3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-01-19 08:43:18 +00:00
z3/src/util/search_tree.h
Ilana Shapiro 0076e3bf97
Search tree core resolution optimization (#8066)
* Add cube tree optimization about resolving cores recursively up the path, to prune. Also integrate asms into the tree so they're not tracked separately (#7960)

* draft attempt at optimizing cube tree with resolvents. have not tested/ran yet

* adding comments

* fix bug about needing to bubble resolvent upwards to highest ancestor

* fix bug where we need to cover the whole resolvent in the path when bubbling up

* clean up comments

* close entire tree when sibling resolvent is empty

* integrate asms directly into cube tree, remove separate tracking

* try to fix bug about redundant resolutions, merging close and try_resolve_upwards into once function

* separate the logic again to avoid mutual recursion

* Refactor search tree closure and resolution logic

Refactor close_with_core to simplify logic and remove unnecessary parameters. Update sibling resolvent computation and try_resolve_upwards for clarity.

* apply formatting

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* Refactor close_with_core to use current node in lambda

* Fix formatting issues in search_tree.h

* fix build issues

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* Update smt_parallel.cpp

* Change loop variable type in unsat core processing

* Change method to retrieve unsat core from root

---------

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
Co-authored-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2025-12-13 12:06:56 +00:00

332 lines
11 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 2025 Microsoft Corporation
Module Name:
search_tree.h
Abstract:
A binary search tree for managing the search space of a DPLL(T) solver.
It supports splitting on atoms, backtracking on conflicts, and activating nodes.
Nodes can be in one of three states: open, closed, or active.
- Closed nodes are fully explored (both children are closed).
- Active nodes have no children and are currently being explored.
- Open nodes either have children that are open or are leaves.
A node can be split if it is active. After splitting, it becomes open and has two open children.
Backtracking on a conflict closes all nodes below the last node whose atom is in the conflict set.
Activation searches an open node closest to a seed node.
Author:
Ilana Shapiro 2025-9-06
--*/
#include "util/util.h"
#include "util/vector.h"
#pragma once
namespace search_tree {
enum class status { open, closed, active };
template <typename Config> class node {
typedef typename Config::literal literal;
literal m_literal;
node *m_left = nullptr, *m_right = nullptr, *m_parent = nullptr;
status m_status;
vector<literal> m_core;
public:
node(literal const &l, node *parent) : m_literal(l), m_parent(parent), m_status(status::open) {}
~node() {
dealloc(m_left);
dealloc(m_right);
}
status get_status() const {
return m_status;
}
void set_status(status s) {
m_status = s;
}
literal const &get_literal() const {
return m_literal;
}
bool literal_is_null() const {
return Config::is_null(m_literal);
}
void split(literal const &a, literal const &b) {
SASSERT(!Config::literal_is_null(a));
SASSERT(!Config::literal_is_null(b));
if (m_status != status::active)
return;
SASSERT(!m_left);
SASSERT(!m_right);
m_left = alloc(node<Config>, a, this);
m_right = alloc(node<Config>, b, this);
m_status = status::open;
}
node* left() const { return m_left; }
node* right() const { return m_right; }
node* parent() const { return m_parent; }
unsigned depth() const {
unsigned d = 0;
node* p = m_parent;
while (p) {
++d;
p = p->parent();
}
return d;
}
node *find_active_node() {
if (m_status == status::active)
return this;
if (m_status != status::open)
return nullptr;
node *nodes[2] = {m_left, m_right};
for (unsigned i = 0; i < 2; ++i) {
auto res = nodes[i] ? nodes[i]->find_active_node() : nullptr;
if (res)
return res;
}
if (m_left->get_status() == status::closed && m_right->get_status() == status::closed)
m_status = status::closed;
return nullptr;
}
void display(std::ostream &out, unsigned indent) const {
for (unsigned i = 0; i < indent; ++i)
out << " ";
Config::display_literal(out, m_literal);
out << (get_status() == status::open ? " (o)" : get_status() == status::closed ? " (c)" : " (a)");
out << "\n";
if (m_left)
m_left->display(out, indent + 2);
if (m_right)
m_right->display(out, indent + 2);
}
void set_core(vector<literal> const &core) {
m_core = core;
}
vector<literal> const &get_core() const {
return m_core;
}
void clear_core() {
m_core.clear();
}
};
template <typename Config> class tree {
typedef typename Config::literal literal;
scoped_ptr<node<Config>> m_root = nullptr;
literal m_null_literal;
random_gen m_rand;
// return an active node in the subtree rooted at n, or nullptr if there is none
// close nodes that are fully explored (whose children are all closed)
node<Config> *activate_from_root(node<Config> *n) {
if (!n)
return nullptr;
if (n->get_status() != status::open)
return nullptr;
auto left = n->left();
auto right = n->right();
if (!left && !right) {
n->set_status(status::active);
return n;
}
node<Config> *nodes[2] = {left, right};
unsigned index = m_rand(2);
auto child = activate_from_root(nodes[index]);
if (child)
return child;
child = activate_from_root(nodes[1 - index]);
if (child)
return child;
if (left && right && left->get_status() == status::closed && right->get_status() == status::closed)
n->set_status(status::closed);
return nullptr;
}
void close(node<Config> *n) {
if (!n || n->get_status() == status::closed)
return;
n->set_status(status::closed);
close(n->left());
close(n->right());
}
// Invariants:
// Cores labeling nodes are subsets of the literals on the path to the node and the (external) assumption
// literals. If a parent is open, then the one of the children is open.
void close_with_core(node<Config> *n, vector<literal> const &C) {
if (!n || n->get_status() == status::closed)
return;
node<Config> *p = n->parent();
if (p && all_of(C, [n](auto const &l) { return l != n->get_literal(); })) {
close_with_core(p, C);
return;
}
close(n->left());
close(n->right());
n->set_core(C);
n->set_status(status::closed);
if (!p)
return;
auto left = p->left();
auto right = p->right();
if (!left || !right)
return;
// only attempt when both children are closed and each has a core
if (left->get_status() != status::closed || right->get_status() != status::closed)
return;
auto resolvent = compute_sibling_resolvent(left, right);
close_with_core(p, resolvent);
}
// Given complementary sibling nodes for literals x and ¬x, sibling resolvent = (core_left core_right) \ {x,
// ¬x}
vector<literal> compute_sibling_resolvent(node<Config> *left, node<Config> *right) {
vector<literal> res;
auto &core_l = left->get_core();
auto &core_r = right->get_core();
if (core_l.empty() || core_r.empty() || left->parent() != right->parent())
return res;
auto lit_l = left->get_literal();
auto lit_r = right->get_literal();
for (auto const &lit : core_l)
if (lit != lit_l && !res.contains(lit))
res.push_back(lit);
for (auto const &lit : core_r)
if (lit != lit_r && !res.contains(lit))
res.push_back(lit);
return res;
}
public:
tree(literal const &null_literal) : m_null_literal(null_literal) {
reset();
}
void set_seed(unsigned seed) {
m_rand.set_seed(seed);
}
void reset() {
m_root = alloc(node<Config>, m_null_literal, nullptr);
m_root->set_status(status::active);
}
// Split current node if it is active.
// After the call, n is open and has two children.
void split(node<Config> *n, literal const &a, literal const &b) {
n->split(a, b);
}
// conflict is given by a set of literals.
// they are subsets of the literals on the path from root to n AND the external assumption literals
void backtrack(node<Config> *n, vector<literal> const &conflict) {
if (conflict.empty()) {
close_with_core(m_root.get(), conflict);
return;
}
SASSERT(n != m_root.get());
// all literals in conflict are on the path from root to n
// remove assumptions from conflict to ensure this.
DEBUG_CODE(auto on_path =
[&](literal const &a) {
node<Config> *p = n;
while (p) {
if (p->get_literal() == a)
return true;
p = p->parent();
}
return false;
};
SASSERT(all_of(conflict, [&](auto const &a) { return on_path(a); })););
while (n) {
if (any_of(conflict, [&](auto const &a) { return a == n->get_literal(); })) {
// close the subtree under n (preserves core attached to n), and attempt to resolve upwards
close_with_core(n, conflict);
return;
}
n = n->parent();
}
UNREACHABLE();
}
// return an active node in the tree, or nullptr if there is none
// first check if there is a node to activate under n,
// if not, go up the tree and try to activate a sibling subtree
node<Config> *activate_node(node<Config> *n) {
if (!n) {
if (m_root->get_status() == status::active)
return m_root.get();
n = m_root.get();
}
auto res = activate_from_root(n);
if (res)
return res;
auto p = n->parent();
while (p) {
if (p->left() && p->left()->get_status() == status::closed && p->right() &&
p->right()->get_status() == status::closed) {
p->set_status(status::closed);
n = p;
p = n->parent();
continue;
}
if (n == p->left()) {
res = activate_from_root(p->right());
if (res)
return res;
}
else {
VERIFY(n == p->right());
res = activate_from_root(p->left());
if (res)
return res;
}
n = p;
p = n->parent();
}
return nullptr;
}
node<Config> *find_active_node() {
return m_root->find_active_node();
}
vector<literal> const &get_core_from_root() const {
return m_root->get_core();
}
bool is_closed() const {
return m_root->get_status() == status::closed;
}
std::ostream &display(std::ostream &out) const {
m_root->display(out, 0);
return out;
}
};
} // namespace search_tree