3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-22 11:07:51 +00:00
z3/src/sat/smt/polysat/interval.h
Nikolaj Bjorner 561d3e8eb9 rename polysat files to exclude namespace
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2023-12-16 16:21:01 -08:00

224 lines
8.1 KiB
C++

/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
polysat intervals
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
--*/
#pragma once
#include "sat/smt/polysat/types.h"
#include <optional>
namespace polysat {
struct pdd_bounds {
pdd lo; ///< lower bound, inclusive
pdd hi; ///< upper bound, exclusive
};
/**
* An interval is either [lo; hi[ (excl. upper bound) or the full domain Z_{2^w}.
* If lo > hi, the interval wraps around, i.e., represents the union of [lo; 2^w[ and [0; hi[.
* Membership test t \in [lo; hi[ is equivalent to t - lo < hi - lo.
*/
class interval {
std::optional<pdd_bounds> m_bounds = std::nullopt;
interval() = default;
interval(pdd const& lo, pdd const& hi): m_bounds({lo, hi}) {}
public:
static interval empty(dd::pdd_manager& m) { return proper(m.zero(), m.zero()); }
static interval full() { return {}; }
static interval proper(pdd const& lo, pdd const& hi) { return {lo, hi}; }
interval(interval const&) = default;
interval(interval&&) = default;
interval& operator=(interval const& other) {
m_bounds = std::nullopt; // clear pdds first to allow changing pdd_manager (probably should change the PDD assignment operator; but for now I want to be able to detect manager confusions)
m_bounds = other.m_bounds;
return *this;
}
interval& operator=(interval&& other) {
m_bounds = std::nullopt; // clear pdds first to allow changing pdd_manager
m_bounds = std::move(other.m_bounds);
return *this;
}
~interval() = default;
bool is_full() const { return !m_bounds; }
bool is_proper() const { return !!m_bounds; }
bool is_always_empty() const { return is_proper() && lo() == hi(); }
pdd const& lo() const { SASSERT(is_proper()); return m_bounds->lo; }
pdd const& hi() const { SASSERT(is_proper()); return m_bounds->hi; }
};
inline std::ostream& operator<<(std::ostream& os, interval const& i) {
if (i.is_full())
return os << "full";
else
return os << "[" << i.lo() << " ; " << i.hi() << "[";
}
// distance from a to b, wrapping around at mod_value.
// basically mod(b - a, mod_value), but distance(0, mod_value, mod_value) = mod_value.
inline rational distance(rational const& a, rational const& b, rational const& mod_value) {
SASSERT(mod_value.is_power_of_two());
SASSERT(0 <= a && a < mod_value);
SASSERT(0 <= b && b <= mod_value);
rational x = b - a;
if (x.is_neg())
x += mod_value;
return x;
}
class r_interval {
rational m_lo;
rational m_hi;
r_interval(rational lo, rational hi)
: m_lo(std::move(lo)), m_hi(std::move(hi))
{}
public:
static r_interval empty() {
return {rational::zero(), rational::zero()};
}
static r_interval full() {
return {rational(-1), rational::zero()};
}
static r_interval proper(rational lo, rational hi) {
SASSERT(0 <= lo);
SASSERT(0 <= hi);
return {std::move(lo), std::move(hi)};
}
bool is_full() const { return m_lo.is_neg(); }
bool is_proper() const { return !is_full(); }
bool is_empty() const { return is_proper() && lo() == hi(); }
rational const& lo() const { SASSERT(is_proper()); return m_lo; }
rational const& hi() const { SASSERT(is_proper()); return m_hi; }
// this one also supports representing full intervals as [lo;mod_value[
static rational len(rational const& lo, rational const& hi, rational const& mod_value) {
SASSERT(mod_value.is_power_of_two());
SASSERT(0 <= lo && lo < mod_value);
SASSERT(0 <= hi && hi <= mod_value);
SASSERT(hi != mod_value || lo == 0); // hi == mod_value only allowed when lo == 0
rational len = hi - lo;
if (len.is_neg())
len += mod_value;
return len;
}
rational len(rational const& mod_value) const {
SASSERT(is_proper());
return len(lo(), hi(), mod_value);
}
// deals only with proper intervals
// but works with full intervals represented as [0;mod_value[ -- maybe we should just change representation of full intervals to this always
static bool contains(rational const& lo, rational const& hi, rational const& val) {
if (lo <= hi)
return lo <= val && val < hi;
else
return val < hi || val >= lo;
}
bool contains(rational const& val) const {
if (is_full())
return true;
else
return contains(lo(), hi(), val);
}
};
class eval_interval {
interval m_symbolic;
rational m_concrete_lo;
rational m_concrete_hi;
eval_interval(interval&& i, rational const& lo_val, rational const& hi_val):
m_symbolic(std::move(i)), m_concrete_lo(lo_val), m_concrete_hi(hi_val) {}
public:
static eval_interval empty(dd::pdd_manager& m) {
return {interval::empty(m), rational::zero(), rational::zero()};
}
static eval_interval full() {
return {interval::full(), rational::zero(), rational::zero()};
}
static eval_interval proper(pdd const& lo, rational const& lo_val, pdd const& hi, rational const& hi_val) {
SASSERT(0 <= lo_val && lo_val <= lo.manager().max_value());
SASSERT(0 <= hi_val && hi_val <= hi.manager().max_value());
return {interval::proper(lo, hi), lo_val, hi_val};
}
bool is_full() const { return m_symbolic.is_full(); }
bool is_proper() const { return m_symbolic.is_proper(); }
bool is_always_empty() const { return m_symbolic.is_always_empty(); }
bool is_currently_empty() const { return is_proper() && lo_val() == hi_val(); }
interval const& symbolic() const { return m_symbolic; }
pdd const& lo() const { return m_symbolic.lo(); }
pdd const& hi() const { return m_symbolic.hi(); }
rational const& lo_val() const { SASSERT(is_proper()); return m_concrete_lo; }
rational const& hi_val() const { SASSERT(is_proper()); return m_concrete_hi; }
rational current_len() const {
SASSERT(is_proper());
return mod(hi_val() - lo_val(), lo().manager().two_to_N());
}
bool currently_contains(rational const& val) const {
if (is_full())
return true;
else if (lo_val() <= hi_val())
return lo_val() <= val && val < hi_val();
else
return val < hi_val() || val >= lo_val();
}
bool currently_contains(eval_interval const& other) const {
if (is_full())
return true;
if (other.is_full())
return false;
// lo <= lo' <= hi' <= hi'
if (lo_val() <= other.lo_val() && other.lo_val() <= other.hi_val() && other.hi_val() <= hi_val())
return true;
if (lo_val() <= hi_val())
return false;
// hi < lo <= lo' <= hi'
if (lo_val() <= other.lo_val() && other.lo_val() <= other.hi_val())
return true;
// lo' <= hi' <= hi < lo
if (other.lo_val() <= other.hi_val() && other.hi_val() <= hi_val())
return true;
// hi' <= hi < lo <= lo'
if (other.hi_val() <= hi_val() && lo_val() <= other.lo_val())
return true;
return false;
}
}; // class eval_interval
inline std::ostream& operator<<(std::ostream& os, eval_interval const& i) {
if (i.is_full())
return os << "full";
else {
auto& m = i.hi().manager();
return os << i.symbolic() << " := [" << m.normalize(i.lo_val()) << ";" << m.normalize(i.hi_val()) << "[";
}
}
}