3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-09-04 00:58:07 +00:00
z3/src/math/polysat/saturation.h
Clemens Eisenhofer 5b35450891 Several changes:
- Extend fixed-bit FI to both directions
- really randomized restart
- MSB for fixed-bits
- Forward propagation (band, lshift, rshift) with good justifications (strengthen during saturation)
2023-03-07 15:21:14 +01:00

193 lines
9 KiB
C++

/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
Polysat core saturation
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
--*/
#pragma once
#include "math/polysat/clause_builder.h"
#include "math/polysat/conflict.h"
#include "math/polysat/variable_elimination.h"
namespace polysat {
/**
* Introduce lemmas that derive new (simpler) constraints from the current conflict and partial model.
*/
class saturation {
friend class parity_tracker;
friend class conflict_resolver;
solver& s;
clause_builder m_lemma;
char const* m_rule = nullptr;
parity_tracker m_parity_tracker;
unsigned_vector m_occ;
unsigned_vector m_occ_cnt;
void set_rule(char const* r) { m_rule = r; }
bool is_non_overflow(pdd const& x, pdd const& y, signed_constraint& c);
signed_constraint ineq(bool strict, pdd const& lhs, pdd const& rhs);
void log_lemma(pvar v, conflict& core);
bool propagate(pvar v, conflict& core, signed_constraint crit1, signed_constraint c);
bool propagate(pvar v, conflict& core, inequality const& crit1, signed_constraint c);
bool propagate(pvar v, conflict& core, signed_constraint c);
bool add_conflict(pvar v, conflict& core, inequality const& crit1, signed_constraint c);
bool add_conflict(pvar v, conflict& core, inequality const& crit1, inequality const& crit2, signed_constraint c);
bool try_ugt_x(pvar v, conflict& core, inequality const& c);
bool try_ugt_y(pvar v, conflict& core, inequality const& c);
bool try_ugt_y(pvar v, conflict& core, inequality const& l_y, inequality const& yx_l_zx, pdd const& x, pdd const& z);
bool try_y_l_ax_and_x_l_z(pvar x, conflict& core, inequality const& c);
bool try_y_l_ax_and_x_l_z(pvar x, conflict& core, inequality const& x_l_z, inequality const& y_l_ax, pdd const& a, pdd const& y);
bool try_ugt_z(pvar z, conflict& core, inequality const& c);
bool try_ugt_z(pvar z, conflict& core, inequality const& x_l_z0, inequality const& yz_l_xz, pdd const& y, pdd const& x);
bool try_parity(pvar x, conflict& core, inequality const& axb_l_y);
bool try_parity_diseq(pvar x, conflict& core, inequality const& axb_l_y);
bool try_mul_bounds(pvar x, conflict& core, inequality const& axb_l_y);
bool try_factor_equality(pvar x, conflict& core, inequality const& a_l_b);
bool try_infer_equality(pvar x, conflict& core, inequality const& a_l_b);
bool try_mul_eq_1(pvar x, conflict& core, inequality const& axb_l_y);
bool try_mul_odd(pvar x, conflict& core, inequality const& axb_l_y);
bool try_mul_eq_bound(pvar x, conflict& core, inequality const& axb_l_y);
bool try_transitivity(pvar x, conflict& core, inequality const& axb_l_y);
bool try_tangent(pvar v, conflict& core, inequality const& c);
bool try_add_overflow_bound(pvar x, conflict& core, inequality const& axb_l_y);
bool try_add_mul_bound(pvar x, conflict& core, inequality const& axb_l_y);
bool try_add_mul_bound2(pvar x, conflict& core, inequality const& axb_l_y);
bool try_infer_parity_equality(pvar x, conflict& core, inequality const& a_l_b);
bool try_div_monotonicity(conflict& core);
rational round(rational const& M, rational const& x);
bool eval_round(rational const& M, pdd const& p, rational& r);
bool extract_linear_form(pdd const& q, pvar& y, rational& a, rational& b);
bool extract_bilinear_form(pvar x, pdd const& p, pvar& y, rational& a, rational& b, rational& c, rational& d);
bool adjust_bound(rational const& x_min, rational const& x_max, rational const& y0, rational const& M, rational const& a, rational const& b, rational const& c, rational& d, rational* x_split);
bool update_min(rational& y_min, rational const& x_min, rational const& x_max, rational const& a, rational const& b, rational const& c, rational const& d);
bool update_max(rational& y_max, rational const& x_min, rational const& x_max, rational const& a, rational const& b, rational const& c, rational const& d);
bool update_bounds_for_xs(rational const& x_min, rational const& x_max, rational& y_min, rational& y_max, rational const& y0, rational const& a1, rational const& b1, rational const& c1, rational const& d1, rational const& a2, rational const& b2, rational const& c2, rational const& d2, rational const& M, inequality const& a_l_b);
void fix_values(pvar x, pvar y, pdd const& p);
void fix_values(pvar y, pdd const& p);
// c := lhs ~ v
// where ~ is < or <=
bool is_l_v(pvar v, inequality const& c);
// c := v ~ rhs
bool is_g_v(pvar v, inequality const& c);
// c := x ~ Y
bool is_x_l_Y(pvar x, inequality const& i, pdd& y);
// c := Y ~ x
bool is_Y_l_x(pvar x, inequality const& i, pdd& y);
// c := X*y ~ X*Z
bool is_Xy_l_XZ(pvar y, inequality const& c, pdd& x, pdd& z);
bool verify_Xy_l_XZ(pvar y, inequality const& c, pdd const& x, pdd const& z);
// c := Y ~ Ax
bool is_Y_l_Ax(pvar x, inequality const& c, pdd& a, pdd& y);
bool verify_Y_l_Ax(pvar x, inequality const& c, pdd const& a, pdd const& y);
// c := Ax ~ Y
bool is_Ax_l_Y(pvar x, inequality const& c, pdd& a, pdd& y);
bool verify_Ax_l_Y(pvar x, inequality const& c, pdd const& a, pdd const& y);
// c := Ax + B ~ Y
bool is_AxB_l_Y(pvar x, inequality const& c, pdd& a, pdd& b, pdd& y);
bool verify_AxB_l_Y(pvar x, inequality const& c, pdd const& a, pdd const& b, pdd const& y);
// c := Y ~ Ax + B
bool is_Y_l_AxB(pvar x, inequality const& c, pdd& y, pdd& a, pdd& b);
bool verify_Y_l_AxB(pvar x, inequality const& c, pdd const& y, pdd const& a, pdd& b);
// c := Ax + B ~ Y, val(Y) = 0
bool is_AxB_eq_0(pvar x, inequality const& c, pdd& a, pdd& b, pdd& y);
bool verify_AxB_eq_0(pvar x, inequality const& c, pdd const& a, pdd const& b, pdd const& y);
// c := Ax + B != Y, val(Y) = 0
bool is_AxB_diseq_0(pvar x, inequality const& c, pdd& a, pdd& b, pdd& y);
// c := Y*X ~ z*X
bool is_YX_l_zX(pvar z, inequality const& c, pdd& x, pdd& y);
bool verify_YX_l_zX(pvar z, inequality const& c, pdd const& x, pdd const& y);
// c := xY <= xZ
bool is_xY_l_xZ(pvar x, inequality const& c, pdd& y, pdd& z);
// xy := x * Y
bool is_xY(pvar x, pdd const& xy, pdd& y);
// a * b does not overflow
bool is_non_overflow(pdd const& a, pdd const& b);
// p := coeff*x*y where coeff_x = coeff*x, x a variable
bool is_coeffxY(pdd const& coeff_x, pdd const& p, pdd& y);
bool is_add_overflow(pvar x, inequality const& i, pdd& y, bool& is_minus);
bool has_upper_bound(pvar x, conflict& core, rational& bound, vector<signed_constraint>& x_ge_bound);
bool has_lower_bound(pvar x, conflict& core, rational& bound, vector<signed_constraint>& x_le_bound);
// determine min/max parity of polynomial
unsigned min_parity(pdd const& p, vector<signed_constraint>& explain);
unsigned max_parity(pdd const& p, vector<signed_constraint>& explain);
unsigned min_parity(pdd const& p) { vector<signed_constraint> ex; return min_parity(p, ex); }
unsigned max_parity(pdd const& p) { vector<signed_constraint> ex; return max_parity(p, ex); }
lbool get_multiple(const pdd& p1, const pdd& p2, pdd& out);
bool is_forced_eq(pdd const& p, rational const& val);
bool is_forced_eq(pdd const& p, int i) { return is_forced_eq(p, rational(i)); }
bool is_forced_diseq(pdd const& p, int i, signed_constraint& c);
bool is_forced_odd(pdd const& p, signed_constraint& c);
bool is_forced_false(signed_constraint const& sc);
bool is_forced_true(signed_constraint const& sc);
bool try_inequality(pvar v, inequality const& i, conflict& core);
bool try_umul_ovfl(pvar v, signed_constraint c, conflict& core);
bool try_umul_ovfl_noovfl(pvar v, signed_constraint c, conflict& core);
bool try_umul_noovfl_lo(pvar v, signed_constraint c, conflict& core);
bool try_umul_noovfl_bounds(pvar v, signed_constraint c, conflict& core);
bool try_umul_ovfl_bounds(pvar v, signed_constraint c, conflict& core);
bool try_op(pvar v, signed_constraint c, conflict& core);
public:
saturation(solver& s);
void perform(pvar v, conflict& core);
bool perform(pvar v, signed_constraint sc, conflict& core);
};
/*
* TODO: we could resolve constraints in cjust[v] against each other to
* obtain stronger propagation. Example:
* (x + 1)*P = 0 and (x + 1)*Q = 0, where gcd(P,Q) = 1, then we have x + 1 = 0.
* We refer to this process as narrowing.
* In general form it can rely on factoring.
* Root finding can further prune viable.
*/
}