode* y = get_enode(v2);
|
|
justification* js =
|
|
ctx().mk_justification(
|
|
ext_theory_eq_propagation_justification(
|
|
get_id(), ctx(), m_core.size(), m_core.data(), m_eqs.size(), m_eqs.data(), x, y));
|
|
|
|
TRACE("arith",
|
|
for (auto c : m_core)
|
|
ctx().display_detailed_literal(tout << ctx().get_assign_level(c.var()) << " " << c << " ", c) << "\n";
|
|
for (auto e : m_eqs)
|
|
tout << pp(e.first) << " = " << pp(e.second) << "\n";
|
|
tout << " ==> " << pp(x) << " = " << pp(y) << "\n";
|
|
);
|
|
|
|
std::function<expr*(void)> fn = [&]() { return m.mk_eq(x->get_expr(), y->get_expr()); };
|
|
scoped_trace_stream _sts(th, fn);
|
|
|
|
if (params().m_arith_validate)
|
|
VERIFY(validate_eq(x, y));
|
|
ctx().assign_eq(x, y, eq_justification(js));
|
|
}
|
|
|
|
void fixed_var_eh(theory_var v, lp::lpvar t, u_dependency* dep, rational const& bound) {
|
|
theory_var w = null_theory_var;
|
|
enode* x = get_enode(v);
|
|
if (m_value2var.find(bound, w))
|
|
;
|
|
else if (bound.is_zero())
|
|
w = lp().local_to_external(get_zero(a.is_int(x->get_expr())));
|
|
else if (bound.is_one())
|
|
w = lp().local_to_external(get_one(a.is_int(x->get_expr())));
|
|
else
|
|
return;
|
|
enode* y = get_enode(w);
|
|
TRACE("arith", tout << pp(x) << " == " << pp(y) << "\n");
|
|
if (x->get_sort() != y->get_sort())
|
|
return;
|
|
if (x->get_root() == y->get_root())
|
|
return;
|
|
reset_evidence();
|
|
set_evidence(dep, m_core, m_eqs);
|
|
++m_stats.m_fixed_eqs;
|
|
assign_eq(v, w);
|
|
}
|
|
|
|
lbool make_feasible() {
|
|
TRACE("pcs", tout << lp().constraints(););
|
|
TRACE("arith_verbose", tout << "before calling lp().find_feasible_solution()\n"; display(tout););
|
|
auto status = lp().find_feasible_solution();
|
|
TRACE("arith_verbose", display(tout););
|
|
if (lp().is_feasible())
|
|
return l_true;
|
|
if (status == lp::lp_status::INFEASIBLE)
|
|
return l_false;
|
|
TRACE("arith", tout << "status treated as inconclusive: " << status << "\n";);
|
|
// TENTATIVE_UNBOUNDED, UNBOUNDED, TENTATIVE_DUAL_UNBOUNDED, DUAL_UNBOUNDED,
|
|
// TIME_EXAUSTED, EMPTY, UNSTABLE
|
|
return l_undef;
|
|
}
|
|
|
|
lp::explanation m_explanation;
|
|
literal_vector m_core;
|
|
svector<enode_pair> m_eqs;
|
|
vector<parameter> m_params;
|
|
|
|
void reset_evidence() {
|
|
m_core.reset();
|
|
m_eqs.reset();
|
|
m_params.reset();
|
|
}
|
|
|
|
// lp::constraint_index const null_constraint_index = UINT_MAX; // not sure what a correct fix is
|
|
|
|
void set_evidence(u_dependency* dep, literal_vector& core, svector<enode_pair>& eqs) {
|
|
for (auto ci : lp().flatten(dep))
|
|
set_evidence(ci, core, eqs);
|
|
}
|
|
|
|
void set_evidence(lp::constraint_index idx, literal_vector& core, svector<enode_pair>& eqs) {
|
|
if (idx == UINT_MAX)
|
|
return;
|
|
switch (m_constraint_sources[idx]) {
|
|
case inequality_source: {
|
|
literal lit = m_inequalities[idx];
|
|
SASSERT(lit != null_literal);
|
|
core.push_back(lit);
|
|
break;
|
|
}
|
|
case equality_source: {
|
|
SASSERT(m_equalities[idx].first != nullptr);
|
|
SASSERT(m_equalities[idx].second != nullptr);
|
|
m_eqs.push_back(m_equalities[idx]);
|
|
break;
|
|
}
|
|
case definition_source: {
|
|
// skip definitions (these are treated as hard constraints)
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
|
|
void get_infeasibility_explanation_and_set_conflict() {
|
|
m_explanation.clear();
|
|
lp().get_infeasibility_explanation(m_explanation);
|
|
set_conflict();
|
|
}
|
|
|
|
void set_conflict() {
|
|
literal_vector core;
|
|
set_conflict_or_lemma(core, true);
|
|
}
|
|
|
|
void set_conflict_or_lemma(literal_vector const& core, bool is_conflict) {
|
|
reset_evidence();
|
|
for (literal lit : core) {
|
|
m_core.push_back(lit);
|
|
}
|
|
// lp().shrink_explanation_to_minimum(m_explanation); // todo, enable when perf is fixed
|
|
++m_num_conflicts;
|
|
++m_stats.m_conflicts;
|
|
TRACE("arith_conflict",
|
|
tout << "@" << ctx().get_scope_level() << (is_conflict ? " conflict":" lemma");
|
|
for (auto const& p : m_params) tout << " " << p;
|
|
tout << "\n";
|
|
display_evidence(tout << core << " ", m_explanation););
|
|
for (auto ev : m_explanation)
|
|
set_evidence(ev.ci(), m_core, m_eqs);
|
|
|
|
|
|
if (params().m_arith_validate)
|
|
VERIFY(validate_conflict());
|
|
if (params().m_arith_dump_lemmas)
|
|
dump_conflict();
|
|
|
|
if (is_conflict) {
|
|
ctx().set_conflict(
|
|
ctx().mk_justification(
|
|
ext_theory_conflict_justification(
|
|
get_id(), ctx(),
|
|
m_core.size(), m_core.data(),
|
|
m_eqs.size(), m_eqs.data(), m_params.size(), m_params.data())));
|
|
}
|
|
else {
|
|
for (auto const& eq : m_eqs) {
|
|
m_core.push_back(th.mk_eq(eq.first->get_expr(), eq.second->get_expr(), false));
|
|
}
|
|
for (literal & c : m_core) {
|
|
c.neg();
|
|
ctx().mark_as_relevant(c);
|
|
if (ctx().get_assignment(c) == l_true)
|
|
return;
|
|
}
|
|
TRACE("arith", ctx().display_literals_verbose(tout, m_core) << "\n";);
|
|
ctx().mk_th_axiom(get_id(), m_core.size(), m_core.data());
|
|
}
|
|
}
|
|
|
|
justification * why_is_diseq(theory_var v1, theory_var v2) {
|
|
return nullptr;
|
|
}
|
|
|
|
void reset_eh() {
|
|
m_arith_eq_adapter.reset_eh();
|
|
m_solver = nullptr;
|
|
m_internalize_head = 0;
|
|
m_not_handled.reset();
|
|
del_bounds(0);
|
|
m_unassigned_bounds.reset();
|
|
m_asserted_qhead = 0;
|
|
m_assume_eq_head = 0;
|
|
m_scopes.reset();
|
|
m_stats.reset();
|
|
m_model_is_initialized = false;
|
|
}
|
|
|
|
void init_model(model_generator & mg) {
|
|
init_variable_values();
|
|
m_factory = alloc(arith_factory, m);
|
|
mg.register_factory(m_factory);
|
|
if (m_model_is_initialized) {
|
|
expr_ref val(m);
|
|
unsigned nv = th.get_num_vars();
|
|
for (unsigned v = 0; v < nv; ++v)
|
|
if (get_value(get_enode(v), val))
|
|
m_factory->register_value(val);
|
|
|
|
}
|
|
TRACE("arith", display(tout););
|
|
}
|
|
|
|
nlsat::anum const& nl_value(theory_var v, scoped_anum& r) const {
|
|
SASSERT(use_nra_model());
|
|
auto t = get_lpvar(v);
|
|
if (!lp().column_has_term(t))
|
|
m_nla->am().set(r, m_nla->am_value(t));
|
|
else {
|
|
|
|
m_todo_terms.push_back({t, rational::one()});
|
|
TRACE("nl_value", tout << "v" << v << " " << t << "\n";);
|
|
TRACE("nl_value", tout << "v" << v << " := w" << t << "\n";
|
|
lp().print_term(lp().get_term(t), tout) << "\n";);
|
|
|
|
m_nla->am().set(r, 0);
|
|
while (!m_todo_terms.empty()) {
|
|
rational wcoeff = m_todo_terms.back().second;
|
|
t = m_todo_terms.back().first;
|
|
m_todo_terms.pop_back();
|
|
lp::lar_term const& term = lp().get_term(t);
|
|
TRACE("nl_value", lp().print_term(term, tout) << "\n";);
|
|
scoped_anum r1(m_nla->am());
|
|
rational c1(0);
|
|
m_nla->am().set(r1, c1.to_mpq());
|
|
m_nla->am().add(r, r1, r);
|
|
for (lp::lar_term::ival arg : term) {
|
|
auto wi = arg.j();
|
|
c1 = arg.coeff() * wcoeff;
|
|
if (lp().column_has_term(wi)) {
|
|
m_todo_terms.push_back({wi, c1});
|
|
}
|
|
else {
|
|
m_nla->am().set(r1, c1.to_mpq());
|
|
m_nla->am().mul(m_nla->am_value(wi), r1, r1);
|
|
m_nla->am().add(r1, r, r);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
model_value_proc * mk_value(enode * n, model_generator & mg) {
|
|
theory_var v = n->get_th_var(get_id());
|
|
expr* o = n->get_expr();
|
|
if (use_nra_model() && lp().external_to_local(v) != lp::null_lpvar) {
|
|
anum const& an = nl_value(v, m_nla->tmp1());
|
|
if (a.is_int(o) && !m_nla->am().is_int(an)) {
|
|
return alloc(expr_wrapper_proc, a.mk_numeral(rational::zero(), a.is_int(o)));
|
|
}
|
|
return alloc(expr_wrapper_proc, a.mk_numeral(m_nla->am(), nl_value(v, m_nla->tmp1()), a.is_int(o)));
|
|
}
|
|
else {
|
|
rational r = get_value(v);
|
|
TRACE("arith", tout << mk_pp(o, m) << " v" << v << " := " << r << "\n";);
|
|
SASSERT("integer variables should have integer values: " && (!a.is_int(o) || r.is_int() || m.limit().is_canceled()));
|
|
if (a.is_int(o) && !r.is_int()) r = floor(r);
|
|
return alloc(expr_wrapper_proc, m_factory->mk_value(r, o->get_sort()));
|
|
}
|
|
}
|
|
|
|
bool get_value(enode* n, rational& val) {
|
|
theory_var v = n->get_th_var(get_id());
|
|
if (!is_registered_var(v)) return false;
|
|
lpvar vi = get_lpvar(v);
|
|
if (lp().has_value(vi, val)) {
|
|
TRACE("arith", tout << expr_ref(n->get_expr(), m) << " := " << val << "\n";);
|
|
if (is_int(n) && !val.is_int()) return false;
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool get_value(enode* n, expr_ref& r) {
|
|
rational val;
|
|
if (get_value(n, val)) {
|
|
r = a.mk_numeral(val, is_int(n));
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool include_func_interp(func_decl* f) {
|
|
return
|
|
a.is_div0(f) ||
|
|
a.is_idiv0(f) ||
|
|
a.is_power0(f) ||
|
|
a.is_rem0(f) ||
|
|
a.is_mod0(f);
|
|
}
|
|
|
|
bool include_func_interp(enode* n) {
|
|
return include_func_interp(n->get_decl());
|
|
}
|
|
|
|
bool get_lower(enode* n, rational& val, bool& is_strict) {
|
|
theory_var v = n->get_th_var(get_id());
|
|
if (!is_registered_var(v))
|
|
return false;
|
|
lpvar vi = get_lpvar(v);
|
|
u_dependency* ci;
|
|
return lp().has_lower_bound(vi, ci, val, is_strict);
|
|
}
|
|
|
|
bool get_lower(enode* n, expr_ref& r) {
|
|
bool is_strict;
|
|
rational val;
|
|
if (get_lower(n, val, is_strict) && !is_strict) {
|
|
r = a.mk_numeral(val, is_int(n));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool get_upper(enode* n, rational& val, bool& is_strict) {
|
|
theory_var v = n->get_th_var(get_id());
|
|
if (!is_registered_var(v))
|
|
return false;
|
|
lpvar vi = get_lpvar(v);
|
|
u_dependency* dep = nullptr;
|
|
return lp().has_upper_bound(vi, dep, val, is_strict);
|
|
}
|
|
|
|
void solve_fixed(enode* n, lpvar j, expr_ref& term, expr_ref& guard) {
|
|
term = a.mk_numeral(lp().get_value(j), a.is_int(n->get_expr()));
|
|
reset_evidence();
|
|
add_explain(j);
|
|
guard = extract_explain();
|
|
}
|
|
|
|
void add_explain(unsigned j) {
|
|
auto d = lp().get_bound_constraint_witnesses_for_column(j);
|
|
set_evidence(d, m_core, m_eqs);
|
|
}
|
|
|
|
expr_ref extract_explain() {
|
|
expr_ref_vector es(m);
|
|
for (auto [l, r] : m_eqs)
|
|
es.push_back(a.mk_eq(l->get_expr(), r->get_expr()));
|
|
for (auto l : m_core)
|
|
es.push_back(ctx().literal2expr(l));
|
|
// remove duplicats from es:
|
|
std::stable_sort(es.data(), es.data() + es.size());
|
|
unsigned j = 0;
|
|
for (unsigned i = 0; i < es.size(); ++i) {
|
|
if (i > 0 && es.get(i) == es.get(i - 1))
|
|
continue;
|
|
es[j++] = es.get(i);
|
|
}
|
|
es.shrink(j);
|
|
return mk_and(es);
|
|
}
|
|
|
|
void solve_term(enode* n, lp::lar_term & lt, expr_ref& term, expr_ref& guard) {
|
|
bool is_int = a.is_int(n->get_expr());
|
|
bool all_int = is_int;
|
|
lp::lar_term t;
|
|
rational coeff(0);
|
|
expr_ref_vector guards(m);
|
|
reset_evidence();
|
|
for (auto const& cv : lt) {
|
|
if (lp().column_is_fixed(cv.j())) {
|
|
coeff += lp().get_value(cv.j()) * cv.coeff();
|
|
add_explain(cv.j());
|
|
}
|
|
else
|
|
t.add_monomial(cv.coeff(), cv.j());
|
|
}
|
|
guards.push_back(extract_explain());
|
|
rational lc = denominator(coeff);
|
|
for (auto const& cv : t) {
|
|
lc = lcm(denominator(cv.coeff()), lc);
|
|
all_int &= lp().column_is_int(cv.j());
|
|
}
|
|
if (lc != 1)
|
|
t *= lc, coeff *= lc;
|
|
term = mk_term(t, is_int);
|
|
if (coeff != 0)
|
|
term = a.mk_add(term, a.mk_numeral(coeff, is_int));
|
|
|
|
if (lc == 1) {
|
|
guard = mk_and(guards);
|
|
return;
|
|
}
|
|
expr_ref lce(a.mk_numeral(lc, true), m);
|
|
if (all_int)
|
|
guards.push_back(m.mk_eq(a.mk_mod(term, lce), a.mk_int(0)));
|
|
else if (is_int)
|
|
guards.push_back(a.mk_is_int(a.mk_div(term, lce)));
|
|
term = a.mk_idiv(term, lce);
|
|
guard = mk_and(guards);
|
|
}
|
|
|
|
void solve_for(vector<solution>& solutions) {
|
|
unsigned_vector vars;
|
|
unsigned j = 0;
|
|
for (auto [e, t, g] : solutions) {
|
|
auto n = get_enode(e);
|
|
if (!n) {
|
|
solutions[j++] = { e, t, g };
|
|
continue;
|
|
}
|
|
|
|
theory_var v = n->get_th_var(get_id());
|
|
if (!is_registered_var(v))
|
|
solutions[j++] = { e, t, g };
|
|
else
|
|
vars.push_back(get_lpvar(v));
|
|
}
|
|
solutions.shrink(j);
|
|
|
|
expr_ref term(m), guard(m);
|
|
vector<lp::lar_solver::solution> sols;
|
|
lp().solve_for(vars, sols);
|
|
uint_set seen;
|
|
for (auto& s : sols) {
|
|
auto n = get_enode(lp().local_to_external(s.j));
|
|
if (lp().column_is_fixed(s.j))
|
|
solve_fixed(n, s.j, term, guard);
|
|
else
|
|
solve_term(n, s.t, term, guard);
|
|
solutions.push_back({ n->get_expr(), term, guard});
|
|
seen.insert(s.j);
|
|
}
|
|
for (auto j : vars) {
|
|
if (seen.contains(j) || !lp().column_is_fixed(j))
|
|
continue;
|
|
auto n = get_enode(lp().local_to_external(j));
|
|
solve_fixed(n, j, term, guard);
|
|
solutions.push_back({ n->get_expr(), term, guard });
|
|
}
|
|
}
|
|
|
|
bool get_upper(enode* n, expr_ref& r) {
|
|
bool is_strict;
|
|
rational val;
|
|
if (get_upper(n, val, is_strict) && !is_strict) {
|
|
r = a.mk_numeral(val, is_int(n));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Auxiliary verification utilities.
|
|
|
|
struct scoped_arith_mode {
|
|
smt_params& p;
|
|
scoped_arith_mode(smt_params& p) : p(p) {
|
|
p.m_arith_mode = arith_solver_id::AS_OLD_ARITH;
|
|
}
|
|
~scoped_arith_mode() {
|
|
p.m_arith_mode = arith_solver_id::AS_NEW_ARITH;
|
|
}
|
|
};
|
|
|
|
unsigned m_num_dumped_lemmas = 0;
|
|
|
|
void dump_assign_lemma(literal lit) {
|
|
std::cout << "; assign lemma " << (m_num_dumped_lemmas++) << "\n";
|
|
ctx().display_lemma_as_smt_problem(std::cout, m_core.size(), m_core.data(), m_eqs.size(), m_eqs.data(), lit);
|
|
std::cout << "(reset)\n";
|
|
}
|
|
|
|
void dump_conflict() {
|
|
std::cout << "; conflict " << (m_num_dumped_lemmas++) << "\n";
|
|
ctx().display_lemma_as_smt_problem(std::cout, m_core.size(), m_core.data(), m_eqs.size(), m_eqs.data());
|
|
std::cout << "(reset)\n";
|
|
}
|
|
|
|
void dump_eq(enode* x, enode* y) {
|
|
std::cout << "; equality propagation " << (m_num_dumped_lemmas++) << "\n";
|
|
ctx().display_lemma_as_smt_problem(std::cout, m_core.size(), m_core.data(), m_eqs.size(), m_eqs.data(), false_literal, symbol::null, x, y);
|
|
std::cout << "(reset)\n";
|
|
}
|
|
|
|
|
|
bool validate_conflict() {
|
|
if (params().m_arith_mode != arith_solver_id::AS_NEW_ARITH) return true;
|
|
|
|
VERIFY(!m_core.empty() || !m_eqs.empty());
|
|
scoped_arith_mode _sa(ctx().get_fparams());
|
|
context nctx(m, ctx().get_fparams(), ctx().get_params());
|
|
add_background(nctx);
|
|
cancel_eh<reslimit> eh(m.limit());
|
|
scoped_timer timer(1000, &eh);
|
|
bool result = l_true != nctx.check();
|
|
CTRACE("arith", !result, ctx().display_lemma_as_smt_problem(tout, m_core.size(), m_core.data(), m_eqs.size(), m_eqs.data(), false_literal););
|
|
return result;
|
|
}
|
|
|
|
bool validate_assign(literal lit) {
|
|
if (params().m_arith_mode != arith_solver_id::AS_NEW_ARITH) return true;
|
|
scoped_arith_mode _sa(ctx().get_fparams());
|
|
context nctx(m, ctx().get_fparams(), ctx().get_params());
|
|
m_core.push_back(~lit);
|
|
add_background(nctx);
|
|
m_core.pop_back();
|
|
cancel_eh<reslimit> eh(m.limit());
|
|
scoped_timer timer(1000, &eh);
|
|
bool result = l_true != nctx.check();
|
|
CTRACE("arith", !result, ctx().display_lemma_as_smt_problem(tout, m_core.size(), m_core.data(), m_eqs.size(), m_eqs.data(), lit);
|
|
display(tout););
|
|
return result;
|
|
}
|
|
|
|
bool validate_eq(enode* x, enode* y) {
|
|
static bool s_validating = false;
|
|
if (s_validating)
|
|
return true;
|
|
flet<bool> _svalid(s_validating, true);
|
|
context nctx(m, ctx().get_fparams(), ctx().get_params());
|
|
add_background(nctx);
|
|
expr_ref neq(m.mk_not(m.mk_eq(x->get_expr(), y->get_expr())), m);
|
|
nctx.assert_expr(neq);
|
|
cancel_eh<reslimit> eh(m.limit());
|
|
scoped_timer timer(1000, &eh);
|
|
lbool r = nctx.check();
|
|
if (r == l_true) {
|
|
nctx.display_asserted_formulas(std::cout);
|
|
std::cout.flush();
|
|
}
|
|
return l_true != r;
|
|
}
|
|
|
|
void add_background(context& nctx) {
|
|
for (literal c : m_core) {
|
|
expr_ref tmp(m);
|
|
ctx().literal2expr(c, tmp);
|
|
nctx.assert_expr(tmp);
|
|
}
|
|
for (auto const& eq : m_eqs) {
|
|
nctx.assert_expr(m.mk_eq(eq.first->get_expr(), eq.second->get_expr()));
|
|
}
|
|
}
|
|
|
|
theory_lra::inf_eps value(theory_var v) {
|
|
lp::impq ival = get_ivalue(v);
|
|
return inf_eps(rational(0), inf_rational(ival.x, ival.y));
|
|
}
|
|
|
|
theory_lra::inf_eps maximize(theory_var v, expr_ref& blocker, bool& has_shared) {
|
|
lp::impq term_max;
|
|
lp::lp_status st;
|
|
lpvar vi = 0;
|
|
if (has_int()) {
|
|
lp().backup_x();
|
|
}
|
|
if (!is_registered_var(v)) {
|
|
TRACE("arith", tout << "cannot get bound for v" << v << "\n";);
|
|
st = lp::lp_status::UNBOUNDED;
|
|
}
|
|
else if (!m.limit().inc()) {
|
|
st = lp::lp_status::UNBOUNDED;
|
|
}
|
|
else {
|
|
if (!lp().is_feasible() || lp().has_changed_columns())
|
|
make_feasible();
|
|
|
|
vi = get_lpvar(v);
|
|
|
|
st = lp().maximize_term(vi, term_max);
|
|
if (has_int() && lp().has_inf_int()) {
|
|
st = lp::lp_status::FEASIBLE;
|
|
lp().restore_x();
|
|
}
|
|
if (m_nla && (st == lp::lp_status::OPTIMAL || st == lp::lp_status::UNBOUNDED)) {
|
|
st = lp::lp_status::FEASIBLE;
|
|
lp().restore_x();
|
|
}
|
|
}
|
|
switch (st) {
|
|
case lp::lp_status::OPTIMAL: {
|
|
init_variable_values();
|
|
TRACE("arith", display(tout << st << " v" << v << " vi: " << vi << "\n"););
|
|
auto val = value(v);
|
|
blocker = mk_gt(v);
|
|
return val;
|
|
}
|
|
case lp::lp_status::FEASIBLE: {
|
|
auto val = value(v);
|
|
TRACE("arith", display(tout << st << " v" << v << " vi: " << vi << "\n"););
|
|
blocker = mk_gt(v);
|
|
return val;
|
|
}
|
|
default:
|
|
SASSERT(st == lp::lp_status::UNBOUNDED);
|
|
TRACE("arith", display(tout << st << " v" << v << " vi: " << vi << "\n"););
|
|
has_shared = false;
|
|
blocker = m.mk_false();
|
|
return inf_eps(rational::one(), inf_rational());
|
|
}
|
|
}
|
|
|
|
expr_ref mk_gt(theory_var v) {
|
|
lp::impq val = get_ivalue(v);
|
|
expr* obj = get_enode(v)->get_expr();
|
|
rational r = val.x;
|
|
expr_ref e(m);
|
|
if (a.is_int(obj->get_sort())) {
|
|
if (r.is_int())
|
|
r += rational::one();
|
|
else
|
|
r = ceil(r);
|
|
e = a.mk_numeral(r, obj->get_sort());
|
|
e = a.mk_ge(obj, e);
|
|
}
|
|
else {
|
|
e = a.mk_numeral(r, obj->get_sort());
|
|
if (val.y.is_neg())
|
|
e = a.mk_ge(obj, e);
|
|
else
|
|
e = a.mk_gt(obj, e);
|
|
}
|
|
TRACE("opt", tout << "v" << v << " " << val << " " << r << " " << e << "\n";);
|
|
return e;
|
|
}
|
|
|
|
theory_var add_objective(app* term) {
|
|
TRACE("opt", tout << expr_ref(term, m) << "\n";);
|
|
theory_var v = internalize_def(term);
|
|
register_theory_var_in_lar_solver(v);
|
|
return v;
|
|
}
|
|
|
|
void term2coeffs(lp::lar_term const& term, u_map<rational>& coeffs) {
|
|
term2coeffs(term, coeffs, rational::one());
|
|
}
|
|
|
|
void term2coeffs(lp::lar_term const& term, u_map<rational>& coeffs, rational const& coeff) {
|
|
TRACE("arith", lp().print_term(term, tout) << "\n";);
|
|
for (lp::lar_term::ival ti : term) {
|
|
theory_var w;
|
|
auto tv = ti.j();
|
|
if (lp().column_has_term(tv)) {
|
|
lp::lar_term const& term1 = lp().get_term(tv);
|
|
rational coeff2 = coeff * ti.coeff();
|
|
term2coeffs(term1, coeffs, coeff2);
|
|
continue;
|
|
}
|
|
else {
|
|
w = lp().local_to_external(tv);
|
|
SASSERT(w >= 0);
|
|
TRACE("arith", tout << tv << ": " << w << "\n";);
|
|
}
|
|
rational c0(0);
|
|
coeffs.find(w, c0);
|
|
coeffs.insert(w, c0 + ti.coeff() * coeff);
|
|
}
|
|
}
|
|
|
|
app_ref coeffs2app(u_map<rational> const& coeffs, rational const& offset, bool is_int) {
|
|
expr_ref_vector args(m);
|
|
for (auto const& [w, coeff] : coeffs) {
|
|
expr* o = get_enode(w)->get_expr();
|
|
if (coeff.is_zero()) {
|
|
// continue
|
|
}
|
|
else if (coeff.is_one()) {
|
|
args.push_back(o);
|
|
}
|
|
else {
|
|
args.push_back(a.mk_mul(a.mk_numeral(coeff, is_int), o));
|
|
}
|
|
}
|
|
if (!offset.is_zero()) {
|
|
args.push_back(a.mk_numeral(offset, is_int));
|
|
}
|
|
switch (args.size()) {
|
|
case 0:
|
|
return app_ref(a.mk_numeral(rational::zero(), is_int), m);
|
|
case 1:
|
|
return app_ref(to_app(args[0].get()), m);
|
|
default:
|
|
return app_ref(a.mk_add(args.size(), args.data()), m);
|
|
}
|
|
}
|
|
|
|
app_ref mk_term(lp::lar_term const& term, bool is_int) {
|
|
u_map<rational> coeffs;
|
|
term2coeffs(term, coeffs);
|
|
return coeffs2app(coeffs, rational::zero(), is_int);
|
|
}
|
|
|
|
rational gcd_reduce(u_map<rational>& coeffs) {
|
|
rational g(0);
|
|
for (auto const& kv : coeffs) {
|
|
g = gcd(g, kv.m_value);
|
|
}
|
|
if (g.is_zero())
|
|
return rational::one();
|
|
if (!g.is_one()) {
|
|
for (auto& kv : coeffs) {
|
|
kv.m_value /= g;
|
|
}
|
|
}
|
|
return g;
|
|
}
|
|
|
|
app_ref mk_obj(theory_var v) {
|
|
auto t = get_lpvar(v);
|
|
bool is_int = a.is_int(get_enode(v)->get_expr());
|
|
if (lp().column_has_term(t)) {
|
|
return mk_term(lp().get_term(t), is_int);
|
|
}
|
|
else {
|
|
// theory_var w = lp().external_to_local(vi);
|
|
return app_ref(get_enode(v)->get_expr(), m);
|
|
}
|
|
}
|
|
|
|
expr_ref mk_ge(generic_model_converter& fm, theory_var v, inf_rational const& val) {
|
|
rational r = val.get_rational();
|
|
bool is_strict = val.get_infinitesimal().is_pos();
|
|
app_ref b(m);
|
|
bool is_int = a.is_int(get_enode(v)->get_expr());
|
|
TRACE("arith", display(tout << "v" << v << "\n"););
|
|
if (is_strict) {
|
|
b = a.mk_le(mk_obj(v), a.mk_numeral(r, is_int));
|
|
}
|
|
else {
|
|
b = a.mk_ge(mk_obj(v), a.mk_numeral(r, is_int));
|
|
}
|
|
if (!ctx().b_internalized(b)) {
|
|
fm.hide(b->get_decl());
|
|
bool_var bv = ctx().mk_bool_var(b);
|
|
m_bool_var2bound.erase(bv);
|
|
ctx().set_var_theory(bv, get_id());
|
|
// ctx().set_enode_flag(bv, true);
|
|
lp_api::bound_kind bkind = lp_api::bound_kind::lower_t;
|
|
if (is_strict) bkind = lp_api::bound_kind::upper_t;
|
|
api_bound* a = mk_var_bound(bv, v, bkind, r);
|
|
mk_bound_axioms(*a);
|
|
updt_unassigned_bounds(v, +1);
|
|
m_bounds[v].push_back(a);
|
|
m_bounds_trail.push_back(v);
|
|
m_bool_var2bound.insert(bv, a);
|
|
|
|
TRACE("arith", tout << "internalized " << bv << ": " << mk_pp(b, m) << "\n";);
|
|
}
|
|
if (is_strict) {
|
|
b = m.mk_not(b);
|
|
}
|
|
TRACE("arith", tout << b << "\n";);
|
|
return expr_ref(b, m);
|
|
}
|
|
|
|
|
|
void display(std::ostream & out) const {
|
|
out << "Theory arithmetic:\n";
|
|
if (m_solver) {
|
|
m_solver->display(out);
|
|
}
|
|
if (m_nla) {
|
|
m_nla->display(out);
|
|
}
|
|
unsigned nv = th.get_num_vars();
|
|
for (unsigned v = 0; v < nv; ++v) {
|
|
auto vi = get_lpvar(v);
|
|
if (!ctx().is_relevant(get_enode(v))) out << "irr: ";
|
|
out << "v" << v << " ";
|
|
if (vi == lp::null_lpvar) out << "null"; else out << (lp().column_has_term(vi) ? "t":"j") << vi;
|
|
if (use_nra_model() && is_registered_var(v)) m_nla->am().display(out << " = ", nl_value(v, m_nla->tmp1()));
|
|
else if (can_get_value(v)) out << " = " << get_value(v);
|
|
if (is_int(v)) out << ", int";
|
|
if (ctx().is_shared(get_enode(v))) out << ", shared";
|
|
out << " := " << pp(v) << "\n";
|
|
}
|
|
}
|
|
|
|
void display_evidence(std::ostream& out, lp::explanation const& evidence) {
|
|
for (auto ev : evidence) {
|
|
expr_ref e(m);
|
|
SASSERT(!ev.coeff().is_zero());
|
|
if (ev.coeff().is_zero()) {
|
|
continue;
|
|
}
|
|
unsigned idx = ev.ci();
|
|
switch (m_constraint_sources.get(idx, null_source)) {
|
|
case inequality_source: {
|
|
literal lit = m_inequalities[idx];
|
|
ctx().literal2expr(lit, e);
|
|
out << bpp(e) << " " << ctx().get_assignment(lit) << "\n";
|
|
break;
|
|
}
|
|
case equality_source:
|
|
out << pp(m_equalities[idx].first) << " = "
|
|
<< pp(m_equalities[idx].second) << "\n";
|
|
break;
|
|
case definition_source: {
|
|
theory_var v = m_definitions[idx];
|
|
if (v != null_theory_var)
|
|
out << "def: v" << v << " := " << pp(th.get_enode(v)) << "\n";
|
|
break;
|
|
}
|
|
case null_source:
|
|
out << idx << " null";
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
for (lp::explanation::cimpq ev : evidence)
|
|
lp().constraints().display(out << ev.coeff() << ": ", ev.ci());
|
|
}
|
|
|
|
void collect_statistics(::statistics & st) const {
|
|
m_arith_eq_adapter.collect_statistics(st);
|
|
m_stats.collect_statistics(st);
|
|
lp().settings().stats().collect_statistics(st);
|
|
}
|
|
|
|
/*
|
|
* Facility to put a small box around integer variables used in branch and bounds.
|
|
*/
|
|
|
|
unsigned m_bounded_range_idx; // current size of bounded range.
|
|
literal m_bounded_range_lit; // current bounded range literal
|
|
expr_ref_vector m_bound_terms; // predicates used for bounds
|
|
expr_ref m_bound_predicate;
|
|
|
|
unsigned init_range() const { return 5; }
|
|
unsigned max_range() const { return 20; }
|
|
|
|
|
|
void setup() {
|
|
m_bounded_range_lit = null_literal;
|
|
m_bound_terms.reset();
|
|
m_bound_predicate = nullptr;
|
|
}
|
|
|
|
|
|
void validate_model(proto_model& mdl) {
|
|
|
|
rational r1, r2;
|
|
expr_ref res(m);
|
|
if (!m_model_is_initialized)
|
|
return;
|
|
for (unsigned v = 0; v < th.get_num_vars(); ++v) {
|
|
if (!is_registered_var(v))
|
|
continue;
|
|
enode* n = get_enode(v);
|
|
if (!n)
|
|
continue;
|
|
if (!th.is_relevant_and_shared(n))
|
|
continue;
|
|
rational r1 = get_value(v);
|
|
if (!mdl.eval(n->get_expr(), res, false))
|
|
continue;
|
|
if (!a.is_numeral(res, r2))
|
|
continue;
|
|
if (r1 != r2)
|
|
IF_VERBOSE(1, verbose_stream() << enode_pp(n, ctx()) << " evaluates to " << r2 << " but arith solver has " << r1 << "\n");
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
theory_lra::theory_lra(context& ctx):
|
|
theory(ctx, ctx.get_manager().get_family_id("arith")) {
|
|
m_imp = alloc(imp, *this, ctx.get_manager());
|
|
}
|
|
theory_lra::~theory_lra() {
|
|
dealloc(m_imp);
|
|
}
|
|
theory* theory_lra::mk_fresh(context* new_ctx) {
|
|
return alloc(theory_lra, *new_ctx);
|
|
}
|
|
void theory_lra::init() {
|
|
m_imp->init();
|
|
}
|
|
bool theory_lra::internalize_atom(app * atom, bool gate_ctx) {
|
|
return m_imp->internalize_atom(atom, gate_ctx);
|
|
}
|
|
bool theory_lra::internalize_term(app * term) {
|
|
return m_imp->internalize_term(term);
|
|
}
|
|
void theory_lra::internalize_eq_eh(app * atom, bool_var v) {
|
|
m_imp->internalize_eq_eh(atom, v);
|
|
}
|
|
void theory_lra::assign_eh(bool_var v, bool is_true) {
|
|
m_imp->assign_eh(v, is_true);
|
|
}
|
|
lbool theory_lra::get_phase(bool_var v) {
|
|
return m_imp->get_phase(v);
|
|
}
|
|
void theory_lra::initialize_value(expr* var, expr* value) {
|
|
m_imp->initialize_value(var, value);
|
|
}
|
|
void theory_lra::new_eq_eh(theory_var v1, theory_var v2) {
|
|
m_imp->new_eq_eh(v1, v2);
|
|
}
|
|
bool theory_lra::use_diseqs() const {
|
|
return m_imp->use_diseqs();
|
|
}
|
|
void theory_lra::new_diseq_eh(theory_var v1, theory_var v2) {
|
|
m_imp->new_diseq_eh(v1, v2);
|
|
}
|
|
void theory_lra::apply_sort_cnstr(enode* n, sort* s) {
|
|
m_imp->apply_sort_cnstr(n, s);
|
|
}
|
|
void theory_lra::push_scope_eh() {
|
|
theory::push_scope_eh();
|
|
m_imp->push_scope_eh();
|
|
}
|
|
void theory_lra::pop_scope_eh(unsigned num_scopes) {
|
|
m_imp->pop_scope_eh(num_scopes);
|
|
theory::pop_scope_eh(num_scopes);
|
|
}
|
|
void theory_lra::restart_eh() {
|
|
m_imp->restart_eh();
|
|
}
|
|
void theory_lra::relevant_eh(app* e) {
|
|
m_imp->relevant_eh(e);
|
|
}
|
|
void theory_lra::init_search_eh() {
|
|
m_imp->init_search_eh();
|
|
}
|
|
final_check_status theory_lra::final_check_eh() {
|
|
return m_imp->final_check_eh();
|
|
}
|
|
bool theory_lra::is_shared(theory_var v) const {
|
|
return m_imp->is_shared(v);
|
|
}
|
|
bool theory_lra::can_propagate() {
|
|
return m_imp->can_propagate();
|
|
}
|
|
void theory_lra::propagate() {
|
|
m_imp->propagate();
|
|
}
|
|
justification * theory_lra::why_is_diseq(theory_var v1, theory_var v2) {
|
|
return m_imp->why_is_diseq(v1, v2);
|
|
}
|
|
void theory_lra::reset_eh() {
|
|
m_imp->reset_eh();
|
|
}
|
|
void theory_lra::init_model(model_generator & m) {
|
|
m_imp->init_model(m);
|
|
}
|
|
model_value_proc * theory_lra::mk_value(enode * n, model_generator & mg) {
|
|
return m_imp->mk_value(n, mg);
|
|
}
|
|
bool theory_lra::get_value(enode* n, rational& r) {
|
|
return m_imp->get_value(n, r);
|
|
}
|
|
bool theory_lra::get_value(enode* n, expr_ref& r) {
|
|
return m_imp->get_value(n, r);
|
|
}
|
|
bool theory_lra::include_func_interp(func_decl* f) {
|
|
return m_imp->include_func_interp(f);
|
|
}
|
|
bool theory_lra::get_lower(enode* n, expr_ref& r) {
|
|
return m_imp->get_lower(n, r);
|
|
}
|
|
bool theory_lra::get_upper(enode* n, expr_ref& r) {
|
|
return m_imp->get_upper(n, r);
|
|
}
|
|
bool theory_lra::get_lower(enode* n, rational& r, bool& is_strict) {
|
|
return m_imp->get_lower(n, r, is_strict);
|
|
}
|
|
bool theory_lra::get_upper(enode* n, rational& r, bool& is_strict) {
|
|
return m_imp->get_upper(n, r, is_strict);
|
|
}
|
|
|
|
void theory_lra::solve_for(vector<solution>& sol) {
|
|
m_imp->solve_for(sol);
|
|
}
|
|
|
|
void theory_lra::display(std::ostream & out) const {
|
|
m_imp->display(out);
|
|
}
|
|
void theory_lra::collect_statistics(::statistics & st) const {
|
|
m_imp->collect_statistics(st);
|
|
}
|
|
theory_lra::inf_eps theory_lra::value(theory_var v) {
|
|
return m_imp->value(v);
|
|
}
|
|
theory_lra::inf_eps theory_lra::maximize(theory_var v, expr_ref& blocker, bool& has_shared) {
|
|
return m_imp->maximize(v, blocker, has_shared);
|
|
}
|
|
theory_var theory_lra::add_objective(app* term) {
|
|
return m_imp->add_objective(term);
|
|
}
|
|
expr_ref theory_lra::mk_ge(generic_model_converter& fm, theory_var v, inf_rational const& val) {
|
|
return m_imp->mk_ge(fm, v, val);
|
|
}
|
|
|
|
void theory_lra::setup() {
|
|
m_imp->setup();
|
|
}
|
|
|
|
void theory_lra::validate_model(proto_model& mdl) {
|
|
m_imp->validate_model(mdl);
|
|
}
|
|
|
|
}
|
|
template class lp::lp_bound_propagator<smt::theory_lra::imp>;
|
|
template void lp::lar_solver::propagate_bounds_for_touched_rows<smt::theory_lra::imp>(lp::lp_bound_propagator<smt::theory_lra::imp>&);
|
|
template void lp::lar_solver::check_missed_propagations<smt::theory_lra::imp>(lp::lp_bound_propagator<smt::theory_lra::imp>&);
|
|
template void lp::lar_solver::explain_implied_bound<smt::theory_lra::imp>(const lp::implied_bound&, lp::lp_bound_propagator<smt::theory_lra::imp>&);
|
|
template unsigned lp::lar_solver::calculate_implied_bounds_for_row<smt::theory_lra::imp>(unsigned, lp::lp_bound_propagator<smt::theory_lra::imp>&);
|