3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-27 19:05:51 +00:00
z3/src/util/lp/static_matrix.h
Nikolaj Bjorner 911b24784a merge LRA
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2017-05-09 10:46:11 -07:00

364 lines
11 KiB
C++

/*
Copyright (c) 2017 Microsoft Corporation
Author: Lev Nachmanson
*/
#pragma once
#include "util/vector.h"
#include <set>
#include <unordered_map>
#include <utility>
#include "util/lp/sparse_vector.h"
#include "util/lp/indexed_vector.h"
#include "util/lp/permutation_matrix.h"
#include "util/lp/linear_combination_iterator.h"
#include <stack>
namespace lean {
struct column_cell {
unsigned m_i; // points to the row
unsigned m_offset; // the offset of the element in the matrix row
column_cell(unsigned i, unsigned offset) : m_i(i), m_offset(offset) {
}
};
template <typename T>
struct row_cell {
unsigned m_j; // points to the column
unsigned m_offset; // offset in column
row_cell(unsigned j, unsigned offset, T const & val) : m_j(j), m_offset(offset), m_value(val) {
}
const T & get_val() const { return m_value;}
T & get_val() { return m_value;}
void set_val(const T& v) { m_value = v; }
T m_value;
};
// each assignment for this matrix should be issued only once!!!
template <typename T, typename X>
class static_matrix
#ifdef LEAN_DEBUG
: public matrix<T, X>
#endif
{
struct dim {
unsigned m_m;
unsigned m_n;
dim(unsigned m, unsigned n) :m_m(m), m_n(n) {}
};
std::stack<dim> m_stack;
vector<unsigned> m_became_zeros; // the row indices that became zeroes during the pivoting
public:
typedef vector<row_cell<T>> row_strip;
typedef vector<column_cell> column_strip;
vector<int> m_vector_of_row_offsets;
indexed_vector<T> m_work_vector;
vector<row_strip> m_rows;
vector<column_strip> m_columns;
// starting inner classes
class ref {
static_matrix & m_matrix;
unsigned m_row;
unsigned m_col;
public:
ref(static_matrix & m, unsigned row, unsigned col):m_matrix(m), m_row(row), m_col(col) {}
ref & operator=(T const & v) { m_matrix.set( m_row, m_col, v); return *this; }
ref & operator=(ref const & v) { m_matrix.set(m_row, m_col, v.m_matrix.get(v.m_row, v.m_col)); return *this; }
operator T () const { return m_matrix.get_elem(m_row, m_col); }
};
class ref_row {
static_matrix & m_matrix;
unsigned m_row;
public:
ref_row(static_matrix & m, unsigned row):m_matrix(m), m_row(row) {}
ref operator[](unsigned col) const { return ref(m_matrix, m_row, col); }
};
public:
const T & get_val(const column_cell & c) const {
return m_rows[c.m_i][c.m_offset].get_val();
}
void init_row_columns(unsigned m, unsigned n);
// constructor with no parameters
static_matrix() {}
// constructor
static_matrix(unsigned m, unsigned n): m_vector_of_row_offsets(n, -1) {
init_row_columns(m, n);
}
// constructor that copies columns of the basis from A
static_matrix(static_matrix const &A, unsigned * basis);
void clear();
void init_vector_of_row_offsets();
void init_empty_matrix(unsigned m, unsigned n);
unsigned row_count() const { return static_cast<unsigned>(m_rows.size()); }
unsigned column_count() const { return static_cast<unsigned>(m_columns.size()); }
unsigned lowest_row_in_column(unsigned col);
void add_columns_at_the_end(unsigned delta);
void add_new_element(unsigned i, unsigned j, const T & v);
void add_row() {m_rows.push_back(row_strip());}
void add_column() {
m_columns.push_back(column_strip());
m_vector_of_row_offsets.push_back(-1);
}
void forget_last_columns(unsigned how_many_to_forget);
void remove_last_column(unsigned j);
void remove_element(vector<row_cell<T>> & row, row_cell<T> & elem_to_remove);
void multiply_column(unsigned column, T const & alpha) {
for (auto & t : m_columns[column]) {
auto & r = m_rows[t.m_i][t.m_offset];
r.m_value *= alpha;
}
}
#ifdef LEAN_DEBUG
void regen_domain();
#endif
// offs - offset in columns
row_cell<T> make_row_cell(unsigned row, unsigned offs, T const & val) {
return row_cell<T>(row, offs, val);
}
column_cell make_column_cell(unsigned column, unsigned offset) {
return column_cell(column, offset);
}
void set(unsigned row, unsigned col, T const & val);
ref operator()(unsigned row, unsigned col) { return ref(*this, row, col); }
std::set<std::pair<unsigned, unsigned>> get_domain();
void copy_column_to_indexed_vector(unsigned j, indexed_vector<T> & v) const;
T get_max_abs_in_row(unsigned row) const;
void add_column_to_vector (const T & a, unsigned j, T * v) const {
for (const auto & it : m_columns[j]) {
v[it.m_i] += a * get_val(it);
}
}
T get_min_abs_in_row(unsigned row) const;
T get_max_abs_in_column(unsigned column) const;
T get_min_abs_in_column(unsigned column) const;
#ifdef LEAN_DEBUG
void check_consistency();
#endif
void cross_out_row(unsigned k);
//
void fix_row_indices_in_each_column_for_crossed_row(unsigned k);
void cross_out_row_from_columns(unsigned k, row_strip & row);
void cross_out_row_from_column(unsigned col, unsigned k);
T get_elem(unsigned i, unsigned j) const;
unsigned number_of_non_zeroes_in_column(unsigned j) const { return m_columns[j].size(); }
unsigned number_of_non_zeroes_in_row(unsigned i) const { return m_rows[i].size(); }
unsigned number_of_non_zeroes() const {
unsigned ret = 0;
for (unsigned i = 0; i < row_count(); i++)
ret += number_of_non_zeroes_in_row(i);
return ret;
}
void scan_row_to_work_vector(unsigned i);
void clean_row_work_vector(unsigned i);
#ifdef LEAN_DEBUG
unsigned get_number_of_rows() const { return row_count(); }
unsigned get_number_of_columns() const { return column_count(); }
virtual void set_number_of_rows(unsigned /*m*/) { }
virtual void set_number_of_columns(unsigned /*n*/) { }
#endif
T get_max_val_in_row(unsigned /* i */) const { lean_unreachable(); }
T get_balance() const;
T get_row_balance(unsigned row) const;
bool is_correct() const;
void push() {
dim d(row_count(), column_count());
m_stack.push(d);
}
void pop_row_columns(const vector<row_cell<T>> & row) {
for (auto & c : row) {
unsigned j = c.m_j;
auto & col = m_columns[j];
lean_assert(col[col.size() - 1].m_i == m_rows.size() -1 ); // todo : start here!!!!
col.pop_back();
}
}
void pop(unsigned k) {
#ifdef LEAN_DEBUG
std::set<std::pair<unsigned, unsigned>> pairs_to_remove_from_domain;
#endif
while (k-- > 0) {
if (m_stack.empty()) break;
unsigned m = m_stack.top().m_m;
while (m < row_count()) {
unsigned i = m_rows.size() -1 ;
auto & row = m_rows[i];
pop_row_columns(row);
m_rows.pop_back(); // delete the last row
}
unsigned n = m_stack.top().m_n;
while (n < column_count())
m_columns.pop_back(); // delete the last column
m_stack.pop();
}
lean_assert(is_correct());
}
void multiply_row(unsigned row, T const & alpha) {
for (auto & t : m_rows[row]) {
t.m_value *= alpha;
}
}
void divide_row(unsigned row, T const & alpha) {
for (auto & t : m_rows[row]) {
t.m_value /= alpha;
}
}
T dot_product_with_column(const vector<T> & y, unsigned j) const {
lean_assert(j < column_count());
T ret = numeric_traits<T>::zero();
for (auto & it : m_columns[j]) {
ret += y[it.m_i] * get_val(it); // get_value_of_column_cell(it);
}
return ret;
}
// pivot row i to row ii
bool pivot_row_to_row_given_cell(unsigned i, column_cell& c, unsigned);
void scan_row_ii_to_offset_vector(unsigned ii);
void transpose_rows(unsigned i, unsigned ii) {
auto t = m_rows[i];
m_rows[i] = m_rows[ii];
m_rows[ii] = t;
// now fix the columns
for (auto & rc : m_rows[i]) {
column_cell & cc = m_columns[rc.m_j][rc.m_offset];
lean_assert(cc.m_i == ii);
cc.m_i = i;
}
for (auto & rc : m_rows[ii]) {
column_cell & cc = m_columns[rc.m_j][rc.m_offset];
lean_assert(cc.m_i == i);
cc.m_i = ii;
}
}
void fill_last_row_with_pivoting(linear_combination_iterator<T> & it, const vector<int> & basis_heading) {
lean_assert(numeric_traits<T>::precise());
lean_assert(row_count() > 0);
m_work_vector.resize(column_count());
T a;
unsigned j;
while (it.next(a, j)) {
m_work_vector.set_value(-a, j); // we use the form -it + 1 = 0
// but take care of the basis 1 later
}
it.reset();
// not iterate with pivoting
while (it.next(j)) {
int row_index = basis_heading[j];
if (row_index < 0)
continue;
T & alpha = m_work_vector[j]; // the pivot alpha
if (is_zero(alpha))
continue;
for (const auto & c : m_rows[row_index]) {
if (c.m_j == j) {
continue;
}
T & wv = m_work_vector.m_data[c.m_j];
bool was_zero = is_zero(wv);
wv -= alpha * c.m_value;
if (was_zero)
m_work_vector.m_index.push_back(c.m_j);
else {
if (is_zero(wv)) {
m_work_vector.erase_from_index(c.m_j);
}
}
}
alpha = zero_of_type<T>();
m_work_vector.erase_from_index(j);
}
lean_assert(m_work_vector.is_OK());
unsigned last_row = row_count() - 1;
for (unsigned j : m_work_vector.m_index) {
set (last_row, j, m_work_vector.m_data[j]);
}
lean_assert(column_count() > 0);
set(last_row, column_count() - 1, one_of_type<T>());
}
void copy_column_to_vector (unsigned j, vector<T> & v) const {
v.resize(row_count(), numeric_traits<T>::zero());
for (auto & it : m_columns[j]) {
const T& val = get_val(it);
if (!is_zero(val))
v[it.m_i] = val;
}
}
template <typename L>
L dot_product_with_row(unsigned row, const vector<L> & w) const {
L ret = zero_of_type<L>();
lean_assert(row < m_rows.size());
for (auto & it : m_rows[row]) {
ret += w[it.m_j] * it.get_val();
}
return ret;
}
};
}