3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 03:07:07 +00:00
z3/src/interp/iz3mgr.h

719 lines
16 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
iz3mgr.h
Abstract:
A wrapper around an ast manager, providing convenience methods.
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#ifndef IZ3MGR_H
#define IZ3MGR_H
#include <assert.h>
#include "iz3hash.h"
#include"well_sorted.h"
#include"arith_decl_plugin.h"
#include"bv_decl_plugin.h"
#include"datatype_decl_plugin.h"
#include"array_decl_plugin.h"
#include"ast_translation.h"
#include"ast_pp.h"
#include"ast_ll_pp.h"
#include"ast_smt_pp.h"
#include"ast_smt2_pp.h"
#include"th_rewriter.h"
#include"var_subst.h"
#include"expr_substitution.h"
#include"pp.h"
#include"scoped_ctrl_c.h"
#include"cancel_eh.h"
#include"scoped_timer.h"
//# include"pp_params.hpp"
/* A wrapper around an ast manager, providing convenience methods. */
/** Shorthands for some built-in operators. */
// rename this to keep it accessible, as we use ast for something else
typedef ast raw_ast;
/** Wrapper around an ast pointer */
class ast_i {
protected:
raw_ast *_ast;
public:
raw_ast * const &raw() const {return _ast;}
ast_i(raw_ast *a){_ast = a;}
ast_i(){_ast = 0;}
bool eq(const ast_i &other) const {
return _ast == other._ast;
}
bool lt(const ast_i &other) const {
return _ast->get_id() < other._ast->get_id();
}
friend bool operator==(const ast_i &x, const ast_i&y){
return x.eq(y);
}
friend bool operator!=(const ast_i &x, const ast_i&y){
return !x.eq(y);
}
friend bool operator<(const ast_i &x, const ast_i&y){
return x.lt(y);
}
size_t hash() const {return _ast->get_id();}
bool null() const {return !_ast;}
};
/** Reference counting verison of above */
class ast_r : public ast_i {
ast_manager *_m;
public:
ast_r(ast_manager *m, raw_ast *a) : ast_i(a) {
_m = m;
m->inc_ref(a);
}
ast_r() {_m = 0;}
ast_r(const ast_r &other) : ast_i(other) {
_m = other._m;
_m->inc_ref(_ast);
}
ast_r &operator=(const ast_r &other) {
if(_ast)
_m->dec_ref(_ast);
_ast = other._ast;
_m = other._m;
_m->inc_ref(_ast);
return *this;
}
~ast_r(){
if(_ast)
_m->dec_ref(_ast);
}
ast_manager *mgr() const {return _m;}
};
// to make ast_r hashable
namespace hash_space {
template <>
class hash<ast_r> {
public:
size_t operator()(const ast_r &s) const {
return s.raw()->get_id();
}
};
}
// to make ast_r hashable in windows
#ifdef WIN32
template <> inline
size_t stdext::hash_value<ast_r >(const ast_r& s)
{
return s.raw()->get_id();
}
#endif
// to make ast_r usable in ordered collections
namespace std {
template <>
class less<ast_r> {
public:
bool operator()(const ast_r &s, const ast_r &t) const {
// return s.raw() < t.raw();
return s.raw()->get_id() < t.raw()->get_id();
}
};
}
/** Wrapper around an AST manager, providing convenience methods. */
class iz3mgr {
public:
typedef ast_r ast;
// typedef decl_kind opr;
typedef func_decl *symb;
typedef sort *type;
typedef ast_r z3pf;
typedef decl_kind pfrule;
enum opr {
True,
False,
And,
Or,
Not,
Iff,
Ite,
Equal,
Implies,
Distinct,
Xor,
Oeq,
Interp,
Leq,
Geq,
Lt,
Gt,
Plus,
Sub,
Uminus,
Times,
Div,
Idiv,
Rem,
Mod,
Power,
ToReal,
ToInt,
IsInt,
Select,
Store,
ConstArray,
ArrayDefault,
ArrayMap,
SetUnion,
SetIntersect,
SetDifference,
SetComplement,
SetSubSet,
AsArray,
Numeral,
Forall,
Exists,
Variable,
Uninterpreted,
Other
};
opr op(const ast &t);
unsigned ast_id(const ast &x)
{
return to_expr(x.raw())->get_id();
}
/** Overloads for constructing ast. */
ast make_var(const std::string &name, type ty);
ast make(opr op, const std::vector<ast> &args);
ast make(opr op);
ast make(opr op, const ast &arg0);
ast make(opr op, const ast &arg0, const ast &arg1);
ast make(opr op, const ast &arg0, const ast &arg1, const ast &arg2);
ast make(symb sym, const std::vector<ast> &args);
ast make(symb sym);
ast make(symb sym, const ast &arg0);
ast make(symb sym, const ast &arg0, const ast &arg1);
ast make(symb sym, const ast &arg0, const ast &arg1, const ast &arg2);
ast make_quant(opr op, const std::vector<ast> &bvs, ast &body);
ast clone(const ast &t, const std::vector<ast> &args);
ast_manager &m() {return m_manager;}
ast cook(raw_ast *a) {return ast(&m_manager,a);}
std::vector<ast> cook(ptr_vector<raw_ast> v) {
std::vector<ast> _v(v.size());
for(unsigned i = 0; i < v.size(); i++)
_v[i] = cook(v[i]);
return _v;
}
raw_ast *uncook(const ast &a) {
m_manager.inc_ref(a.raw());
return a.raw();
}
/** Methods for destructing ast. */
int num_args(ast t){
ast_kind dk = t.raw()->get_kind();
switch(dk){
case AST_APP:
return to_app(t.raw())->get_num_args();
case AST_QUANTIFIER:
return 1;
case AST_VAR:
return 0;
default:;
}
assert(0);
}
ast arg(const ast &t, int i){
ast_kind dk = t.raw()->get_kind();
switch(dk){
case AST_APP:
return cook(to_app(t.raw())->get_arg(i));
case AST_QUANTIFIER:
return cook(to_quantifier(t.raw())->get_expr());
default:;
}
assert(0);
return ast();
}
void get_args(const ast &t, std::vector<ast> &res){
res.resize(num_args(t));
for(unsigned i = 0; i < res.size(); i++)
res[i] = arg(t,i);
}
symb sym(ast t){
return to_app(t.raw())->get_decl();
}
std::string string_of_symbol(symb s){
symbol _s = s->get_name();
if (_s.is_numerical()) {
std::ostringstream buffer;
buffer << _s.get_num();
return buffer.str();
}
else {
return _s.bare_str();
}
}
type get_type(ast t){
return m().get_sort(to_expr(t.raw()));
}
std::string string_of_numeral(const ast& t){
rational r;
expr* e = to_expr(t.raw());
assert(e);
if (m_arith_util.is_numeral(e, r))
return r.to_string();
assert(0);
return "NaN";
}
bool is_numeral(const ast& t, rational &r){
expr* e = to_expr(t.raw());
assert(e);
return m_arith_util.is_numeral(e, r);
}
rational get_coeff(const ast& t){
rational res;
if(op(t) == Times && is_numeral(arg(t,0),res))
return res;
return rational(1);
}
ast get_linear_var(const ast& t){
rational res;
if(op(t) == Times && is_numeral(arg(t,0),res))
return arg(t,1);
return t;
}
int get_quantifier_num_bound(const ast &t) {
return to_quantifier(t.raw())->get_num_decls();
}
std::string get_quantifier_bound_name(const ast &t, unsigned i) {
return to_quantifier(t.raw())->get_decl_names()[i].bare_str();
}
type get_quantifier_bound_type(const ast &t, unsigned i) {
return to_quantifier(t.raw())->get_decl_sort(i);
}
ast get_quantifier_body(const ast &t) {
return cook(to_quantifier(t.raw())->get_expr());
}
unsigned get_variable_index_value(const ast &t) {
var* va = to_var(t.raw());
return va->get_idx();
}
bool is_bool_type(type t){
family_id fid = to_sort(t)->get_family_id();
decl_kind k = to_sort(t)->get_decl_kind();
return fid == m().get_basic_family_id() && k == BOOL_SORT;
}
bool is_array_type(type t){
family_id fid = to_sort(t)->get_family_id();
decl_kind k = to_sort(t)->get_decl_kind();
return fid == m_array_fid && k == ARRAY_SORT;
}
type get_range_type(symb s){
return to_func_decl(s)->get_range();
}
int get_num_parameters(const symb &s){
return to_func_decl(s)->get_num_parameters();
}
ast get_ast_parameter(const symb &s, int idx){
return cook(to_func_decl(s)->get_parameters()[idx].get_ast());
}
enum lemma_theory {ArithTheory,ArrayTheory,UnknownTheory};
lemma_theory get_theory_lemma_theory(const ast &proof){
symb s = sym(proof);
::symbol p0;
bool ok = s->get_parameter(0).is_symbol(p0);
if(!ok) return UnknownTheory;
std::string foo(p0.bare_str());
if(foo == "arith")
return ArithTheory;
if(foo == "array")
return ArrayTheory;
return UnknownTheory;
}
enum lemma_kind {FarkasKind,Leq2EqKind,Eq2LeqKind,GCDTestKind,AssignBoundsKind,EqPropagateKind,UnknownKind};
lemma_kind get_theory_lemma_kind(const ast &proof){
symb s = sym(proof);
::symbol p0;
bool ok = s->get_parameter(1).is_symbol(p0);
if(!ok) return UnknownKind;
std::string foo(p0.bare_str());
if(foo == "farkas")
return FarkasKind;
if(foo == "triangle-eq")
return is_not(arg(conc(proof),0)) ? Eq2LeqKind : Leq2EqKind;
if(foo == "gcd-test")
return GCDTestKind;
if(foo == "assign-bounds")
return AssignBoundsKind;
if(foo == "eq-propagate")
return EqPropagateKind;
return UnknownKind;
}
void get_farkas_coeffs(const ast &proof, std::vector<ast>& coeffs);
void get_farkas_coeffs(const ast &proof, std::vector<rational>& rats);
void get_assign_bounds_coeffs(const ast &proof, std::vector<rational>& rats);
void get_assign_bounds_coeffs(const ast &proof, std::vector<ast>& rats);
void get_assign_bounds_rule_coeffs(const ast &proof, std::vector<rational>& rats);
void get_assign_bounds_rule_coeffs(const ast &proof, std::vector<ast>& rats);
bool is_farkas_coefficient_negative(const ast &proof, int n);
bool is_true(ast t){
return op(t) == True;
}
bool is_false(ast t){
return op(t) == False;
}
bool is_iff(ast t){
return op(t) == Iff;
}
bool is_or(ast t){
return op(t) == Or;
}
bool is_not(ast t){
return op(t) == Not;
}
/** Simplify an expression using z3 simplifier */
ast z3_simplify(const ast& e);
/** Simplify, sorting sums */
ast z3_really_simplify(const ast &e);
// Some constructors that simplify things
ast mk_not(ast x){
opr o = op(x);
if(o == True) return make(False);
if(o == False) return make(True);
if(o == Not) return arg(x,0);
return make(Not,x);
}
ast mk_and(ast x, ast y){
opr ox = op(x);
opr oy = op(y);
if(ox == True) return y;
if(oy == True) return x;
if(ox == False) return x;
if(oy == False) return y;
if(x == y) return x;
return make(And,x,y);
}
ast mk_or(ast x, ast y){
opr ox = op(x);
opr oy = op(y);
if(ox == False) return y;
if(oy == False) return x;
if(ox == True) return x;
if(oy == True) return y;
if(x == y) return x;
return make(Or,x,y);
}
ast mk_implies(ast x, ast y){
opr ox = op(x);
opr oy = op(y);
if(ox == True) return y;
if(oy == False) return mk_not(x);
if(ox == False) return mk_true();
if(oy == True) return y;
if(x == y) return mk_true();
return make(Implies,x,y);
}
ast mk_or(const std::vector<ast> &x){
ast res = mk_false();
for(unsigned i = 0; i < x.size(); i++)
res = mk_or(res,x[i]);
return res;
}
ast mk_and(const std::vector<ast> &x){
std::vector<ast> conjs;
for(unsigned i = 0; i < x.size(); i++){
const ast &e = x[i];
opr o = op(e);
if(o == False)
return mk_false();
if(o != True)
conjs.push_back(e);
}
if(conjs.size() == 0)
return mk_true();
if(conjs.size() == 1)
return conjs[0];
return make(And,conjs);
}
ast mk_equal(ast x, ast y){
if(x == y) return make(True);
opr ox = op(x);
opr oy = op(y);
if(ox == True) return y;
if(oy == True) return x;
if(ox == False) return mk_not(y);
if(oy == False) return mk_not(x);
if(ox == False && oy == True) return make(False);
if(oy == False && ox == True) return make(False);
return make(Equal,x,y);
}
ast z3_ite(ast x, ast y, ast z){
opr ox = op(x);
opr oy = op(y);
opr oz = op(z);
if(ox == True) return y;
if(ox == False) return z;
if(y == z) return y;
if(oy == True && oz == False) return x;
if(oz == True && oy == False) return mk_not(x);
return make(Ite,x,y,z);
}
ast make_int(const std::string &s) {
sort *r = m().mk_sort(m_arith_fid, INT_SORT);
return cook(m_arith_util.mk_numeral(rational(s.c_str()),r));
}
ast make_int(const rational &s) {
sort *r = m().mk_sort(m_arith_fid, INT_SORT);
return cook(m_arith_util.mk_numeral(s,r));
}
ast make_real(const std::string &s) {
sort *r = m().mk_sort(m_arith_fid, REAL_SORT);
return cook(m_arith_util.mk_numeral(rational(s.c_str()),r));
}
ast make_real(const rational &s) {
sort *r = m().mk_sort(m_arith_fid, REAL_SORT);
return cook(m_arith_util.mk_numeral(s,r));
}
ast mk_false() { return make(False); }
ast mk_true() { return make(True); }
ast mk_fresh_constant(char const * prefix, type s){
return cook(m().mk_fresh_const(prefix, s));
}
type bool_type() {
::sort *s = m().mk_sort(m_basic_fid, BOOL_SORT);
return s;
}
type int_type() {
::sort *s = m().mk_sort(m_arith_fid, INT_SORT);
return s;
}
type real_type() {
::sort *s = m().mk_sort(m_arith_fid, REAL_SORT);
return s;
}
type array_type(type d, type r) {
parameter params[2] = { parameter(d), parameter(to_sort(r)) };
::sort * s = m().mk_sort(m_array_fid, ARRAY_SORT, 2, params);
return s;
}
symb function(const std::string &str_name, unsigned arity, type *domain, type range) {
::symbol name = ::symbol(str_name.c_str());
std::vector< ::sort *> sv(arity);
for(unsigned i = 0; i < arity; i++)
sv[i] = domain[i];
::func_decl* d = m().mk_func_decl(name,arity,&sv[0],range);
return d;
}
void linear_comb(ast &P, const ast &c, const ast &Q, bool round_off = false);
ast sum_inequalities(const std::vector<ast> &coeffs, const std::vector<ast> &ineqs, bool round_off = false);
ast simplify_ineq(const ast &ineq){
ast res = make(op(ineq),arg(ineq,0),z3_simplify(arg(ineq,1)));
return res;
}
void mk_idiv(const ast& t, const rational &d, ast &whole, ast &frac);
ast mk_idiv(const ast& t, const rational &d);
ast mk_idiv(const ast& t, const ast &d);
/** methods for destructing proof terms */
pfrule pr(const z3pf &t);
int num_prems(const z3pf &t){return to_app(t.raw())->get_num_args()-1;}
z3pf prem(const z3pf &t, int n){return arg(t,n);}
z3pf conc(const z3pf &t){return arg(t,num_prems(t));}
/* quantifier handling */
// substitute a term t for unbound occurrences of variable v in e
ast subst(ast var, ast t, ast e);
// apply a substitution defined by a map
ast subst(stl_ext::hash_map<ast,ast> &map, ast e);
// apply a quantifier to a formula, with some optimizations
// 1) bound variable does not occur -> no quantifier
// 2) bound variable must be equal to some term -> substitute
ast apply_quant(opr quantifier, ast var, ast e);
/** For debugging */
void show(ast);
void show_symb(symb s);
/** Constructor */
void print_lit(ast lit);
void print_expr(std::ostream &s, const ast &e);
void print_clause(std::ostream &s, std::vector<ast> &cls);
void print_sat_problem(std::ostream &out, const ast &t);
void show_clause(std::vector<ast> &cls);
static void pretty_print(std::ostream &f, const std::string &s);
iz3mgr(ast_manager &_m_manager)
: m_manager(_m_manager),
m_arith_util(_m_manager)
{
m_basic_fid = m().get_basic_family_id();
m_arith_fid = m().mk_family_id("arith");
m_bv_fid = m().mk_family_id("bv");
m_array_fid = m().mk_family_id("array");
m_dt_fid = m().mk_family_id("datatype");
m_datalog_fid = m().mk_family_id("datalog_relation");
}
iz3mgr(const iz3mgr& other)
: m_manager(other.m_manager),
m_arith_util(other.m_manager)
{
m_basic_fid = m().get_basic_family_id();
m_arith_fid = m().mk_family_id("arith");
m_bv_fid = m().mk_family_id("bv");
m_array_fid = m().mk_family_id("array");
m_dt_fid = m().mk_family_id("datatype");
m_datalog_fid = m().mk_family_id("datalog_relation");
}
protected:
ast_manager &m_manager;
int occurs_in(ast var, ast e);
private:
ast mki(family_id fid, decl_kind sk, int n, raw_ast **args);
ast make(opr op, int n, raw_ast **args);
ast make(symb sym, int n, raw_ast **args);
int occurs_in1(stl_ext::hash_map<ast,bool> &occurs_in_memo, ast var, ast e);
bool solve_arith(const ast &v, const ast &x, const ast &y, ast &res);
ast cont_eq(stl_ext::hash_set<ast> &cont_eq_memo, bool truth, ast v, ast e);
ast subst(stl_ext::hash_map<ast,ast> &subst_memo, ast var, ast t, ast e);
family_id m_basic_fid;
family_id m_array_fid;
family_id m_arith_fid;
family_id m_bv_fid;
family_id m_dt_fid;
family_id m_datalog_fid;
arith_util m_arith_util;
};
#endif