3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-07-31 08:23:17 +00:00
z3/src/smt/smt_arith_value.cpp
LeeYoungJoon 0a93ff515d
Centralize and document TRACE tags using X-macros (#7657)
* Introduce X-macro-based trace tag definition
- Created trace_tags.def to centralize TRACE tag definitions
- Each tag includes a symbolic name and description
- Set up enum class TraceTag for type-safe usage in TRACE macros

* Add script to generate Markdown documentation from trace_tags.def
- Python script parses trace_tags.def and outputs trace_tags.md

* Refactor TRACE_NEW to prepend TraceTag and pass enum to is_trace_enabled

* trace: improve trace tag handling system with hierarchical tagging

- Introduce hierarchical tag-class structure: enabling a tag class activates all child tags
- Unify TRACE, STRACE, SCTRACE, and CTRACE under enum TraceTag
- Implement initial version of trace_tag.def using X(tag, tag_class, description)
  (class names and descriptions to be refined in a future update)

* trace: replace all string-based TRACE tags with enum TraceTag
- Migrated all TRACE, STRACE, SCTRACE, and CTRACE macros to use enum TraceTag values instead of raw string literals

* trace : add cstring header

* trace : Add Markdown documentation generation from trace_tags.def via mk_api_doc.py

* trace : rename macro parameter 'class' to 'tag_class' and remove Unicode comment in trace_tags.h.

* trace : Add TODO comment for future implementation of tag_class activation

* trace : Disable code related to tag_class until implementation is ready (#7663).
2025-05-28 14:31:25 +01:00

166 lines
6 KiB
C++

/*++
Copyright (c) 2018 Microsoft Corporation
Module Name:
smt_arith_value.cpp
Abstract:
Utility to extract arithmetic values from context.
Author:
Nikolaj Bjorner (nbjorner) 2018-12-08.
Revision History:
--*/
#include "ast/ast_pp.h"
#include "smt/smt_arith_value.h"
namespace smt {
arith_value::arith_value(ast_manager& m):
m_ctx(nullptr), m(m), a(m), b(m) {}
void arith_value::init(context* ctx) {
m_ctx = ctx;
family_id afid = a.get_family_id();
family_id bfid = b.get_family_id();
theory* th = m_ctx->get_theory(afid);
m_tha = dynamic_cast<theory_mi_arith*>(th);
m_thi = dynamic_cast<theory_i_arith*>(th);
m_thr = dynamic_cast<theory_lra*>(th);
m_thb = dynamic_cast<theory_bv*>(m_ctx->get_theory(bfid));
}
bool arith_value::get_lo_equiv(expr* e, rational& lo, bool& is_strict) {
if (!m_ctx->e_internalized(e)) return false;
is_strict = false;
enode* next = m_ctx->get_enode(e), *n = next;
bool found = false;
bool is_strict1;
rational lo1;
do {
if ((m_tha && m_tha->get_lower(next, lo1, is_strict1)) ||
(m_thi && m_thi->get_lower(next, lo1, is_strict1)) ||
(m_thr && m_thr->get_lower(next, lo1, is_strict1))) {
if (!found || lo1 > lo || (lo == lo1 && is_strict1)) lo = lo1, is_strict = is_strict1;
found = true;
}
next = next->get_next();
}
while (n != next);
CTRACE(arith_value, !found, tout << "value not found for " << mk_pp(e, m_ctx->get_manager()) << "\n";);
return found;
}
bool arith_value::get_up_equiv(expr* e, rational& up, bool& is_strict) {
if (!m_ctx->e_internalized(e)) return false;
is_strict = false;
enode* next = m_ctx->get_enode(e), *n = next;
bool found = false, is_strict1;
rational up1;
do {
if ((m_tha && m_tha->get_upper(next, up1, is_strict1)) ||
(m_thi && m_thi->get_upper(next, up1, is_strict1)) ||
(m_thr && m_thr->get_upper(next, up1, is_strict1))) {
if (!found || up1 < up || (up1 == up && is_strict1)) up = up1, is_strict = is_strict1;
found = true;
}
next = next->get_next();
}
while (n != next);
CTRACE(arith_value, !found, tout << "value not found for " << mk_pp(e, m_ctx->get_manager()) << "\n";);
return found;
}
bool arith_value::get_up(expr* e, rational& up, bool& is_strict) const {
if (!m_ctx->e_internalized(e)) return false;
is_strict = false;
enode* n = m_ctx->get_enode(e);
if (b.is_bv(e) && m_thb) return m_thb->get_upper(n, up);
if (m_tha) return m_tha->get_upper(n, up, is_strict);
if (m_thi) return m_thi->get_upper(n, up, is_strict);
if (m_thr) return m_thr->get_upper(n, up, is_strict);
TRACE(arith_value, tout << "value not found for " << mk_pp(e, m_ctx->get_manager()) << "\n";);
return false;
}
bool arith_value::get_lo(expr* e, rational& up, bool& is_strict) const {
if (!m_ctx->e_internalized(e)) return false;
is_strict = false;
enode* n = m_ctx->get_enode(e);
if (b.is_bv(e) && m_thb) return m_thb->get_lower(n, up);
if (m_tha) return m_tha->get_lower(n, up, is_strict);
if (m_thi) return m_thi->get_lower(n, up, is_strict);
if (m_thr) return m_thr->get_lower(n, up, is_strict);
TRACE(arith_value, tout << "value not found for " << mk_pp(e, m_ctx->get_manager()) << "\n";);
return false;
}
bool arith_value::get_value(expr* e, rational& val) const {
if (!m_ctx->e_internalized(e)) return false;
expr_ref _val(m);
enode* n = m_ctx->get_enode(e);
if (m_thb && b.is_bv(e)) return m_thb->get_value(n, _val);
if (m_tha && m_tha->get_value(n, _val) && a.is_numeral(_val, val)) return true;
if (m_thi && m_thi->get_value(n, _val) && a.is_numeral(_val, val)) return true;
if (m_thr && m_thr->get_value(n, val)) return true;
TRACE(arith_value, tout << "value not found for " << mk_pp(e, m_ctx->get_manager()) << "\n";);
return false;
}
bool arith_value::get_value_equiv(expr* e, rational& val) const {
if (!m_ctx->e_internalized(e)) return false;
expr_ref _val(m);
enode* next = m_ctx->get_enode(e), *n = next;
do {
e = next->get_expr();
if (m_tha && m_tha->get_value(next, _val) && a.is_numeral(_val, val)) return true;
if (m_thi && m_thi->get_value(next, _val) && a.is_numeral(_val, val)) return true;
if (m_thr && m_thr->get_value(next, val)) return true;
next = next->get_next();
}
while (next != n);
TRACE(arith_value, tout << "value not found for " << mk_pp(e, m_ctx->get_manager()) << "\n";);
return false;
}
expr_ref arith_value::get_lo(expr* e) const {
rational lo;
bool s = false;
if ((a.is_int_real(e) || b.is_bv(e)) && get_lo(e, lo, s) && !s) {
return expr_ref(a.mk_numeral(lo, e->get_sort()), m);
}
return expr_ref(e, m);
}
expr_ref arith_value::get_up(expr* e) const {
rational up;
bool s = false;
if ((a.is_int_real(e) || b.is_bv(e)) && get_up(e, up, s) && !s) {
return expr_ref(a.mk_numeral(up, e->get_sort()), m);
}
return expr_ref(e, m);
}
expr_ref arith_value::get_fixed(expr* e) const {
rational lo, up;
bool s = false;
if (a.is_int_real(e) && get_lo(e, lo, s) && !s && get_up(e, up, s) && !s && lo == up) {
return expr_ref(a.mk_numeral(lo, e->get_sort()), m);
}
return expr_ref(e, m);
}
final_check_status arith_value::final_check() {
family_id afid = a.get_family_id();
theory * th = m_ctx->get_theory(afid);
return th->final_check_eh();
}
};