mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
5672 lines
179 KiB
C++
5672 lines
179 KiB
C++
/*++
|
|
Copyright (c) 2015 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
theory_seq.h
|
|
|
|
Abstract:
|
|
|
|
Native theory solver for sequences.
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2015-6-12
|
|
|
|
Revision History:
|
|
|
|
|
|
--*/
|
|
|
|
#include <typeinfo>
|
|
#include "ast/ast_pp.h"
|
|
#include "ast/ast_trail.h"
|
|
#include "smt/proto_model/value_factory.h"
|
|
#include "smt/smt_context.h"
|
|
#include "smt/smt_model_generator.h"
|
|
#include "smt/theory_seq.h"
|
|
#include "smt/theory_arith.h"
|
|
#include "smt/theory_lra.h"
|
|
#include "smt/smt_kernel.h"
|
|
|
|
using namespace smt;
|
|
|
|
struct display_expr {
|
|
ast_manager& m;
|
|
display_expr(ast_manager& m): m(m) {}
|
|
std::ostream& display(std::ostream& out, sym_expr* e) const {
|
|
return e->display(out);
|
|
}
|
|
};
|
|
|
|
class seq_expr_solver : public expr_solver {
|
|
kernel m_kernel;
|
|
public:
|
|
seq_expr_solver(ast_manager& m, smt_params& fp):
|
|
m_kernel(m, fp)
|
|
{}
|
|
|
|
lbool check_sat(expr* e) override {
|
|
m_kernel.push();
|
|
m_kernel.assert_expr(e);
|
|
lbool r = m_kernel.check();
|
|
m_kernel.pop(1);
|
|
IF_VERBOSE(11, verbose_stream() << "is " << r << " " << mk_pp(e, m_kernel.m()) << "\n");
|
|
return r;
|
|
}
|
|
};
|
|
|
|
|
|
void theory_seq::solution_map::update(expr* e, expr* r, dependency* d) {
|
|
if (e == r) {
|
|
return;
|
|
}
|
|
m_cache.reset();
|
|
std::pair<expr*, dependency*> value;
|
|
if (m_map.find(e, value)) {
|
|
add_trail(DEL, e, value.first, value.second);
|
|
}
|
|
value.first = r;
|
|
value.second = d;
|
|
m_map.insert(e, value);
|
|
add_trail(INS, e, r, d);
|
|
}
|
|
|
|
void theory_seq::solution_map::add_trail(map_update op, expr* l, expr* r, dependency* d) {
|
|
m_updates.push_back(op);
|
|
m_lhs.push_back(l);
|
|
m_rhs.push_back(r);
|
|
m_deps.push_back(d);
|
|
}
|
|
|
|
bool theory_seq::solution_map::is_root(expr* e) const {
|
|
return !m_map.contains(e);
|
|
}
|
|
|
|
// e1 -> ... -> e2
|
|
// e2 -> e3
|
|
// e1 -> .... -> e3
|
|
|
|
// e1 -> ... x, e2 -> ... x
|
|
void theory_seq::solution_map::find_rec(expr* e, svector<std::pair<expr*, dependency*> >& finds) {
|
|
dependency* d = nullptr;
|
|
std::pair<expr*, dependency*> value(e, d);
|
|
do {
|
|
e = value.first;
|
|
d = m_dm.mk_join(d, value.second);
|
|
finds.push_back(value);
|
|
}
|
|
while (m_map.find(e, value));
|
|
}
|
|
|
|
bool theory_seq::solution_map::find1(expr* e, expr*& r, dependency*& d) {
|
|
std::pair<expr*, dependency*> value;
|
|
if (m_map.find(e, value)) {
|
|
d = m_dm.mk_join(d, value.second);
|
|
r = value.first;
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
expr* theory_seq::solution_map::find(expr* e, dependency*& d) {
|
|
std::pair<expr*, dependency*> value;
|
|
d = nullptr;
|
|
expr* result = e;
|
|
while (m_map.find(result, value)) {
|
|
d = m_dm.mk_join(d, value.second);
|
|
SASSERT(result != value.first);
|
|
SASSERT(e != value.first);
|
|
result = value.first;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
expr* theory_seq::solution_map::find(expr* e) {
|
|
std::pair<expr*, dependency*> value;
|
|
while (m_map.find(e, value)) {
|
|
e = value.first;
|
|
}
|
|
return e;
|
|
}
|
|
|
|
void theory_seq::solution_map::pop_scope(unsigned num_scopes) {
|
|
if (num_scopes == 0) return;
|
|
m_cache.reset();
|
|
unsigned start = m_limit[m_limit.size() - num_scopes];
|
|
for (unsigned i = m_updates.size(); i-- > start; ) {
|
|
if (m_updates[i] == INS) {
|
|
m_map.remove(m_lhs[i].get());
|
|
}
|
|
else {
|
|
m_map.insert(m_lhs[i].get(), std::make_pair(m_rhs[i].get(), m_deps[i]));
|
|
}
|
|
}
|
|
m_updates.resize(start);
|
|
m_lhs.resize(start);
|
|
m_rhs.resize(start);
|
|
m_deps.resize(start);
|
|
m_limit.resize(m_limit.size() - num_scopes);
|
|
}
|
|
|
|
void theory_seq::solution_map::display(std::ostream& out) const {
|
|
for (auto const& kv : m_map) {
|
|
out << mk_pp(kv.m_key, m) << " |-> " << mk_pp(kv.m_value.first, m) << "\n";
|
|
}
|
|
}
|
|
|
|
bool theory_seq::exclusion_table::contains(expr* e, expr* r) const {
|
|
if (e->get_id() > r->get_id()) {
|
|
std::swap(e, r);
|
|
}
|
|
return m_table.contains(std::make_pair(e, r));
|
|
}
|
|
|
|
void theory_seq::exclusion_table::update(expr* e, expr* r) {
|
|
if (e->get_id() > r->get_id()) {
|
|
std::swap(e, r);
|
|
}
|
|
if (e != r && !m_table.contains(std::make_pair(e, r))) {
|
|
m_lhs.push_back(e);
|
|
m_rhs.push_back(r);
|
|
m_table.insert(std::make_pair(e, r));
|
|
}
|
|
}
|
|
|
|
void theory_seq::exclusion_table::pop_scope(unsigned num_scopes) {
|
|
if (num_scopes == 0) return;
|
|
unsigned start = m_limit[m_limit.size() - num_scopes];
|
|
for (unsigned i = start; i < m_lhs.size(); ++i) {
|
|
m_table.erase(std::make_pair(m_lhs[i].get(), m_rhs[i].get()));
|
|
}
|
|
m_lhs.resize(start);
|
|
m_rhs.resize(start);
|
|
m_limit.resize(m_limit.size() - num_scopes);
|
|
}
|
|
|
|
void theory_seq::exclusion_table::display(std::ostream& out) const {
|
|
for (auto const& kv : m_table) {
|
|
out << mk_pp(kv.first, m) << " != " << mk_pp(kv.second, m) << "\n";
|
|
}
|
|
}
|
|
|
|
|
|
theory_seq::theory_seq(ast_manager& m, theory_seq_params const & params):
|
|
theory(m.mk_family_id("seq")),
|
|
m(m),
|
|
m_params(params),
|
|
m_rep(m, m_dm),
|
|
m_reset_cache(false),
|
|
m_eq_id(0),
|
|
m_find(*this),
|
|
m_overlap(m),
|
|
m_overlap2(m),
|
|
m_len_prop_lvl(-1),
|
|
m_factory(nullptr),
|
|
m_exclude(m),
|
|
m_axioms(m),
|
|
m_axioms_head(0),
|
|
m_int_string(m),
|
|
m_length(m),
|
|
m_mg(nullptr),
|
|
m_rewrite(m),
|
|
m_seq_rewrite(m),
|
|
m_util(m),
|
|
m_autil(m),
|
|
m_arith_value(m),
|
|
m_trail_stack(*this),
|
|
m_ls(m), m_rs(m),
|
|
m_lhs(m), m_rhs(m),
|
|
m_res(m),
|
|
m_max_unfolding_depth(1),
|
|
m_max_unfolding_lit(null_literal),
|
|
m_new_solution(false),
|
|
m_new_propagation(false),
|
|
m_mk_aut(m) {
|
|
m_prefix = "seq.p.suffix";
|
|
m_suffix = "seq.s.prefix";
|
|
m_accept = "aut.accept";
|
|
m_tail = "seq.tail";
|
|
m_nth = "seq.nth";
|
|
m_seq_first = "seq.first";
|
|
m_seq_last = "seq.last";
|
|
m_indexof_left = "seq.idx.left";
|
|
m_indexof_right = "seq.idx.right";
|
|
m_aut_step = "aut.step";
|
|
m_pre = "seq.pre"; // (seq.pre s l): prefix of string s of length l
|
|
m_post = "seq.post"; // (seq.post s l): suffix of string s of length l
|
|
m_eq = "seq.eq";
|
|
m_seq_align = "seq.align";
|
|
|
|
}
|
|
|
|
theory_seq::~theory_seq() {
|
|
m_trail_stack.reset();
|
|
}
|
|
|
|
void theory_seq::init(context* ctx) {
|
|
theory::init(ctx);
|
|
m_arith_value.init(ctx);
|
|
}
|
|
|
|
#define TRACEFIN(s) { TRACE("seq", tout << ">>" << s << "\n";); IF_VERBOSE(10, verbose_stream() << s << "\n"); }
|
|
|
|
|
|
final_check_status theory_seq::final_check_eh() {
|
|
if (m_reset_cache) {
|
|
m_rep.reset_cache();
|
|
m_reset_cache = false;
|
|
}
|
|
m_new_propagation = false;
|
|
TRACE("seq", display(tout << "level: " << get_context().get_scope_level() << "\n"););
|
|
TRACE("seq_verbose", get_context().display(tout););
|
|
if (simplify_and_solve_eqs()) {
|
|
++m_stats.m_solve_eqs;
|
|
TRACEFIN("solve_eqs");
|
|
return FC_CONTINUE;
|
|
}
|
|
if (check_contains()) {
|
|
++m_stats.m_propagate_contains;
|
|
TRACEFIN("propagate_contains");
|
|
return FC_CONTINUE;
|
|
}
|
|
if (solve_nqs(0)) {
|
|
++m_stats.m_solve_nqs;
|
|
TRACEFIN("solve_nqs");
|
|
return FC_CONTINUE;
|
|
}
|
|
if (fixed_length(true)) {
|
|
++m_stats.m_fixed_length;
|
|
TRACEFIN("zero_length");
|
|
return FC_CONTINUE;
|
|
}
|
|
if (m_params.m_split_w_len && len_based_split()) {
|
|
++m_stats.m_branch_variable;
|
|
TRACEFIN("split_based_on_length");
|
|
return FC_CONTINUE;
|
|
}
|
|
if (fixed_length()) {
|
|
++m_stats.m_fixed_length;
|
|
TRACEFIN("fixed_length");
|
|
return FC_CONTINUE;
|
|
}
|
|
if (check_int_string()) {
|
|
++m_stats.m_int_string;
|
|
TRACEFIN("int_string");
|
|
return FC_CONTINUE;
|
|
}
|
|
if (reduce_length_eq()) {
|
|
++m_stats.m_branch_variable;
|
|
TRACEFIN("reduce_length");
|
|
return FC_CONTINUE;
|
|
}
|
|
if (branch_unit_variable()) {
|
|
++m_stats.m_branch_variable;
|
|
TRACEFIN("ranch_unit_variable");
|
|
return FC_CONTINUE;
|
|
}
|
|
if (branch_binary_variable()) {
|
|
++m_stats.m_branch_variable;
|
|
TRACEFIN("branch_binary_variable");
|
|
return FC_CONTINUE;
|
|
}
|
|
if (branch_ternary_variable1() || branch_ternary_variable2() || branch_quat_variable()) {
|
|
++m_stats.m_branch_variable;
|
|
TRACEFIN("split_based_on_alignment");
|
|
return FC_CONTINUE;
|
|
}
|
|
if (branch_variable_mb() || branch_variable()) {
|
|
++m_stats.m_branch_variable;
|
|
TRACEFIN("branch_variable");
|
|
return FC_CONTINUE;
|
|
}
|
|
if (check_length_coherence()) {
|
|
++m_stats.m_check_length_coherence;
|
|
TRACEFIN("check_length_coherence");
|
|
return FC_CONTINUE;
|
|
}
|
|
if (!check_extensionality()) {
|
|
++m_stats.m_extensionality;
|
|
TRACEFIN("extensionality");
|
|
return FC_CONTINUE;
|
|
}
|
|
if (is_solved()) {
|
|
TRACEFIN("is_solved");
|
|
return FC_DONE;
|
|
}
|
|
TRACEFIN("give_up");
|
|
return FC_GIVEUP;
|
|
}
|
|
|
|
bool theory_seq::reduce_length_eq() {
|
|
context& ctx = get_context();
|
|
int start = ctx.get_random_value();
|
|
|
|
for (unsigned i = 0; !ctx.inconsistent() && i < m_eqs.size(); ++i) {
|
|
eq const& e = m_eqs[(i + start) % m_eqs.size()];
|
|
if (reduce_length_eq(e.ls(), e.rs(), e.dep())) {
|
|
TRACE("seq", tout << "length\n";);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::branch_binary_variable() {
|
|
for (auto const& e : m_eqs) {
|
|
if (branch_binary_variable(e)) {
|
|
TRACE("seq", display_equation(tout, e););
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::branch_binary_variable(eq const& e) {
|
|
if (is_complex(e)) {
|
|
return false;
|
|
}
|
|
ptr_vector<expr> xs, ys;
|
|
expr_ref x(m), y(m);
|
|
bool is_binary = is_binary_eq(e.ls(), e.rs(), x, xs, ys, y);
|
|
if (!is_binary) {
|
|
is_binary = is_binary_eq(e.rs(), e.ls(), x, xs, ys, y);
|
|
}
|
|
if (!is_binary) {
|
|
return false;
|
|
}
|
|
if (x == y) {
|
|
return false;
|
|
}
|
|
|
|
// Equation is of the form x ++ xs = ys ++ y
|
|
// where xs, ys are units.
|
|
// x is either a prefix of ys, all of ys ++ y or ys ++ y1, such that y = y1 ++ y2, y2 = xs
|
|
|
|
rational lenX, lenY;
|
|
context& ctx = get_context();
|
|
if (branch_variable(e)) {
|
|
return true;
|
|
}
|
|
if (!get_length(x, lenX)) {
|
|
enforce_length(x);
|
|
return true;
|
|
}
|
|
if (!get_length(y, lenY)) {
|
|
enforce_length(y);
|
|
return true;
|
|
}
|
|
if (lenX + rational(xs.size()) != lenY + rational(ys.size())) {
|
|
// |x| - |y| = |ys| - |xs|
|
|
expr_ref a(mk_sub(mk_len(x), mk_len(y)), m);
|
|
expr_ref b(m_autil.mk_int(ys.size()-xs.size()), m);
|
|
propagate_lit(e.dep(), 0, nullptr, mk_eq(a, b, false));
|
|
return true;
|
|
}
|
|
if (lenX <= rational(ys.size())) {
|
|
expr_ref_vector Ys(m);
|
|
Ys.append(ys.size(), ys.c_ptr());
|
|
branch_unit_variable(e.dep(), x, Ys);
|
|
return true;
|
|
}
|
|
expr_ref le(m_autil.mk_le(mk_len(x), m_autil.mk_int(ys.size())), m);
|
|
literal lit = mk_literal(le);
|
|
if (l_false == ctx.get_assignment(lit)) {
|
|
// |x| > |ys| => x = ys ++ y1, y = y1 ++ y2, y2 = xs
|
|
expr_ref Y1(mk_skolem(symbol("seq.left"), x, y), m);
|
|
expr_ref Y2(mk_skolem(symbol("seq.right"), x, y), m);
|
|
ys.push_back(Y1);
|
|
expr_ref ysY1 = mk_concat(ys);
|
|
expr_ref xsE = mk_concat(xs);
|
|
expr_ref Y1Y2 = mk_concat(Y1, Y2);
|
|
dependency* dep = e.dep();
|
|
propagate_eq(dep, ~lit, x, ysY1);
|
|
propagate_eq(dep, ~lit, y, Y1Y2);
|
|
propagate_eq(dep, ~lit, Y2, xsE);
|
|
}
|
|
else {
|
|
ctx.mark_as_relevant(lit);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool theory_seq::branch_unit_variable() {
|
|
bool result = false;
|
|
for (auto const& e : m_eqs) {
|
|
if (is_unit_eq(e.ls(), e.rs())) {
|
|
branch_unit_variable(e.dep(), e.ls()[0], e.rs());
|
|
result = true;
|
|
break;
|
|
}
|
|
else if (is_unit_eq(e.rs(), e.ls())) {
|
|
branch_unit_variable(e.dep(), e.rs()[0], e.ls());
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
CTRACE("seq", result, tout << "branch unit variable";);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
\brief ls := X... == rs := abcdef
|
|
*/
|
|
bool theory_seq::is_unit_eq(expr_ref_vector const& ls, expr_ref_vector const& rs) {
|
|
if (ls.empty() || !is_var(ls[0])) {
|
|
return false;
|
|
}
|
|
for (auto const& elem : rs) {
|
|
if (!m_util.str.is_unit(elem)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void theory_seq::branch_unit_variable(dependency* dep, expr* X, expr_ref_vector const& units) {
|
|
SASSERT(is_var(X));
|
|
context& ctx = get_context();
|
|
rational lenX;
|
|
if (!get_length(X, lenX)) {
|
|
TRACE("seq", tout << "enforce length on " << mk_pp(X, m) << "\n";);
|
|
enforce_length(X);
|
|
return;
|
|
}
|
|
if (lenX > rational(units.size())) {
|
|
expr_ref le(m_autil.mk_le(mk_len(X), m_autil.mk_int(units.size())), m);
|
|
TRACE("seq", tout << "propagate length on " << mk_pp(X, m) << "\n";);
|
|
propagate_lit(dep, 0, nullptr, mk_literal(le));
|
|
return;
|
|
}
|
|
SASSERT(lenX.is_unsigned());
|
|
unsigned lX = lenX.get_unsigned();
|
|
if (lX == 0) {
|
|
TRACE("seq", tout << "set empty length " << mk_pp(X, m) << "\n";);
|
|
set_empty(X);
|
|
}
|
|
else {
|
|
literal lit = mk_eq(m_autil.mk_int(lX), mk_len(X), false);
|
|
if (l_true == ctx.get_assignment(lit)) {
|
|
expr_ref R(m_util.str.mk_concat(lX, units.c_ptr()), m);
|
|
propagate_eq(dep, lit, X, R);
|
|
TRACE("seq", tout << "propagate " << mk_pp(X, m) << " " << R << "\n";);
|
|
}
|
|
else {
|
|
TRACE("seq", tout << "set phase " << mk_pp(X, m) << "\n";);
|
|
ctx.mark_as_relevant(lit);
|
|
ctx.force_phase(lit);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool theory_seq::branch_ternary_variable1() {
|
|
|
|
//std::function<bool(eq const& e)> branch = [&](eq const& e) { return branch_ternary_variable(e) || branch_ternary_variable2(e); };
|
|
//return m_eqs.exists(branch);
|
|
for (auto const& e : m_eqs) {
|
|
if (branch_ternary_variable(e) || branch_ternary_variable2(e)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::branch_ternary_variable2() {
|
|
for (auto const& e : m_eqs) {
|
|
if (branch_ternary_variable(e, true)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::eq_unit(expr* const& l, expr* const &r) const {
|
|
return l == r || is_unit_nth(l) || is_unit_nth(r);
|
|
}
|
|
|
|
// exists x, y, rs' != empty s.t. (ls = x ++ rs' ++ y & rs = rs') || (ls = rs' ++ x && rs = y ++ rs')
|
|
// TBD: spec comment above doesn't seem to match what this function does.
|
|
unsigned_vector theory_seq::overlap(expr_ref_vector const& ls, expr_ref_vector const& rs) {
|
|
SASSERT(!ls.empty() && !rs.empty());
|
|
unsigned_vector result;
|
|
expr_ref l = mk_concat(ls);
|
|
expr_ref r = mk_concat(rs);
|
|
expr_ref pair(m.mk_eq(l,r), m);
|
|
if (m_overlap.find(pair, result)) {
|
|
return result;
|
|
}
|
|
result.reset();
|
|
for (unsigned i = 0; i < ls.size(); ++i) {
|
|
if (eq_unit(ls[i], rs.back())) {
|
|
bool same = rs.size() > i;
|
|
for (unsigned j = 0; same && j < i; ++j) {
|
|
same = eq_unit(ls[j], rs[rs.size() - 1 - i + j]);
|
|
}
|
|
if (same)
|
|
result.push_back(i+1);
|
|
}
|
|
}
|
|
m_overlap.insert(pair, result);
|
|
return result;
|
|
}
|
|
|
|
// exists x, y, rs' != empty s.t. (ls = x ++ rs' ++ y & rs = rs') || (ls = x ++ rs' && rs = rs' ++ y)
|
|
unsigned_vector theory_seq::overlap2(expr_ref_vector const& ls, expr_ref_vector const& rs) {
|
|
SASSERT(!ls.empty() && !rs.empty());
|
|
unsigned_vector res;
|
|
expr_ref l = mk_concat(ls);
|
|
expr_ref r = mk_concat(rs);
|
|
expr_ref pair(m.mk_eq(l,r), m);
|
|
if (m_overlap2.find(pair, res)) {
|
|
return res;
|
|
}
|
|
unsigned_vector result;
|
|
for (unsigned i = 0; i < ls.size(); ++i) {
|
|
if (eq_unit(ls[i],rs[0])) {
|
|
bool same = true;
|
|
unsigned j = i+1;
|
|
while (j < ls.size() && j-i < rs.size()) {
|
|
if (!eq_unit(ls[j], rs[j-i])) {
|
|
same = false;
|
|
break;
|
|
}
|
|
++j;
|
|
}
|
|
if (same)
|
|
result.push_back(i);
|
|
}
|
|
}
|
|
m_overlap2.insert(pair, result);
|
|
return result;
|
|
}
|
|
|
|
bool theory_seq::branch_ternary_variable_base(
|
|
dependency* dep, unsigned_vector indexes,
|
|
expr* const& x, expr_ref_vector const& xs, expr* const& y1, expr_ref_vector const& ys, expr* const& y2) {
|
|
context& ctx = get_context();
|
|
bool change = false;
|
|
for (auto ind : indexes) {
|
|
TRACE("seq", tout << "ind = " << ind << "\n";);
|
|
expr_ref xs2E(m);
|
|
if (xs.size() > ind) {
|
|
xs2E = m_util.str.mk_concat(xs.size()-ind, xs.c_ptr()+ind);
|
|
}
|
|
else {
|
|
xs2E = m_util.str.mk_empty(m.get_sort(x));
|
|
}
|
|
literal lit1 = mk_literal(m_autil.mk_le(mk_len(y2), m_autil.mk_int(xs.size()-ind)));
|
|
if (ctx.get_assignment(lit1) == l_undef) {
|
|
TRACE("seq", tout << "base case init\n";);
|
|
ctx.mark_as_relevant(lit1);
|
|
ctx.force_phase(lit1);
|
|
change = true;
|
|
continue;
|
|
}
|
|
else if (ctx.get_assignment(lit1) == l_true) {
|
|
TRACE("seq", tout << "base case: true branch\n";);
|
|
literal_vector lits;
|
|
lits.push_back(lit1);
|
|
propagate_eq(dep, lits, y2, xs2E, true);
|
|
if (ind > ys.size()) {
|
|
expr_ref xs1E(m_util.str.mk_concat(ind-ys.size(), xs.c_ptr()), m);
|
|
expr_ref xxs1E = mk_concat(x, xs1E);
|
|
propagate_eq(dep, lits, xxs1E, y1, true);
|
|
}
|
|
else if (ind == ys.size()) {
|
|
propagate_eq(dep, lits, x, y1, true);
|
|
}
|
|
else {
|
|
expr_ref ys1E(m_util.str.mk_concat(ys.size()-ind, ys.c_ptr()), m);
|
|
expr_ref y1ys1E = mk_concat(y1, ys1E);
|
|
propagate_eq(dep, lits, x, y1ys1E, true);
|
|
}
|
|
return true;
|
|
}
|
|
else {
|
|
TRACE("seq", tout << "base case: false branch\n";);
|
|
continue;
|
|
}
|
|
}
|
|
return change;
|
|
}
|
|
|
|
// Equation is of the form x ++ xs = y1 ++ ys ++ y2 where xs, ys are units.
|
|
bool theory_seq::branch_ternary_variable(eq const& e, bool flag1) {
|
|
expr_ref_vector xs(m), ys(m);
|
|
expr_ref x(m), y1(m), y2(m);
|
|
bool is_ternary = is_ternary_eq(e.ls(), e.rs(), x, xs, y1, ys, y2, flag1);
|
|
if (!is_ternary) {
|
|
is_ternary = is_ternary_eq(e.rs(), e.ls(), x, xs, y1, ys, y2, flag1);
|
|
}
|
|
if (!is_ternary) {
|
|
return false;
|
|
}
|
|
|
|
rational lenX, lenY1, lenY2;
|
|
context& ctx = get_context();
|
|
if (!get_length(x, lenX)) {
|
|
enforce_length(x);
|
|
}
|
|
if (!get_length(y1, lenY1)) {
|
|
enforce_length(y1);
|
|
}
|
|
if (!get_length(y2, lenY2)) {
|
|
enforce_length(y2);
|
|
}
|
|
|
|
SASSERT(!xs.empty() && !ys.empty());
|
|
unsigned_vector indexes = overlap(xs, ys);
|
|
if (branch_ternary_variable_base(e.dep(), indexes, x, xs, y1, ys, y2))
|
|
return true;
|
|
|
|
// x ++ xs = y1 ++ ys ++ y2 => x = y1 ++ ys ++ z, z ++ xs = y2
|
|
expr_ref xsE = mk_concat(xs);
|
|
expr_ref ysE = mk_concat(ys);
|
|
expr_ref y1ys = mk_concat(y1, ysE);
|
|
expr_ref Z(mk_skolem(m_seq_align, y2, xsE, x, y1ys), m);
|
|
expr_ref ZxsE = mk_concat(Z, xsE);
|
|
expr_ref y1ysZ = mk_concat(y1ys, Z);
|
|
if (indexes.empty()) {
|
|
TRACE("seq", tout << "one case\n";);
|
|
TRACE("seq", display_equation(tout, e););
|
|
literal_vector lits;
|
|
dependency* dep = e.dep();
|
|
propagate_eq(dep, lits, x, y1ysZ, true);
|
|
propagate_eq(dep, lits, y2, ZxsE, true);
|
|
}
|
|
else {
|
|
expr_ref ge(m_autil.mk_ge(mk_len(y2), m_autil.mk_int(xs.size())), m);
|
|
literal lit2 = mk_literal(ge);
|
|
if (ctx.get_assignment(lit2) == l_undef) {
|
|
TRACE("seq", tout << "rec case init\n";);
|
|
ctx.mark_as_relevant(lit2);
|
|
ctx.force_phase(lit2);
|
|
}
|
|
else if (ctx.get_assignment(lit2) == l_true) {
|
|
TRACE("seq", tout << "true branch\n";);
|
|
TRACE("seq", display_equation(tout, e););
|
|
literal_vector lits;
|
|
lits.push_back(lit2);
|
|
dependency* dep = e.dep();
|
|
propagate_eq(dep, lits, x, y1ysZ, true);
|
|
propagate_eq(dep, lits, y2, ZxsE, true);
|
|
}
|
|
else {
|
|
return branch_ternary_variable_base(e.dep(), indexes, x, xs, y1, ys, y2);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool theory_seq::branch_ternary_variable_base2(dependency* dep, unsigned_vector indexes,
|
|
expr_ref_vector const& xs, expr* const& x, expr* const& y1, expr_ref_vector const& ys, expr* const& y2) {
|
|
context& ctx = get_context();
|
|
bool change = false;
|
|
for (auto ind : indexes) {
|
|
expr_ref xs1E(m);
|
|
if (ind > 0) {
|
|
xs1E = m_util.str.mk_concat(ind, xs.c_ptr());
|
|
}
|
|
else {
|
|
xs1E = m_util.str.mk_empty(m.get_sort(x));
|
|
}
|
|
literal lit1 = mk_literal(m_autil.mk_le(mk_len(y1), m_autil.mk_int(ind)));
|
|
if (ctx.get_assignment(lit1) == l_undef) {
|
|
TRACE("seq", tout << "base case init\n";);
|
|
ctx.mark_as_relevant(lit1);
|
|
ctx.force_phase(lit1);
|
|
change = true;
|
|
continue;
|
|
}
|
|
else if (ctx.get_assignment(lit1) == l_true) {
|
|
TRACE("seq", tout << "base case: true branch\n";);
|
|
literal_vector lits;
|
|
lits.push_back(lit1);
|
|
propagate_eq(dep, lits, y1, xs1E, true);
|
|
if (xs.size() - ind > ys.size()) {
|
|
expr_ref xs2E(m_util.str.mk_concat(xs.size()-ind-ys.size(), xs.c_ptr()+ind+ys.size()), m);
|
|
expr_ref xs2x = mk_concat(xs2E, x);
|
|
propagate_eq(dep, lits, xs2x, y2, true);
|
|
}
|
|
else if (xs.size() - ind == ys.size()) {
|
|
propagate_eq(dep, lits, x, y2, true);
|
|
}
|
|
else {
|
|
expr_ref ys1E(m_util.str.mk_concat(ys.size()-xs.size()+ind, ys.c_ptr()+xs.size()-ind), m);
|
|
expr_ref ys1y2 = mk_concat(ys1E, y2);
|
|
propagate_eq(dep, lits, x, ys1y2, true);
|
|
}
|
|
return true;
|
|
}
|
|
else {
|
|
TRACE("seq", tout << "base case: false branch\n";);
|
|
continue;
|
|
}
|
|
}
|
|
return change;
|
|
}
|
|
|
|
// Equation is of the form xs ++ x = y1 ++ ys ++ y2 where xs, ys are units.
|
|
bool theory_seq::branch_ternary_variable2(eq const& e, bool flag1) {
|
|
expr_ref_vector xs(m), ys(m);
|
|
expr_ref x(m), y1(m), y2(m);
|
|
bool is_ternary = is_ternary_eq2(e.ls(), e.rs(), xs, x, y1, ys, y2, flag1);
|
|
if (!is_ternary) {
|
|
is_ternary = is_ternary_eq2(e.rs(), e.ls(), xs, x, y1, ys, y2, flag1);
|
|
}
|
|
if (!is_ternary) {
|
|
return false;
|
|
}
|
|
|
|
rational lenX, lenY1, lenY2;
|
|
context& ctx = get_context();
|
|
if (!get_length(x, lenX)) {
|
|
enforce_length(x);
|
|
}
|
|
if (!get_length(y1, lenY1)) {
|
|
enforce_length(y1);
|
|
}
|
|
if (!get_length(y2, lenY2)) {
|
|
enforce_length(y2);
|
|
}
|
|
SASSERT(!xs.empty() && !ys.empty());
|
|
unsigned_vector indexes = overlap2(xs, ys);
|
|
if (branch_ternary_variable_base2(e.dep(), indexes, xs, x, y1, ys, y2))
|
|
return true;
|
|
|
|
// xs ++ x = y1 ++ ys ++ y2 => xs ++ z = y1, x = z ++ ys ++ y2
|
|
expr_ref xsE = mk_concat(xs);
|
|
expr_ref ysE = mk_concat(ys);
|
|
expr_ref ysy2 = mk_concat(ysE, y2);
|
|
expr_ref Z(mk_skolem(m_seq_align, x, ysy2, y1, xsE), m);
|
|
expr_ref xsZ = mk_concat(xsE, Z);
|
|
expr_ref Zysy2 = mk_concat(Z, ysy2);
|
|
if (indexes.empty()) {
|
|
TRACE("seq", tout << "one case\n";);
|
|
TRACE("seq", display_equation(tout, e););
|
|
literal_vector lits;
|
|
dependency* dep = e.dep();
|
|
propagate_eq(dep, lits, x, Zysy2, true);
|
|
propagate_eq(dep, lits, y1, xsZ, true);
|
|
}
|
|
else {
|
|
expr_ref ge(m_autil.mk_ge(mk_len(y1), m_autil.mk_int(xs.size())), m);
|
|
literal lit2 = mk_literal(ge);
|
|
if (ctx.get_assignment(lit2) == l_undef) {
|
|
TRACE("seq", tout << "rec case init\n";);
|
|
ctx.mark_as_relevant(lit2);
|
|
ctx.force_phase(lit2);
|
|
}
|
|
else if (ctx.get_assignment(lit2) == l_true) {
|
|
TRACE("seq", tout << "true branch\n";);
|
|
TRACE("seq", display_equation(tout, e););
|
|
literal_vector lits;
|
|
lits.push_back(lit2);
|
|
dependency* dep = e.dep();
|
|
propagate_eq(dep, lits, x, Zysy2, true);
|
|
propagate_eq(dep, lits, y1, xsZ, true);
|
|
}
|
|
else {
|
|
return branch_ternary_variable_base2(e.dep(), indexes, xs, x, y1, ys, y2);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool theory_seq::branch_quat_variable() {
|
|
for (auto const& e : m_eqs) {
|
|
if (branch_quat_variable(e)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Equation is of the form x1 ++ xs ++ x2 = y1 ++ ys ++ y2 where xs, ys are units.
|
|
bool theory_seq::branch_quat_variable(eq const& e) {
|
|
expr_ref_vector xs(m), ys(m);
|
|
expr_ref x1_l(m), x2(m), y1_l(m), y2(m);
|
|
bool is_quat = is_quat_eq(e.ls(), e.rs(), x1_l, xs, x2, y1_l, ys, y2);
|
|
if (!is_quat) {
|
|
return false;
|
|
}
|
|
|
|
rational lenX1, lenX2, lenY1, lenY2;
|
|
context& ctx = get_context();
|
|
if (!get_length(x1_l, lenX1)) {
|
|
enforce_length(x1_l);
|
|
}
|
|
if (!get_length(y1_l, lenY1)) {
|
|
enforce_length(y1_l);
|
|
}
|
|
if (!get_length(x2, lenX2)) {
|
|
enforce_length(x2);
|
|
}
|
|
if (!get_length(y2, lenY2)) {
|
|
enforce_length(y2);
|
|
}
|
|
SASSERT(!xs.empty() && !ys.empty());
|
|
|
|
xs.push_back(x2);
|
|
expr_ref xsx2 = mk_concat(xs);
|
|
ys.push_back(y2);
|
|
expr_ref ysy2 = mk_concat(ys);
|
|
expr_ref x1(x1_l, m);
|
|
expr_ref y1(y1_l, m);
|
|
expr_ref sub(mk_sub(mk_len(x1_l), mk_len(y1_l)), m);
|
|
expr_ref le(m_autil.mk_le(sub, m_autil.mk_int(0)), m);
|
|
literal lit2 = mk_literal(le);
|
|
if (ctx.get_assignment(lit2) == l_undef) {
|
|
TRACE("seq", tout << "init branch\n";);
|
|
TRACE("seq", display_equation(tout, e););
|
|
ctx.mark_as_relevant(lit2);
|
|
ctx.force_phase(lit2);
|
|
}
|
|
else if (ctx.get_assignment(lit2) == l_false) {
|
|
// |x1| > |y1| => x1 = y1 ++ z1, z1 ++ xs ++ x2 = ys ++ y2
|
|
TRACE("seq", tout << "false branch\n";);
|
|
TRACE("seq", display_equation(tout, e););
|
|
expr_ref Z1(mk_skolem(m_seq_align, ysy2, xsx2, x1, y1), m);
|
|
expr_ref y1Z1 = mk_concat(y1, Z1);
|
|
expr_ref Z1xsx2 = mk_concat(Z1, xsx2);
|
|
literal_vector lits;
|
|
lits.push_back(~lit2);
|
|
dependency* dep = e.dep();
|
|
propagate_eq(dep, lits, x1, y1Z1, true);
|
|
propagate_eq(dep, lits, Z1xsx2, ysy2, true);
|
|
}
|
|
else if (ctx.get_assignment(lit2) == l_true) {
|
|
// |x1| <= |y1| => x1 ++ z2 = y1, xs ++ x2 = z2 ++ ys ++ y2
|
|
TRACE("seq", tout << "true branch\n";);
|
|
TRACE("seq", display_equation(tout, e););
|
|
expr_ref Z2(mk_skolem(m_seq_align, xsx2, ysy2, y1, x1), m);
|
|
expr_ref x1Z2 = mk_concat(x1, Z2);
|
|
expr_ref Z2ysy2 = mk_concat(Z2, ysy2);
|
|
literal_vector lits;
|
|
lits.push_back(lit2);
|
|
dependency* dep = e.dep();
|
|
propagate_eq(dep, lits, x1Z2, y1, true);
|
|
propagate_eq(dep, lits, xsx2, Z2ysy2, true);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void theory_seq::len_offset(expr* e, rational val) {
|
|
context & ctx = get_context();
|
|
expr *l1 = nullptr, *l2 = nullptr, *l21 = nullptr, *l22 = nullptr;
|
|
rational fact;
|
|
if (m_autil.is_add(e, l1, l2) && m_autil.is_mul(l2, l21, l22) &&
|
|
m_autil.is_numeral(l21, fact) && fact.is_minus_one()) {
|
|
if (ctx.e_internalized(l1) && ctx.e_internalized(l22)) {
|
|
enode* r1 = get_root(l1), *n1 = r1;
|
|
enode* r2 = get_root(l22), *n2 = r2;
|
|
expr *e1 = nullptr, *e2 = nullptr;
|
|
do {
|
|
if (m_util.str.is_length(n1->get_owner(), e1))
|
|
break;
|
|
n1 = n1->get_next();
|
|
}
|
|
while (n1 != r1);
|
|
do {
|
|
if (m_util.str.is_length(n2->get_owner(), e2))
|
|
break;
|
|
n2 = n2->get_next();
|
|
}
|
|
while (n2 != r2);
|
|
obj_map<enode, int> tmp;
|
|
if (m_util.str.is_length(n1->get_owner(), e1)
|
|
&& m_util.str.is_length(n2->get_owner(), e2) &&
|
|
m_len_offset.find(r1, tmp)) {
|
|
tmp.insert(r2, val.get_int32());
|
|
m_len_offset.insert(r1, tmp);
|
|
TRACE("seq", tout << "a length pair: " << mk_pp(e1, m) << ", " << mk_pp(e2, m) << "\n";);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find the length offset from the congruence closure core
|
|
void theory_seq::prop_arith_to_len_offset() {
|
|
context & ctx = get_context();
|
|
obj_hashtable<enode> const_set;
|
|
ptr_vector<enode>::const_iterator it = ctx.begin_enodes();
|
|
ptr_vector<enode>::const_iterator end = ctx.end_enodes();
|
|
for (; it != end; ++it) {
|
|
enode * root = (*it)->get_root();
|
|
rational val;
|
|
if (m_autil.is_numeral(root->get_owner(), val) && val.is_neg()) {
|
|
if (const_set.contains(root)) continue;
|
|
const_set.insert(root);
|
|
TRACE("seq", tout << "offset: " << mk_pp(root->get_owner(), m) << "\n";);
|
|
enode *next = root->get_next();
|
|
while (next != root) {
|
|
TRACE("seq", tout << "eqc: " << mk_pp(next->get_owner(), m) << "\n";);
|
|
len_offset(next->get_owner(), val);
|
|
next = next->get_next();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int theory_seq::find_fst_non_empty_idx(expr_ref_vector const& xs) const {
|
|
context & ctx = get_context();
|
|
for (unsigned i = 0; i < xs.size(); ++i) {
|
|
expr* x = xs[i];
|
|
if (!is_var(x)) return -1;
|
|
expr_ref e = mk_len(x);
|
|
if (ctx.e_internalized(e)) {
|
|
enode* root = ctx.get_enode(e)->get_root();
|
|
rational val;
|
|
if (m_autil.is_numeral(root->get_owner(), val) && val.is_zero()) {
|
|
continue;
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
expr* theory_seq::find_fst_non_empty_var(expr_ref_vector const& x) const {
|
|
int i = find_fst_non_empty_idx(x);
|
|
if (i >= 0)
|
|
return x[i];
|
|
return nullptr;
|
|
}
|
|
|
|
void theory_seq::find_max_eq_len(expr_ref_vector const& ls, expr_ref_vector const& rs) {
|
|
context& ctx = get_context();
|
|
if (ls.size() >= 2 && rs.size() >= 2) {
|
|
expr_ref len1(m_autil.mk_int(0), m), len2(m_autil.mk_int(0), m);
|
|
int l_fst = find_fst_non_empty_idx(ls);
|
|
int r_fst = find_fst_non_empty_idx(rs);
|
|
if (l_fst<0 || r_fst<0)
|
|
return;
|
|
unsigned j = 2 + l_fst;
|
|
rational lo1(-1), hi1(-1), lo2(-1), hi2(-1);
|
|
if (j >= ls.size()) {
|
|
lo1 = 0;
|
|
hi1 = 0;
|
|
}
|
|
while (j < ls.size()) {
|
|
rational lo(-1), hi(-1);
|
|
if (m_util.str.is_unit(ls.get(j))) {
|
|
lo = 1;
|
|
hi = 1;
|
|
}
|
|
else {
|
|
expr_ref len_s = mk_len(ls.get(j));
|
|
lower_bound(len_s, lo);
|
|
upper_bound(len_s, hi);
|
|
}
|
|
if (!lo.is_minus_one()) {
|
|
if (lo1.is_minus_one())
|
|
lo1 = lo;
|
|
else
|
|
lo1 += lo;
|
|
}
|
|
if (!hi.is_minus_one()) {
|
|
if (hi1.is_minus_one())
|
|
hi1 = hi;
|
|
else if (hi1.is_nonneg())
|
|
hi1 += hi;
|
|
}
|
|
else {
|
|
hi1 = rational(-2);
|
|
}
|
|
len1 = mk_add(len1, mk_len(ls.get(j)));
|
|
j++;
|
|
}
|
|
j = 2 + r_fst;
|
|
if (j >= rs.size()) {
|
|
lo2 = 0;
|
|
hi2 = 0;
|
|
}
|
|
while (j < rs.size()) {
|
|
rational lo(-1), hi(-1);
|
|
if (m_util.str.is_unit(rs.get(j))) {
|
|
lo = 1;
|
|
hi = 1;
|
|
}
|
|
else {
|
|
expr_ref len_s = mk_len(rs.get(j));
|
|
lower_bound(len_s, lo);
|
|
upper_bound(len_s, hi);
|
|
}
|
|
if (!lo.is_minus_one()) {
|
|
if (lo2.is_minus_one())
|
|
lo2 = lo;
|
|
else
|
|
lo2 += lo;
|
|
}
|
|
if (!hi.is_minus_one()) {
|
|
if (hi2.is_minus_one())
|
|
hi2 = hi;
|
|
else if (hi1.is_nonneg())
|
|
hi2 += hi;
|
|
}
|
|
else {
|
|
hi2 = rational(-2);
|
|
}
|
|
len2 = mk_add(len2, mk_len(rs.get(j)));
|
|
j++;
|
|
}
|
|
if (m_autil.is_numeral(len1) && m_autil.is_numeral(len2))
|
|
return;
|
|
TRACE("seq", tout << lo1 << ", " << hi1 << ", " << lo2 << ", " << hi2 << "\n";);
|
|
if (!lo1.is_neg() && !hi2.is_neg() && lo1 > hi2)
|
|
return;
|
|
if (!lo2.is_neg() && !hi1.is_neg() && lo2 > hi1)
|
|
return;
|
|
|
|
literal lit1 = null_literal;
|
|
if (hi1.is_zero()) {
|
|
if (!is_var(rs[1 + r_fst]))
|
|
return;
|
|
lit1 = mk_literal(m_autil.mk_le(len2, len1));
|
|
TRACE("seq", tout << mk_pp(len1, m) << " >= " << mk_pp(len2, m) << "\n";);
|
|
}
|
|
else if (hi2.is_zero()) {
|
|
if (!is_var(ls[1 + l_fst]))
|
|
return;
|
|
lit1 = mk_literal(m_autil.mk_le(len1, len2));
|
|
TRACE("seq", tout << mk_pp(len1, m) << " <= " << mk_pp(len2, m) << "\n";);
|
|
}
|
|
else {
|
|
lit1 = mk_eq(len1, len2, false);
|
|
TRACE("seq", tout << mk_pp(len1, m) << " = " << mk_pp(len2, m) << "\n";);
|
|
}
|
|
if (ctx.get_assignment(lit1) == l_undef) {
|
|
ctx.mark_as_relevant(lit1);
|
|
ctx.force_phase(lit1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: propagate length offsets for last vars
|
|
bool theory_seq::find_better_rep(expr_ref_vector const& ls, expr_ref_vector const& rs, unsigned idx,
|
|
dependency*& deps, expr_ref_vector & res) {
|
|
context& ctx = get_context();
|
|
|
|
if (ls.empty() || rs.empty())
|
|
return false;
|
|
expr* l_fst = find_fst_non_empty_var(ls);
|
|
expr* r_fst = find_fst_non_empty_var(rs);
|
|
if (!r_fst) return false;
|
|
expr_ref len_r_fst = mk_len(r_fst);
|
|
expr_ref len_l_fst(m);
|
|
enode * root2;
|
|
if (!ctx.e_internalized(len_r_fst)) {
|
|
return false;
|
|
}
|
|
if (l_fst) {
|
|
len_l_fst = mk_len(l_fst);
|
|
}
|
|
|
|
root2 = get_root(len_r_fst);
|
|
|
|
// Offset = 0, No change
|
|
if (l_fst && get_root(len_l_fst) == root2) {
|
|
TRACE("seq", tout << "(" << mk_pp(l_fst, m) << ", " << mk_pp(r_fst,m) << ")\n";);
|
|
return false;
|
|
}
|
|
|
|
// Offset = 0, Changed
|
|
|
|
for (unsigned i = 0; i < idx; ++i) {
|
|
eq const& e = m_eqs[i];
|
|
if (e.ls() != ls) continue;
|
|
expr* nl_fst = nullptr;
|
|
if (e.rs().size() > 1 && is_var(e.rs().get(0)))
|
|
nl_fst = e.rs().get(0);
|
|
if (nl_fst && nl_fst != r_fst && root2 == get_root(mk_len(nl_fst))) {
|
|
res.reset();
|
|
res.append(e.rs().size(), e.rs().c_ptr());
|
|
deps = m_dm.mk_join(e.dep(), deps);
|
|
return true;
|
|
}
|
|
}
|
|
// Offset != 0, No change
|
|
if (l_fst && ctx.e_internalized(len_l_fst)) {
|
|
enode * root1 = get_root(len_l_fst);
|
|
obj_map<enode, int> tmp;
|
|
int offset;
|
|
if (!m_autil.is_numeral(root1->get_owner()) && !m_autil.is_numeral(root2->get_owner())) {
|
|
if (m_len_offset.find(root1, tmp) && tmp.find(root2, offset)) {
|
|
TRACE("seq", tout << "(" << mk_pp(l_fst, m) << ", " << mk_pp(r_fst,m) << ")\n";);
|
|
find_max_eq_len(ls, rs);
|
|
return false;
|
|
}
|
|
else if (m_len_offset.find(root2, tmp) && tmp.find(root1, offset)) {
|
|
TRACE("seq", tout << "(" << mk_pp(r_fst, m) << ", " << mk_pp(l_fst,m) << ")\n";);
|
|
find_max_eq_len(ls ,rs);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
// Offset != 0, Changed
|
|
obj_map<enode, int> tmp;
|
|
if (!m_autil.is_numeral(root2->get_owner()) && m_len_offset.find(root2, tmp)) {
|
|
for (unsigned i = 0; i < idx; ++i) {
|
|
eq const& e = m_eqs[i];
|
|
if (e.ls() != ls) continue;
|
|
expr* nl_fst = nullptr;
|
|
if (e.rs().size()>1 && is_var(e.rs().get(0)))
|
|
nl_fst = e.rs().get(0);
|
|
if (nl_fst && nl_fst != r_fst) {
|
|
int offset;
|
|
expr_ref len_nl_fst = mk_len(nl_fst);
|
|
if (ctx.e_internalized(len_nl_fst)) {
|
|
enode * root1 = ctx.get_enode(len_nl_fst)->get_root();
|
|
if (!m_autil.is_numeral(root1->get_owner()) && tmp.find(root1, offset)) {
|
|
res.reset();
|
|
res.append(e.rs().size(), e.rs().c_ptr());
|
|
deps = m_dm.mk_join(e.dep(), deps);
|
|
find_max_eq_len(res, rs);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::has_len_offset(expr_ref_vector const& ls, expr_ref_vector const& rs, int & offset) {
|
|
context& ctx = get_context();
|
|
|
|
if (ls.empty() || rs.empty())
|
|
return false;
|
|
expr* l_fst = ls[0];
|
|
expr* r_fst = rs[0];
|
|
if (!is_var(l_fst) || !is_var(r_fst))
|
|
return false;
|
|
|
|
expr_ref len_l_fst = mk_len(l_fst);
|
|
if (!ctx.e_internalized(len_l_fst))
|
|
return false;
|
|
enode * root1 = ctx.get_enode(len_l_fst)->get_root();
|
|
|
|
expr_ref len_r_fst = mk_len(r_fst);
|
|
if (!ctx.e_internalized(len_r_fst))
|
|
return false;
|
|
enode* root2 = ctx.get_enode(len_r_fst)->get_root();
|
|
|
|
if (root1 == root2) {
|
|
TRACE("seq", tout << "(" << mk_pp(l_fst, m) << ", " << mk_pp(r_fst,m) << ")\n";);
|
|
offset = 0;
|
|
return true;
|
|
}
|
|
|
|
if (m_autil.is_numeral(root1->get_owner()) || m_autil.is_numeral(root2->get_owner()))
|
|
return false;
|
|
|
|
obj_map<enode, int> tmp;
|
|
if (m_len_offset.find(root1, tmp) && tmp.find(root2, offset)) {
|
|
TRACE("seq", tout << "(" << mk_pp(l_fst, m) << ", " << mk_pp(r_fst,m) << ")\n";);
|
|
return true;
|
|
}
|
|
if (m_len_offset.find(root2, tmp) && tmp.find(root1, offset)) {
|
|
offset = -offset;
|
|
TRACE("seq", tout << "(" << mk_pp(r_fst, m) << ", " << mk_pp(l_fst,m) << ")\n";);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::len_based_split() {
|
|
unsigned sz = m_eqs.size();
|
|
if (sz == 0)
|
|
return false;
|
|
|
|
if ((int) get_context().get_scope_level() > m_len_prop_lvl) {
|
|
m_len_prop_lvl = get_context().get_scope_level();
|
|
prop_arith_to_len_offset();
|
|
if (!m_len_offset.empty()) {
|
|
for (unsigned i = sz-1; i > 0; --i) {
|
|
eq const& e = m_eqs[i];
|
|
expr_ref_vector new_ls(m);
|
|
dependency *deps = e.dep();
|
|
if (find_better_rep(e.ls(), e.rs(), i, deps, new_ls)) {
|
|
expr_ref_vector rs(m);
|
|
rs.append(e.rs().size(), e.rs().c_ptr());
|
|
m_eqs.set(i, eq(m_eq_id++, new_ls, rs, deps));
|
|
TRACE("seq", display_equation(tout, m_eqs[i]););
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto const& e : m_eqs) {
|
|
if (len_based_split(e)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::len_based_split(eq const& e) {
|
|
context& ctx = get_context();
|
|
expr_ref_vector const& ls = e.ls();
|
|
expr_ref_vector const& rs = e.rs();
|
|
|
|
int offset_orig = 0;
|
|
if (!has_len_offset(ls, rs, offset_orig))
|
|
return false;
|
|
|
|
TRACE("seq", tout << "split based on length\n";);
|
|
TRACE("seq", display_equation(tout, e););
|
|
expr_ref x11(m_util.str.mk_concat(1, ls.c_ptr()), m);
|
|
expr_ref x12(m_util.str.mk_concat(ls.size()-1, ls.c_ptr()+1), m);
|
|
expr_ref y11(m_util.str.mk_concat(1, rs.c_ptr()), m);
|
|
expr_ref y12(m_util.str.mk_concat(rs.size()-1, rs.c_ptr()+1), m);
|
|
|
|
expr_ref lenX11 = mk_len(x11);
|
|
expr_ref lenY11(m);
|
|
expr_ref Z(m);
|
|
int offset = 0;
|
|
if (offset_orig != 0) {
|
|
lenY11 = m_autil.mk_add(mk_len(y11), m_autil.mk_int(offset_orig));
|
|
if (offset_orig > 0) {
|
|
offset = offset_orig;
|
|
Z = mk_skolem(m_seq_align, y12, x12, x11, y11);
|
|
y11 = mk_concat(y11, Z);
|
|
x12 = mk_concat(Z, x12);
|
|
}
|
|
else {
|
|
offset = -offset_orig;
|
|
Z = mk_skolem(m_seq_align, x12, y12, y11, x11);
|
|
x11 = mk_concat(x11, Z);
|
|
y12 = mk_concat(Z, y12);
|
|
}
|
|
}
|
|
else {
|
|
lenY11 = mk_len(y11);
|
|
}
|
|
|
|
dependency* dep = e.dep();
|
|
literal_vector lits;
|
|
literal lit1 = mk_eq(lenX11, lenY11, false);
|
|
if (ctx.get_assignment(lit1) != l_true) {
|
|
return false;
|
|
}
|
|
lits.push_back(lit1);
|
|
|
|
if (ls.size() >= 2 && rs.size() >= 2 && (ls.size() > 2 || rs.size() > 2)) {
|
|
expr_ref len1(m_autil.mk_int(0),m), len2(m_autil.mk_int(0),m);
|
|
for (unsigned i = 2; i < ls.size(); ++i) {
|
|
len1 = mk_add(len1, mk_len(ls[i]));
|
|
}
|
|
for (unsigned i = 2; i < rs.size(); ++i) {
|
|
len2 = mk_add(len2, mk_len(rs[i]));
|
|
}
|
|
literal lit2;
|
|
if (!m_autil.is_numeral(len1) && !m_autil.is_numeral(len2)) {
|
|
lit2 = mk_eq(len1, len2, false);
|
|
}
|
|
else {
|
|
expr_ref eq_len(m.mk_eq(len1, len2), m);
|
|
lit2 = mk_literal(eq_len);
|
|
}
|
|
|
|
if (ctx.get_assignment(lit2) == l_true) {
|
|
lits.push_back(lit2);
|
|
TRACE("seq", tout << mk_pp(len1, m) << " = " << mk_pp(len2, m) << "\n";);
|
|
expr_ref lhs(m), rhs(m);
|
|
if (ls.size() > 2)
|
|
lhs = m_util.str.mk_concat(ls.size()-2, ls.c_ptr()+2);
|
|
else
|
|
lhs = m_util.str.mk_empty(m.get_sort(x11));
|
|
if (rs.size() > 2)
|
|
rhs = m_util.str.mk_concat(rs.size()-2, rs.c_ptr()+2);
|
|
else
|
|
rhs = m_util.str.mk_empty(m.get_sort(x11));
|
|
propagate_eq(dep, lits, lhs, rhs, true);
|
|
lits.pop_back();
|
|
}
|
|
}
|
|
|
|
if (offset != 0) {
|
|
expr_ref lenZ = mk_len(Z);
|
|
propagate_eq(dep, lits, lenZ, m_autil.mk_int(offset), false);
|
|
}
|
|
propagate_eq(dep, lits, y11, x11, true);
|
|
propagate_eq(dep, lits, x12, y12, false);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool theory_seq::branch_variable_mb() {
|
|
bool change = false;
|
|
for (auto const& e : m_eqs) {
|
|
vector<rational> len1, len2;
|
|
if (!is_complex(e)) {
|
|
continue;
|
|
}
|
|
if (e.ls().empty() || e.rs().empty() ||
|
|
(!is_var(e.ls()[0]) && !is_var(e.rs()[0]))) {
|
|
continue;
|
|
}
|
|
|
|
if (!enforce_length(e.ls(), len1) || !enforce_length(e.rs(), len2)) {
|
|
change = true;
|
|
continue;
|
|
}
|
|
rational l1, l2;
|
|
for (const auto& elem : len1) l1 += elem;
|
|
for (const auto& elem : len2) l2 += elem;
|
|
if (l1 != l2) {
|
|
TRACE("seq", tout << "lengths are not compatible\n";);
|
|
expr_ref l = mk_concat(e.ls());
|
|
expr_ref r = mk_concat(e.rs());
|
|
expr_ref lnl = mk_len(l), lnr = mk_len(r);
|
|
propagate_eq(e.dep(), lnl, lnr, false);
|
|
change = true;
|
|
continue;
|
|
}
|
|
if (split_lengths(e.dep(), e.ls(), e.rs(), len1, len2)) {
|
|
TRACE("seq", tout << "split lengths\n";);
|
|
change = true;
|
|
break;
|
|
}
|
|
}
|
|
CTRACE("seq", change, tout << "branch_variable_mb\n";);
|
|
return change;
|
|
}
|
|
|
|
|
|
bool theory_seq::is_complex(eq const& e) {
|
|
unsigned num_vars1 = 0, num_vars2 = 0;
|
|
for (auto const& elem : e.ls()) {
|
|
if (is_var(elem)) ++num_vars1;
|
|
}
|
|
for (auto const& elem : e.rs()) {
|
|
if (is_var(elem)) ++num_vars2;
|
|
}
|
|
return num_vars1 > 0 && num_vars2 > 0 && num_vars1 + num_vars2 > 2;
|
|
}
|
|
|
|
/*
|
|
\brief Decompose ls = rs into Xa = bYc, such that
|
|
1.
|
|
- X != Y
|
|
- |b| <= |X| <= |bY| in current model
|
|
- b is non-empty.
|
|
2. X != Y
|
|
- b is empty
|
|
- |X| <= |Y|
|
|
3. |X| = 0
|
|
- propagate X = empty
|
|
*/
|
|
bool theory_seq::split_lengths(dependency* dep,
|
|
expr_ref_vector const& ls, expr_ref_vector const& rs,
|
|
vector<rational> const& ll, vector<rational> const& rl) {
|
|
context& ctx = get_context();
|
|
expr_ref X(m), Y(m), b(m);
|
|
if (ls.empty() || rs.empty()) {
|
|
return false;
|
|
}
|
|
if (is_var(ls[0]) && ll[0].is_zero()) {
|
|
return set_empty(ls[0]);
|
|
}
|
|
if (is_var(rs[0]) && rl[0].is_zero()) {
|
|
return set_empty(rs[0]);
|
|
}
|
|
if (is_var(rs[0]) && !is_var(ls[0])) {
|
|
return split_lengths(dep, rs, ls, rl, ll);
|
|
}
|
|
if (!is_var(ls[0])) {
|
|
return false;
|
|
}
|
|
X = ls[0];
|
|
rational lenX = ll[0];
|
|
expr_ref_vector bs(m);
|
|
SASSERT(lenX.is_pos());
|
|
rational lenB(0), lenY(0);
|
|
for (unsigned i = 0; lenX > lenB && i < rs.size(); ++i) {
|
|
bs.push_back(rs[i]);
|
|
lenY = rl[i];
|
|
lenB += lenY;
|
|
}
|
|
SASSERT(lenX <= lenB);
|
|
SASSERT(!bs.empty());
|
|
Y = bs.back();
|
|
bs.pop_back();
|
|
if (!is_var(Y) && !m_util.str.is_unit(Y)) {
|
|
TRACE("seq", tout << "TBD: non variable or unit split: " << Y << "\n";);
|
|
return false;
|
|
}
|
|
if (X == Y) {
|
|
TRACE("seq", tout << "Cycle: " << X << "\n";);
|
|
return false;
|
|
}
|
|
if (lenY.is_zero()) {
|
|
return set_empty(Y);
|
|
}
|
|
b = mk_concat(bs, m.get_sort(X));
|
|
|
|
SASSERT(X != Y);
|
|
|
|
|
|
// |b| < |X| <= |b| + |Y| => x = bY1, Y = Y1Y2
|
|
expr_ref lenXE = mk_len(X);
|
|
expr_ref lenYE = mk_len(Y);
|
|
expr_ref lenb = mk_len(b);
|
|
expr_ref le1(m_autil.mk_le(mk_sub(lenXE, lenb), m_autil.mk_int(0)), m);
|
|
expr_ref le2(m_autil.mk_le(mk_sub(mk_sub(lenXE, lenb), lenYE),
|
|
m_autil.mk_int(0)), m);
|
|
literal lit1(~mk_literal(le1));
|
|
literal lit2(mk_literal(le2));
|
|
literal_vector lits;
|
|
lits.push_back(lit1);
|
|
lits.push_back(lit2);
|
|
|
|
if (ctx.get_assignment(lit1) != l_true ||
|
|
ctx.get_assignment(lit2) != l_true) {
|
|
ctx.mark_as_relevant(lit1);
|
|
ctx.mark_as_relevant(lit2);
|
|
}
|
|
else if (m_util.str.is_unit(Y)) {
|
|
SASSERT(lenB == lenX);
|
|
bs.push_back(Y);
|
|
expr_ref bY(m_util.str.mk_concat(bs), m);
|
|
propagate_eq(dep, lits, X, bY, true);
|
|
}
|
|
else {
|
|
SASSERT(is_var(Y));
|
|
expr_ref Y1(mk_skolem(symbol("seq.left"), X, b, Y), m);
|
|
expr_ref Y2(mk_skolem(symbol("seq.right"), X, b, Y), m);
|
|
expr_ref bY1 = mk_concat(b, Y1);
|
|
expr_ref Y1Y2 = mk_concat(Y1, Y2);
|
|
propagate_eq(dep, lits, X, bY1, true);
|
|
propagate_eq(dep, lits, Y, Y1Y2, true);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool theory_seq::set_empty(expr* x) {
|
|
add_axiom(~mk_eq(m_autil.mk_int(0), mk_len(x), false), mk_eq_empty(x));
|
|
return true;
|
|
}
|
|
|
|
bool theory_seq::enforce_length(expr_ref_vector const& es, vector<rational> & len) {
|
|
bool all_have_length = true;
|
|
rational val;
|
|
zstring s;
|
|
for (expr* e : es) {
|
|
if (m_util.str.is_unit(e)) {
|
|
len.push_back(rational(1));
|
|
}
|
|
else if (m_util.str.is_empty(e)) {
|
|
len.push_back(rational(0));
|
|
}
|
|
else if (m_util.str.is_string(e, s)) {
|
|
len.push_back(rational(s.length()));
|
|
}
|
|
else if (get_length(e, val)) {
|
|
len.push_back(val);
|
|
}
|
|
else {
|
|
enforce_length(e);
|
|
all_have_length = false;
|
|
}
|
|
}
|
|
return all_have_length;
|
|
}
|
|
|
|
bool theory_seq::branch_variable() {
|
|
context& ctx = get_context();
|
|
unsigned sz = m_eqs.size();
|
|
int start = ctx.get_random_value();
|
|
|
|
for (unsigned i = 0; i < sz; ++i) {
|
|
unsigned k = (i + start) % sz;
|
|
eq const& e = m_eqs[k];
|
|
|
|
if (branch_variable(e)) {
|
|
TRACE("seq", tout << "branch variable\n";);
|
|
return true;
|
|
}
|
|
|
|
#if 0
|
|
if (!has_length(e.ls())) {
|
|
enforce_length(e.ls());
|
|
}
|
|
if (!has_length(e.rs())) {
|
|
enforce_length(e.rs());
|
|
}
|
|
#endif
|
|
}
|
|
return ctx.inconsistent();
|
|
}
|
|
|
|
bool theory_seq::branch_variable(eq const& e) {
|
|
unsigned id = e.id();
|
|
unsigned s = find_branch_start(2*id);
|
|
TRACE("seq", tout << s << " " << id << ": " << e.ls() << " = " << e.rs() << "\n";);
|
|
bool found = find_branch_candidate(s, e.dep(), e.ls(), e.rs());
|
|
insert_branch_start(2*id, s);
|
|
if (found) {
|
|
return true;
|
|
}
|
|
s = find_branch_start(2*id + 1);
|
|
found = find_branch_candidate(s, e.dep(), e.rs(), e.ls());
|
|
insert_branch_start(2*id + 1, s);
|
|
|
|
return found;
|
|
}
|
|
|
|
void theory_seq::insert_branch_start(unsigned k, unsigned s) {
|
|
m_branch_start.insert(k, s);
|
|
m_trail_stack.push(pop_branch(k));
|
|
}
|
|
|
|
unsigned theory_seq::find_branch_start(unsigned k) {
|
|
unsigned s = 0;
|
|
if (m_branch_start.find(k, s)) {
|
|
return s;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
expr_ref_vector theory_seq::expand_strings(expr_ref_vector const& es) {
|
|
expr_ref_vector ls(m);
|
|
for (expr* e : es) {
|
|
zstring s;
|
|
if (m_util.str.is_string(e, s)) {
|
|
for (unsigned i = 0; i < s.length(); ++i) {
|
|
ls.push_back(m_util.str.mk_unit(m_util.str.mk_char(s, i)));
|
|
}
|
|
}
|
|
else {
|
|
ls.push_back(e);
|
|
}
|
|
}
|
|
return ls;
|
|
}
|
|
|
|
bool theory_seq::find_branch_candidate(unsigned& start, dependency* dep, expr_ref_vector const& _ls, expr_ref_vector const& _rs) {
|
|
expr_ref_vector ls = expand_strings(_ls);
|
|
expr_ref_vector rs = expand_strings(_rs);
|
|
|
|
if (ls.empty()) {
|
|
return false;
|
|
}
|
|
expr* l = ls.get(0);
|
|
|
|
if (!is_var(l)) {
|
|
return false;
|
|
}
|
|
|
|
TRACE("seq", tout << mk_pp(l, m) << ": " << get_context().get_scope_level() << " - start:" << start << "\n";);
|
|
|
|
expr_ref v0(m);
|
|
v0 = m_util.str.mk_empty(m.get_sort(l));
|
|
if (can_be_equal(ls.size() - 1, ls.c_ptr() + 1, rs.size(), rs.c_ptr())) {
|
|
if (l_false != assume_equality(l, v0)) {
|
|
TRACE("seq", tout << mk_pp(l, m) << " " << v0 << "\n";);
|
|
return true;
|
|
}
|
|
}
|
|
for (; start < rs.size(); ++start) {
|
|
unsigned j = start;
|
|
SASSERT(!m_util.str.is_concat(rs.get(j)));
|
|
SASSERT(!m_util.str.is_string(rs.get(j)));
|
|
if (l == rs.get(j)) {
|
|
return false;
|
|
}
|
|
if (!can_be_equal(ls.size() - 1, ls.c_ptr() + 1, rs.size() - j - 1, rs.c_ptr() + j + 1)) {
|
|
continue;
|
|
}
|
|
v0 = mk_concat(j + 1, rs.c_ptr());
|
|
if (l_false != assume_equality(l, v0)) {
|
|
TRACE("seq", tout << mk_pp(l, m) << " " << v0 << "\n";);
|
|
++start;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool all_units = true;
|
|
for (expr* r : rs) {
|
|
if (!m_util.str.is_unit(r)) {
|
|
all_units = false;
|
|
break;
|
|
}
|
|
}
|
|
if (all_units) {
|
|
context& ctx = get_context();
|
|
literal_vector lits;
|
|
lits.push_back(~mk_eq_empty(l));
|
|
for (unsigned i = 0; i < rs.size(); ++i) {
|
|
if (can_be_equal(ls.size() - 1, ls.c_ptr() + 1, rs.size() - i - 1, rs.c_ptr() + i + 1)) {
|
|
v0 = mk_concat(i + 1, rs.c_ptr());
|
|
lits.push_back(~mk_eq(l, v0, false));
|
|
}
|
|
}
|
|
for (literal lit : lits) {
|
|
switch (ctx.get_assignment(lit)) {
|
|
case l_true: break;
|
|
case l_false: start = 0; return true;
|
|
case l_undef: ctx.force_phase(~lit); start = 0; return true;
|
|
}
|
|
}
|
|
set_conflict(dep, lits);
|
|
TRACE("seq",
|
|
tout << "start: " << start << "\n";
|
|
for (literal lit : lits) {
|
|
ctx.display_literal_verbose(tout << lit << ": ", lit) << "\n";
|
|
ctx.display(tout, ctx.get_justification(lit.var())); tout << "\n";
|
|
});
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::can_be_equal(unsigned szl, expr* const* ls, unsigned szr, expr* const* rs) const {
|
|
unsigned i = 0;
|
|
for (; i < szl && i < szr; ++i) {
|
|
if (m.are_distinct(ls[i], rs[i])) {
|
|
return false;
|
|
}
|
|
if (!m.are_equal(ls[i], rs[i])) {
|
|
break;
|
|
}
|
|
}
|
|
if (i == szr) {
|
|
std::swap(ls, rs);
|
|
std::swap(szl, szr);
|
|
}
|
|
if (i == szl && i < szr) {
|
|
for (; i < szr; ++i) {
|
|
if (m_util.str.is_unit(rs[i])) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
lbool theory_seq::assume_equality(expr* l, expr* r) {
|
|
context& ctx = get_context();
|
|
if (m_exclude.contains(l, r)) {
|
|
return l_false;
|
|
}
|
|
|
|
expr_ref eq(m.mk_eq(l, r), m);
|
|
m_rewrite(eq);
|
|
if (m.is_true(eq)) {
|
|
return l_true;
|
|
}
|
|
if (m.is_false(eq)) {
|
|
return l_false;
|
|
}
|
|
|
|
TRACE("seq", tout << mk_pp(l, m) << " = " << mk_pp(r, m) << "\n";);
|
|
enode* n1 = ensure_enode(l);
|
|
enode* n2 = ensure_enode(r);
|
|
if (n1->get_root() == n2->get_root()) {
|
|
return l_true;
|
|
}
|
|
if (ctx.is_diseq(n1, n2)) {
|
|
return l_false;
|
|
}
|
|
if (false && ctx.is_diseq_slow(n1, n2)) {
|
|
return l_false;
|
|
}
|
|
ctx.mark_as_relevant(n1);
|
|
ctx.mark_as_relevant(n2);
|
|
if (!ctx.assume_eq(n1, n2)) {
|
|
return l_false;
|
|
}
|
|
return ctx.get_assignment(mk_eq(l, r, false));
|
|
}
|
|
|
|
|
|
bool theory_seq::propagate_length_coherence(expr* e) {
|
|
expr_ref head(m), tail(m);
|
|
rational lo, hi;
|
|
|
|
if (!is_var(e) || !m_rep.is_root(e)) {
|
|
return false;
|
|
}
|
|
if (!lower_bound2(e, lo) || !lo.is_pos() || lo >= rational(2048)) {
|
|
return false;
|
|
}
|
|
TRACE("seq", tout << "Unsolved " << mk_pp(e, m);
|
|
if (!lower_bound2(e, lo)) lo = -rational::one();
|
|
if (!upper_bound(mk_len(e), hi)) hi = -rational::one();
|
|
tout << " lo: " << lo << " hi: " << hi << "\n";
|
|
);
|
|
|
|
expr_ref seq(e, m);
|
|
expr_ref_vector elems(m);
|
|
unsigned _lo = lo.get_unsigned();
|
|
for (unsigned j = 0; j < _lo; ++j) {
|
|
mk_decompose(seq, head, tail);
|
|
elems.push_back(head);
|
|
seq = tail;
|
|
}
|
|
expr_ref emp(m_util.str.mk_empty(m.get_sort(e)), m);
|
|
elems.push_back(seq);
|
|
tail = mk_concat(elems.size(), elems.c_ptr());
|
|
// len(e) >= low => e = tail;
|
|
literal low(mk_literal(m_autil.mk_ge(mk_len(e), m_autil.mk_numeral(lo, true))));
|
|
add_axiom(~low, mk_seq_eq(e, tail));
|
|
expr_ref len_e = mk_len(e);
|
|
if (upper_bound(len_e, hi)) {
|
|
// len(e) <= hi => len(tail) <= hi - lo
|
|
expr_ref high1(m_autil.mk_le(len_e, m_autil.mk_numeral(hi, true)), m);
|
|
if (hi == lo) {
|
|
add_axiom(~mk_literal(high1), mk_seq_eq(seq, emp));
|
|
}
|
|
else {
|
|
expr_ref high2(m_autil.mk_le(mk_len(seq), m_autil.mk_numeral(hi-lo, true)), m);
|
|
add_axiom(~mk_literal(high1), mk_literal(high2));
|
|
}
|
|
}
|
|
else {
|
|
assume_equality(seq, emp);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool theory_seq::check_length_coherence(expr* e) {
|
|
if (is_var(e) && m_rep.is_root(e)) {
|
|
if (!check_length_coherence0(e)) {
|
|
expr_ref emp(m_util.str.mk_empty(m.get_sort(e)), m);
|
|
expr_ref head(m), tail(m);
|
|
// e = emp \/ e = unit(head.elem(e))*tail(e)
|
|
mk_decompose(e, head, tail);
|
|
expr_ref conc = mk_concat(head, tail);
|
|
if (propagate_is_conc(e, conc)) {
|
|
assume_equality(tail, emp);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::check_length_coherence0(expr* e) {
|
|
if (is_var(e) && m_rep.is_root(e)) {
|
|
expr_ref emp(m_util.str.mk_empty(m.get_sort(e)), m);
|
|
if (propagate_length_coherence(e) ||
|
|
l_false != assume_equality(e, emp)) {
|
|
if (!get_context().at_base_level()) {
|
|
m_trail_stack.push(push_replay(alloc(replay_length_coherence, m, e)));
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::check_length_coherence() {
|
|
|
|
#if 1
|
|
for (expr* l : m_length) {
|
|
expr* e = nullptr;
|
|
VERIFY(m_util.str.is_length(l, e));
|
|
if (check_length_coherence0(e)) {
|
|
return true;
|
|
}
|
|
}
|
|
#endif
|
|
for (expr* l : m_length) {
|
|
expr* e = nullptr;
|
|
VERIFY(m_util.str.is_length(l, e));
|
|
if (check_length_coherence(e)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::fixed_length(bool is_zero) {
|
|
bool found = false;
|
|
for (auto e : m_length) {
|
|
if (fixed_length(e, is_zero)) {
|
|
found = true;
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
bool theory_seq::fixed_length(expr* len_e, bool is_zero) {
|
|
rational lo, hi;
|
|
expr* e = nullptr;
|
|
VERIFY(m_util.str.is_length(len_e, e));
|
|
if (!(is_var(e) && lower_bound(len_e, lo) && upper_bound(len_e, hi) && lo == hi
|
|
&& ((is_zero && lo.is_zero()) || (!is_zero && lo.is_unsigned())))) {
|
|
return false;
|
|
}
|
|
if (is_skolem(m_tail, e) || is_skolem(m_seq_first, e) ||
|
|
is_skolem(m_indexof_left, e) || is_skolem(m_indexof_right, e) ||
|
|
m_fixed.contains(e)) {
|
|
return false;
|
|
}
|
|
|
|
|
|
context& ctx = get_context();
|
|
|
|
m_trail_stack.push(insert_obj_trail<theory_seq, expr>(m_fixed, e));
|
|
m_fixed.insert(e);
|
|
|
|
expr_ref seq(e, m), head(m), tail(m);
|
|
|
|
if (lo.is_zero()) {
|
|
seq = m_util.str.mk_empty(m.get_sort(e));
|
|
}
|
|
else if (!is_zero) {
|
|
unsigned _lo = lo.get_unsigned();
|
|
expr_ref_vector elems(m);
|
|
|
|
for (unsigned j = 0; j < _lo; ++j) {
|
|
mk_decompose(seq, head, tail);
|
|
elems.push_back(head);
|
|
seq = tail;
|
|
}
|
|
seq = mk_concat(elems.size(), elems.c_ptr());
|
|
}
|
|
TRACE("seq", tout << "Fixed: " << mk_pp(e, m) << " " << lo << "\n";);
|
|
add_axiom(~mk_eq(len_e, m_autil.mk_numeral(lo, true), false), mk_seq_eq(seq, e));
|
|
if (!ctx.at_base_level()) {
|
|
m_trail_stack.push(push_replay(alloc(replay_fixed_length, m, len_e)));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
lit => s != ""
|
|
*/
|
|
void theory_seq::propagate_non_empty(literal lit, expr* s) {
|
|
SASSERT(get_context().get_assignment(lit) == l_true);
|
|
propagate_lit(nullptr, 1, &lit, ~mk_eq_empty(s));
|
|
}
|
|
|
|
bool theory_seq::propagate_is_conc(expr* e, expr* conc) {
|
|
TRACE("seq", tout << mk_pp(conc, m) << " is non-empty\n";);
|
|
context& ctx = get_context();
|
|
literal lit = ~mk_eq_empty(e);
|
|
if (ctx.get_assignment(lit) == l_true) {
|
|
propagate_lit(nullptr, 1, &lit, mk_eq(e, conc, false));
|
|
expr_ref e1(e, m), e2(conc, m);
|
|
new_eq_eh(m_dm.mk_leaf(assumption(lit)), ctx.get_enode(e1), ctx.get_enode(e2));
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool theory_seq::is_unit_nth(expr* e) const {
|
|
expr *s = nullptr;
|
|
return m_util.str.is_unit(e, s) && is_nth(s);
|
|
}
|
|
|
|
bool theory_seq::is_nth(expr* e) const {
|
|
return m_util.str.is_nth(e);
|
|
// return is_skolem(m_nth, e);
|
|
}
|
|
|
|
bool theory_seq::is_nth(expr* e, expr*& e1, expr*& e2) const {
|
|
if (is_nth(e)) {
|
|
e1 = to_app(e)->get_arg(0);
|
|
e2 = to_app(e)->get_arg(1);
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool theory_seq::is_tail(expr* e, expr*& s, unsigned& idx) const {
|
|
rational r;
|
|
return
|
|
is_skolem(m_tail, e) &&
|
|
m_autil.is_numeral(to_app(e)->get_arg(1), r) &&
|
|
(idx = r.get_unsigned(), s = to_app(e)->get_arg(0), true);
|
|
}
|
|
|
|
bool theory_seq::is_eq(expr* e, expr*& a, expr*& b) const {
|
|
return is_skolem(m_eq, e) &&
|
|
(a = to_app(e)->get_arg(0), b = to_app(e)->get_arg(1), true);
|
|
}
|
|
|
|
bool theory_seq::is_pre(expr* e, expr*& s, expr*& i) {
|
|
return is_skolem(m_pre, e) && (s = to_app(e)->get_arg(0), i = to_app(e)->get_arg(1), true);
|
|
}
|
|
|
|
bool theory_seq::is_post(expr* e, expr*& s, expr*& i) {
|
|
return is_skolem(m_post, e) && (s = to_app(e)->get_arg(0), i = to_app(e)->get_arg(1), true);
|
|
}
|
|
|
|
|
|
|
|
expr_ref theory_seq::mk_nth(expr* s, expr* idx) {
|
|
return expr_ref(m_util.str.mk_nth(s, idx), m);
|
|
}
|
|
|
|
expr_ref theory_seq::mk_sk_ite(expr* c, expr* t, expr* e) {
|
|
return mk_skolem(symbol("seq.if"), c, t, e, nullptr, m.get_sort(t));
|
|
}
|
|
|
|
expr_ref theory_seq::mk_last(expr* s) {
|
|
zstring str;
|
|
if (m_util.str.is_string(s, str) && str.length() > 0) {
|
|
return expr_ref(m_util.str.mk_char(str, str.length()-1), m);
|
|
}
|
|
sort* char_sort = nullptr;
|
|
VERIFY(m_util.is_seq(m.get_sort(s), char_sort));
|
|
return mk_skolem(m_seq_last, s, nullptr, nullptr, nullptr, char_sort);
|
|
}
|
|
|
|
expr_ref theory_seq::mk_first(expr* s) {
|
|
zstring str;
|
|
if (m_util.str.is_string(s, str) && str.length() > 0) {
|
|
return expr_ref(m_util.str.mk_string(str.extract(0, str.length()-1)), m);
|
|
}
|
|
return mk_skolem(m_seq_first, s);
|
|
}
|
|
|
|
|
|
void theory_seq::mk_decompose(expr* e, expr_ref& head, expr_ref& tail) {
|
|
expr* e1 = nullptr, *e2 = nullptr;
|
|
zstring s;
|
|
rational r;
|
|
if (m_util.str.is_empty(e)) {
|
|
head = m_util.str.mk_unit(mk_nth(e, m_autil.mk_int(0)));
|
|
tail = e;
|
|
}
|
|
else if (m_util.str.is_string(e, s)) {
|
|
head = m_util.str.mk_unit(m_util.str.mk_char(s, 0));
|
|
tail = m_util.str.mk_string(s.extract(1, s.length()-1));
|
|
}
|
|
else if (m_util.str.is_unit(e)) {
|
|
head = e;
|
|
tail = m_util.str.mk_empty(m.get_sort(e));
|
|
}
|
|
else if (m_util.str.is_concat(e, e1, e2) && m_util.str.is_unit(e1)) {
|
|
head = e1;
|
|
tail = e2;
|
|
}
|
|
else if (is_skolem(m_tail, e) && m_autil.is_numeral(to_app(e)->get_arg(1), r)) {
|
|
app* a = to_app(e);
|
|
expr* s = a->get_arg(0);
|
|
expr* idx = m_autil.mk_int(r.get_unsigned() + 1);
|
|
head = m_util.str.mk_unit(mk_nth(s, idx));
|
|
tail = mk_skolem(m_tail, s, idx);
|
|
}
|
|
else {
|
|
head = m_util.str.mk_unit(mk_nth(e, m_autil.mk_int(0)));
|
|
tail = mk_skolem(m_tail, e, m_autil.mk_int(0));
|
|
}
|
|
}
|
|
|
|
/*
|
|
\brief Check extensionality (for sequences).
|
|
*/
|
|
bool theory_seq::check_extensionality() {
|
|
context& ctx = get_context();
|
|
unsigned sz = get_num_vars();
|
|
unsigned_vector seqs;
|
|
for (unsigned v = 0; v < sz; ++v) {
|
|
enode* n1 = get_enode(v);
|
|
expr* o1 = n1->get_owner();
|
|
if (n1 != n1->get_root()) {
|
|
continue;
|
|
}
|
|
if (!seqs.empty() && ctx.is_relevant(n1) && m_util.is_seq(o1) && ctx.is_shared(n1)) {
|
|
dependency* dep = nullptr;
|
|
expr_ref e1 = canonize(o1, dep);
|
|
for (unsigned i = 0; i < seqs.size(); ++i) {
|
|
enode* n2 = get_enode(seqs[i]);
|
|
expr* o2 = n2->get_owner();
|
|
if (m.get_sort(o1) != m.get_sort(o2)) {
|
|
continue;
|
|
}
|
|
if (ctx.is_diseq(n1, n2) || m_exclude.contains(o1, o2)) {
|
|
continue;
|
|
}
|
|
expr_ref e2 = canonize(n2->get_owner(), dep);
|
|
m_lhs.reset(); m_rhs.reset();
|
|
bool change = false;
|
|
if (!m_seq_rewrite.reduce_eq(e1, e2, m_lhs, m_rhs, change)) {
|
|
m_exclude.update(o1, o2);
|
|
continue;
|
|
}
|
|
bool excluded = false;
|
|
for (unsigned j = 0; !excluded && j < m_lhs.size(); ++j) {
|
|
if (m_exclude.contains(m_lhs[j].get(), m_rhs[j].get())) {
|
|
excluded = true;
|
|
}
|
|
}
|
|
if (excluded) {
|
|
continue;
|
|
}
|
|
TRACE("seq", tout << m_lhs << " = " << m_rhs << "\n";);
|
|
ctx.assume_eq(n1, n2);
|
|
return false;
|
|
}
|
|
}
|
|
seqs.push_back(v);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
\brief check negated contains constraints.
|
|
*/
|
|
bool theory_seq::check_contains() {
|
|
context & ctx = get_context();
|
|
for (unsigned i = 0; !ctx.inconsistent() && i < m_ncs.size(); ++i) {
|
|
if (solve_nc(i)) {
|
|
if (i + 1 != m_ncs.size()) {
|
|
nc n = m_ncs[m_ncs.size()-1];
|
|
m_ncs.set(i, n);
|
|
--i;
|
|
}
|
|
m_ncs.pop_back();
|
|
}
|
|
}
|
|
return m_new_propagation || ctx.inconsistent();
|
|
}
|
|
/*
|
|
- Eqs = 0
|
|
- Diseqs evaluate to false
|
|
- lengths are coherent.
|
|
*/
|
|
|
|
bool theory_seq::is_solved() {
|
|
if (!m_eqs.empty()) {
|
|
TRACE("seq", tout << "(seq.giveup " << m_eqs[0].ls() << " = " << m_eqs[0].rs() << " is unsolved)\n";);
|
|
IF_VERBOSE(10, verbose_stream() << "(seq.giveup " << m_eqs[0].ls() << " = " << m_eqs[0].rs() << " is unsolved)\n";);
|
|
return false;
|
|
}
|
|
for (unsigned i = 0; i < m_automata.size(); ++i) {
|
|
if (!m_automata[i]) {
|
|
TRACE("seq", tout << "(seq.giveup regular expression did not compile to automaton)\n";);
|
|
IF_VERBOSE(10, verbose_stream() << "(seq.giveup regular expression did not compile to automaton)\n";);
|
|
return false;
|
|
}
|
|
}
|
|
if (false && !m_nqs.empty()) {
|
|
TRACE("seq", display_disequation(tout << "(seq.giveup ", m_nqs[0]); tout << " is unsolved)\n";);
|
|
IF_VERBOSE(10, display_disequation(verbose_stream() << "(seq.giveup ", m_nqs[0]); verbose_stream() << " is unsolved)\n";);
|
|
return false;
|
|
}
|
|
if (!m_ncs.empty()) {
|
|
TRACE("seq", display_nc(tout << "(seq.giveup ", m_ncs[0]); tout << " is unsolved)\n";);
|
|
IF_VERBOSE(10, display_nc(verbose_stream() << "(seq.giveup ", m_ncs[0]); verbose_stream() << " is unsolved)\n";);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
\brief while extracting dependency literals ensure that they have all been asserted on the context.
|
|
*/
|
|
bool theory_seq::linearize(dependency* dep, enode_pair_vector& eqs, literal_vector& lits) const {
|
|
context & ctx = get_context();
|
|
DEBUG_CODE(for (literal lit : lits) SASSERT(ctx.get_assignment(lit) == l_true); );
|
|
bool asserted = true;
|
|
svector<assumption> assumptions;
|
|
const_cast<dependency_manager&>(m_dm).linearize(dep, assumptions);
|
|
for (assumption const& a : assumptions) {
|
|
if (a.lit != null_literal) {
|
|
lits.push_back(a.lit);
|
|
asserted &= ctx.get_assignment(a.lit) == l_true;
|
|
}
|
|
if (a.n1 != nullptr) {
|
|
eqs.push_back(enode_pair(a.n1, a.n2));
|
|
}
|
|
}
|
|
return asserted;
|
|
}
|
|
|
|
|
|
|
|
void theory_seq::propagate_lit(dependency* dep, unsigned n, literal const* _lits, literal lit) {
|
|
if (lit == true_literal) return;
|
|
|
|
context& ctx = get_context();
|
|
literal_vector lits(n, _lits);
|
|
|
|
if (lit == false_literal) {
|
|
set_conflict(dep, lits);
|
|
return;
|
|
}
|
|
|
|
ctx.mark_as_relevant(lit);
|
|
enode_pair_vector eqs;
|
|
if (!linearize(dep, eqs, lits))
|
|
return;
|
|
TRACE("seq",
|
|
tout << "scope: " << ctx.get_scope_level() << "\n";
|
|
ctx.display_detailed_literal(tout << "assert:", lit);
|
|
ctx.display_literals_verbose(tout << " <- ", lits);
|
|
if (!lits.empty()) tout << "\n"; display_deps(tout, dep););
|
|
justification* js =
|
|
ctx.mk_justification(
|
|
ext_theory_propagation_justification(
|
|
get_id(), ctx.get_region(), lits.size(), lits.c_ptr(), eqs.size(), eqs.c_ptr(), lit));
|
|
|
|
m_new_propagation = true;
|
|
ctx.assign(lit, js);
|
|
}
|
|
|
|
void theory_seq::set_conflict(dependency* dep, literal_vector const& _lits) {
|
|
context& ctx = get_context();
|
|
enode_pair_vector eqs;
|
|
literal_vector lits(_lits);
|
|
if (!linearize(dep, eqs, lits))
|
|
return;
|
|
TRACE("seq", display_deps(tout << "assert conflict:", lits, eqs););
|
|
m_new_propagation = true;
|
|
ctx.set_conflict(
|
|
ctx.mk_justification(
|
|
ext_theory_conflict_justification(
|
|
get_id(), ctx.get_region(), lits.size(), lits.c_ptr(), eqs.size(), eqs.c_ptr(), 0, nullptr)));
|
|
}
|
|
|
|
void theory_seq::propagate_eq(dependency* dep, enode* n1, enode* n2) {
|
|
if (n1->get_root() == n2->get_root()) {
|
|
return;
|
|
}
|
|
context& ctx = get_context();
|
|
literal_vector lits;
|
|
enode_pair_vector eqs;
|
|
if (!linearize(dep, eqs, lits))
|
|
return;
|
|
TRACE("seq",
|
|
tout << "assert: " << mk_pp(n1->get_owner(), m) << " = " << mk_pp(n2->get_owner(), m) << " <-\n";
|
|
display_deps(tout, dep);
|
|
);
|
|
|
|
justification* js = ctx.mk_justification(
|
|
ext_theory_eq_propagation_justification(
|
|
get_id(), ctx.get_region(), lits.size(), lits.c_ptr(), eqs.size(), eqs.c_ptr(), n1, n2));
|
|
ctx.assign_eq(n1, n2, eq_justification(js));
|
|
m_new_propagation = true;
|
|
|
|
enforce_length_coherence(n1, n2);
|
|
}
|
|
|
|
void theory_seq::propagate_eq(dependency* dep, expr* e1, expr* e2, bool add_eq) {
|
|
literal_vector lits;
|
|
propagate_eq(dep, lits, e1, e2, add_eq);
|
|
}
|
|
|
|
void theory_seq::propagate_eq(dependency* dep, literal lit, expr* e1, expr* e2, bool add_to_eqs) {
|
|
literal_vector lits;
|
|
lits.push_back(lit);
|
|
propagate_eq(dep, lits, e1, e2, add_to_eqs);
|
|
}
|
|
|
|
|
|
void theory_seq::enforce_length_coherence(enode* n1, enode* n2) {
|
|
expr* o1 = n1->get_owner();
|
|
expr* o2 = n2->get_owner();
|
|
if (m_util.str.is_concat(o1) && m_util.str.is_concat(o2)) {
|
|
return;
|
|
}
|
|
if (has_length(o1) && !has_length(o2)) {
|
|
enforce_length(o2);
|
|
}
|
|
else if (has_length(o2) && !has_length(o1)) {
|
|
enforce_length(o1);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
bool theory_seq::simplify_eq(expr_ref_vector& ls, expr_ref_vector& rs, dependency* deps) {
|
|
context& ctx = get_context();
|
|
expr_ref_vector lhs(m), rhs(m);
|
|
bool changed = false;
|
|
TRACE("seq", tout << ls << " = " << rs << "\n";);
|
|
if (!m_seq_rewrite.reduce_eq(ls, rs, lhs, rhs, changed)) {
|
|
// equality is inconsistent.
|
|
TRACE("seq", tout << ls << " != " << rs << "\n";);
|
|
set_conflict(deps);
|
|
return true;
|
|
}
|
|
if (!changed) {
|
|
SASSERT(lhs.empty() && rhs.empty());
|
|
return false;
|
|
}
|
|
SASSERT(lhs.size() == rhs.size());
|
|
m_seq_rewrite.add_seqs(ls, rs, lhs, rhs);
|
|
if (lhs.empty()) {
|
|
TRACE("seq", tout << "solved\n";);
|
|
return true;
|
|
}
|
|
TRACE("seq",
|
|
tout << ls << " = " << rs << "\n";
|
|
tout << lhs << " = " << rhs << "\n";);
|
|
for (unsigned i = 0; !ctx.inconsistent() && i < lhs.size(); ++i) {
|
|
expr_ref li(lhs[i].get(), m);
|
|
expr_ref ri(rhs[i].get(), m);
|
|
if (solve_unit_eq(li, ri, deps)) {
|
|
// no-op
|
|
}
|
|
else if (m_util.is_seq(li) || m_util.is_re(li)) {
|
|
TRACE("seq", tout << "inserting " << li << " = " << ri << "\n";);
|
|
m_eqs.push_back(mk_eqdep(li, ri, deps));
|
|
}
|
|
else {
|
|
propagate_eq(deps, ensure_enode(li), ensure_enode(ri));
|
|
}
|
|
}
|
|
TRACE("seq",
|
|
if (!ls.empty() || !rs.empty()) tout << ls << " = " << rs << ";\n";
|
|
for (unsigned i = 0; i < lhs.size(); ++i) {
|
|
tout << mk_pp(lhs[i].get(), m) << " = " << mk_pp(rhs[i].get(), m) << ";\n";
|
|
});
|
|
|
|
|
|
return true;
|
|
}
|
|
|
|
bool theory_seq::solve_itos(expr_ref_vector const& ls, expr_ref_vector const& rs, dependency* dep) {
|
|
expr* e = nullptr;
|
|
if (ls.size() == 1 && rs.empty() && m_util.str.is_itos(ls[0], e)) {
|
|
literal lit = mk_simplified_literal(m_autil.mk_le(e, m_autil.mk_int(-1)));
|
|
propagate_lit(dep, 0, nullptr, lit);
|
|
return true;
|
|
}
|
|
if (rs.size() == 1 && ls.empty() && m_util.str.is_itos(rs[0], e)) {
|
|
literal lit = mk_simplified_literal(m_autil.mk_le(e, m_autil.mk_int(-1)));
|
|
propagate_lit(dep, 0, nullptr, lit);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::solve_nth_eq(expr_ref_vector const& ls, expr_ref_vector const& rs, dependency* dep) {
|
|
if (ls.size() != 1 || rs.size() <= 1) {
|
|
return false;
|
|
}
|
|
expr* l = ls.get(0);
|
|
rational val;
|
|
if (!get_length(l, val) || val != rational(rs.size())) {
|
|
return false;
|
|
}
|
|
for (unsigned i = 0; i < rs.size(); ++i) {
|
|
unsigned k = 0;
|
|
expr* ru = nullptr, *r = nullptr;
|
|
if (m_util.str.is_unit(rs.get(i), ru) && m_util.str.is_nth(ru, r, k) && k == i && r == l) {
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
add_solution(l, mk_concat(rs, m.get_sort(l)), dep);
|
|
return true;
|
|
}
|
|
|
|
bool theory_seq::solve_unit_eq(expr_ref_vector const& l, expr_ref_vector const& r, dependency* deps) {
|
|
if (l.size() == 1 && is_var(l[0]) && !occurs(l[0], r) && add_solution(l[0], mk_concat(r, m.get_sort(l[0])), deps)) {
|
|
return true;
|
|
}
|
|
if (r.size() == 1 && is_var(r[0]) && !occurs(r[0], l) && add_solution(r[0], mk_concat(l, m.get_sort(r[0])), deps)) {
|
|
return true;
|
|
}
|
|
// if (l.size() == 1 && r.size() == 1 && l[0] != r[0] && is_nth(l[0]) && add_solution(l[0], r[0], deps))
|
|
// return true;
|
|
// if (l.size() == 1 && r.size() == 1 && l[0] != r[0] && is_nth(r[0]) && add_solution(r[0], l[0], deps))
|
|
// return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool theory_seq::reduce_length(expr* l, expr* r, literal_vector& lits) {
|
|
|
|
expr_ref len1(m), len2(m);
|
|
lits.reset();
|
|
if (get_length(l, len1, lits) &&
|
|
get_length(r, len2, lits) && len1 == len2) {
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool theory_seq::solve_unit_eq(expr* l, expr* r, dependency* deps) {
|
|
if (l == r) {
|
|
return true;
|
|
}
|
|
if (is_var(l) && !occurs(l, r) && add_solution(l, r, deps)) {
|
|
return true;
|
|
}
|
|
if (is_var(r) && !occurs(r, l) && add_solution(r, l, deps)) {
|
|
return true;
|
|
}
|
|
// if (is_nth(l) && !occurs(l, r) && add_solution(l, r, deps))
|
|
// return true;
|
|
// if (is_nth(r) && !occurs(r, l) && add_solution(r, l, deps))
|
|
// return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool theory_seq::occurs(expr* a, expr_ref_vector const& b) {
|
|
for (auto const& elem : b) {
|
|
if (a == elem || m.is_ite(elem)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::occurs(expr* a, expr* b) {
|
|
// true if a occurs under an interpreted function or under left/right selector.
|
|
SASSERT(is_var(a));
|
|
SASSERT(m_todo.empty());
|
|
expr* e1 = nullptr, *e2 = nullptr;
|
|
m_todo.push_back(b);
|
|
while (!m_todo.empty()) {
|
|
b = m_todo.back();
|
|
if (a == b || m.is_ite(b)) {
|
|
m_todo.reset();
|
|
return true;
|
|
}
|
|
m_todo.pop_back();
|
|
if (m_util.str.is_concat(b, e1, e2)) {
|
|
m_todo.push_back(e1);
|
|
m_todo.push_back(e2);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool theory_seq::is_var(expr* a) const {
|
|
return
|
|
m_util.is_seq(a) &&
|
|
!m_util.str.is_concat(a) &&
|
|
!m_util.str.is_empty(a) &&
|
|
!m_util.str.is_string(a) &&
|
|
!m_util.str.is_unit(a) &&
|
|
!m_util.str.is_itos(a) &&
|
|
!m.is_ite(a);
|
|
}
|
|
|
|
|
|
|
|
bool theory_seq::add_solution(expr* l, expr* r, dependency* deps) {
|
|
if (l == r) {
|
|
return false;
|
|
}
|
|
TRACE("seq", tout << mk_pp(l, m) << " ==> " << mk_pp(r, m) << "\n"; display_deps(tout, deps););
|
|
m_new_solution = true;
|
|
m_rep.update(l, r, deps);
|
|
enode* n1 = ensure_enode(l);
|
|
enode* n2 = ensure_enode(r);
|
|
if (n1->get_root() != n2->get_root()) {
|
|
propagate_eq(deps, n1, n2);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool theory_seq::solve_eqs(unsigned i) {
|
|
context& ctx = get_context();
|
|
bool change = false;
|
|
for (; !ctx.inconsistent() && i < m_eqs.size(); ++i) {
|
|
eq const& e = m_eqs[i];
|
|
if (solve_eq(e.ls(), e.rs(), e.dep(), i)) {
|
|
if (i + 1 != m_eqs.size()) {
|
|
eq e1 = m_eqs[m_eqs.size()-1];
|
|
m_eqs.set(i, e1);
|
|
--i;
|
|
}
|
|
++m_stats.m_num_reductions;
|
|
m_eqs.pop_back();
|
|
change = true;
|
|
}
|
|
TRACE("seq", display_equations(tout););
|
|
}
|
|
return change || m_new_propagation || ctx.inconsistent();
|
|
}
|
|
|
|
bool theory_seq::solve_eq(expr_ref_vector const& l, expr_ref_vector const& r, dependency* deps, unsigned idx) {
|
|
context& ctx = get_context();
|
|
expr_ref_vector& ls = m_ls;
|
|
expr_ref_vector& rs = m_rs;
|
|
rs.reset(); ls.reset();
|
|
dependency* dep2 = nullptr;
|
|
bool change = canonize(l, ls, dep2);
|
|
change = canonize(r, rs, dep2) || change;
|
|
deps = m_dm.mk_join(dep2, deps);
|
|
TRACE("seq", tout << l << " = " << r << " ==> ";
|
|
tout << ls << " = " << rs << "\n";
|
|
display_deps(tout, deps);
|
|
);
|
|
if (!ctx.inconsistent() && simplify_eq(ls, rs, deps)) {
|
|
TRACE("seq", tout << "simplified\n";);
|
|
return true;
|
|
}
|
|
TRACE("seq", tout << ls << " = " << rs << "\n";);
|
|
if (ls.empty() && rs.empty()) {
|
|
return true;
|
|
}
|
|
if (!ctx.inconsistent() && solve_unit_eq(ls, rs, deps)) {
|
|
TRACE("seq", tout << "unit\n";);
|
|
return true;
|
|
}
|
|
if (!ctx.inconsistent() && solve_binary_eq(ls, rs, deps)) {
|
|
TRACE("seq", tout << "binary\n";);
|
|
return true;
|
|
}
|
|
if (!ctx.inconsistent() && solve_nth_eq(ls, rs, deps)) {
|
|
return true;
|
|
}
|
|
if (!ctx.inconsistent() && solve_nth_eq(rs, ls, deps)) {
|
|
return true;
|
|
}
|
|
if (!ctx.inconsistent() && solve_itos(rs, ls, deps)) {
|
|
return true;
|
|
}
|
|
if (!ctx.inconsistent() && change) {
|
|
// The propagation step from arithmetic state (e.g. length offset) to length constraints
|
|
if (get_context().get_scope_level() == 0) {
|
|
prop_arith_to_len_offset();
|
|
}
|
|
TRACE("seq", tout << "inserting equality\n";);
|
|
bool updated = false;
|
|
if (!m_len_offset.empty()) {
|
|
// Find a better equivalent term for lhs of an equation based on length constraints
|
|
expr_ref_vector new_ls(m);
|
|
if (find_better_rep(ls, rs, idx, deps, new_ls)) {
|
|
eq const & new_eq = eq(m_eq_id++, new_ls, rs, deps);
|
|
m_eqs.push_back(new_eq);
|
|
TRACE("seq", tout << "find_better_rep\n";);
|
|
TRACE("seq", display_equation(tout, new_eq););
|
|
updated = true;
|
|
}
|
|
}
|
|
if (!updated) {
|
|
m_eqs.push_back(eq(m_eq_id++, ls, rs, deps));
|
|
}
|
|
TRACE("seq", tout << "simplified\n";);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::propagate_max_length(expr* l, expr* r, dependency* deps) {
|
|
unsigned idx;
|
|
expr* s;
|
|
if (m_util.str.is_empty(l)) {
|
|
std::swap(l, r);
|
|
}
|
|
rational hi;
|
|
if (is_tail(l, s, idx) && has_length(s) && m_util.str.is_empty(r) && !upper_bound(s, hi)) {
|
|
propagate_lit(deps, 0, nullptr, mk_literal(m_autil.mk_le(mk_len(s), m_autil.mk_int(idx+1))));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::is_binary_eq(expr_ref_vector const& ls, expr_ref_vector const& rs, expr_ref& x, ptr_vector<expr>& xs, ptr_vector<expr>& ys, expr_ref& y) {
|
|
if (ls.size() > 1 && is_var(ls[0]) &&
|
|
rs.size() > 1 && is_var(rs.back())) {
|
|
xs.reset();
|
|
ys.reset();
|
|
x = ls[0];
|
|
y = rs.back();
|
|
for (unsigned i = 1; i < ls.size(); ++i) {
|
|
if (!m_util.str.is_unit(ls[i])) return false;
|
|
}
|
|
for (unsigned i = 0; i < rs.size()-1; ++i) {
|
|
if (!m_util.str.is_unit(rs[i])) return false;
|
|
}
|
|
xs.append(ls.size()-1, ls.c_ptr() + 1);
|
|
ys.append(rs.size()-1, rs.c_ptr());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::is_quat_eq(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
|
expr_ref& x1, expr_ref_vector& xs, expr_ref& x2, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2) {
|
|
if (ls.size() > 1 && is_var(ls[0]) && is_var(ls.back()) &&
|
|
rs.size() > 1 && is_var(rs[0]) && is_var(rs.back())) {
|
|
unsigned l_start = 1;
|
|
for (; l_start < ls.size()-1; ++l_start) {
|
|
if (m_util.str.is_unit(ls[l_start])) break;
|
|
}
|
|
if (l_start == ls.size()-1) return false;
|
|
unsigned l_end = l_start;
|
|
for (; l_end < ls.size()-1; ++l_end) {
|
|
if (!m_util.str.is_unit(ls[l_end])) break;
|
|
}
|
|
--l_end;
|
|
unsigned r_start = 1;
|
|
for (; r_start < rs.size()-1; ++r_start) {
|
|
if (m_util.str.is_unit(rs[r_start])) break;
|
|
}
|
|
if (r_start == rs.size()-1) return false;
|
|
unsigned r_end = r_start;
|
|
for (; r_end < rs.size()-1; ++r_end) {
|
|
if (!m_util.str.is_unit(rs[r_end])) break;
|
|
}
|
|
--r_end;
|
|
for (unsigned i = l_start; i < l_end+1; ++i) {
|
|
if (!m_util.str.is_unit(ls[i])) return false;
|
|
}
|
|
for (unsigned i = r_start; i < r_end+1; ++i) {
|
|
if (!m_util.str.is_unit(rs[i])) return false;
|
|
}
|
|
xs.reset();
|
|
xs.append(l_end-l_start+1, ls.c_ptr()+l_start);
|
|
x1 = m_util.str.mk_concat(l_start, ls.c_ptr());
|
|
x2 = m_util.str.mk_concat(ls.size()-l_end-1, ls.c_ptr()+l_end+1);
|
|
ys.reset();
|
|
ys.append(r_end-r_start+1, rs.c_ptr()+r_start);
|
|
y1 = m_util.str.mk_concat(r_start, rs.c_ptr());
|
|
y2 = m_util.str.mk_concat(rs.size()-r_end-1, rs.c_ptr()+r_end+1);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::is_ternary_eq(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
|
expr_ref& x, expr_ref_vector& xs, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2, bool flag1) {
|
|
if (ls.size() > 1 && (is_var(ls[0]) || flag1) &&
|
|
rs.size() > 1 && is_var(rs[0]) && is_var(rs.back())) {
|
|
unsigned l_start = ls.size()-1;
|
|
for (; l_start > 0; --l_start) {
|
|
if (!m_util.str.is_unit(ls[l_start])) break;
|
|
}
|
|
if (l_start == ls.size()-1) return false;
|
|
++l_start;
|
|
unsigned r_end = rs.size()-2;
|
|
for (; r_end > 0; --r_end) {
|
|
if (m_util.str.is_unit(rs[r_end])) break;
|
|
}
|
|
if (r_end == 0) return false;
|
|
unsigned r_start = r_end;
|
|
for (; r_start > 0; --r_start) {
|
|
if (!m_util.str.is_unit(rs[r_start])) break;
|
|
}
|
|
++r_start;
|
|
for (unsigned i = l_start; i < ls.size(); ++i) {
|
|
if (!m_util.str.is_unit(ls[i])) return false;
|
|
}
|
|
for (unsigned i = r_start; i < r_end+1; ++i) {
|
|
if (!m_util.str.is_unit(rs[i])) return false;
|
|
}
|
|
xs.reset();
|
|
xs.append(ls.size()-l_start, ls.c_ptr()+l_start);
|
|
x = m_util.str.mk_concat(l_start, ls.c_ptr());
|
|
ys.reset();
|
|
ys.append(r_end-r_start+1, rs.c_ptr()+r_start);
|
|
y1 = m_util.str.mk_concat(r_start, rs.c_ptr());
|
|
y2 = m_util.str.mk_concat(rs.size()-r_end-1, rs.c_ptr()+r_end+1);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::is_ternary_eq2(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
|
expr_ref_vector& xs, expr_ref& x, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2, bool flag1) {
|
|
if (ls.size() > 1 && (is_var(ls.back()) || flag1) &&
|
|
rs.size() > 1 && is_var(rs[0]) && is_var(rs.back())) {
|
|
unsigned l_start = 0;
|
|
for (; l_start < ls.size()-1; ++l_start) {
|
|
if (!m_util.str.is_unit(ls[l_start])) break;
|
|
}
|
|
if (l_start == 0) return false;
|
|
unsigned r_start = 1;
|
|
for (; r_start < rs.size()-1; ++r_start) {
|
|
if (m_util.str.is_unit(rs[r_start])) break;
|
|
}
|
|
if (r_start == rs.size()-1) return false;
|
|
unsigned r_end = r_start;
|
|
for (; r_end < rs.size()-1; ++r_end) {
|
|
if (!m_util.str.is_unit(rs[r_end])) break;
|
|
}
|
|
--r_end;
|
|
for (unsigned i = 0; i < l_start; ++i) {
|
|
if (!m_util.str.is_unit(ls[i])) return false;
|
|
}
|
|
for (unsigned i = r_start; i < r_end+1; ++i) {
|
|
if (!m_util.str.is_unit(rs[i])) return false;
|
|
}
|
|
xs.reset();
|
|
xs.append(l_start, ls.c_ptr());
|
|
x = m_util.str.mk_concat(ls.size()-l_start, ls.c_ptr()+l_start);
|
|
ys.reset();
|
|
ys.append(r_end-r_start+1, rs.c_ptr()+r_start);
|
|
y1 = m_util.str.mk_concat(r_start, rs.c_ptr());
|
|
y2 = m_util.str.mk_concat(rs.size()-r_end-1, rs.c_ptr()+r_end+1);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::reduce_length_eq(expr_ref_vector const& ls, expr_ref_vector const& rs, dependency* deps) {
|
|
if (ls.empty() || rs.empty()) {
|
|
return false;
|
|
}
|
|
if (ls.size() <= 1 && rs.size() <= 1) {
|
|
return false;
|
|
}
|
|
SASSERT(ls.size() > 1 || rs.size() > 1);
|
|
|
|
literal_vector lits;
|
|
expr_ref l(ls[0], m), r(rs[0], m);
|
|
if (reduce_length(l, r, lits)) {
|
|
expr_ref_vector lhs(m), rhs(m);
|
|
lhs.append(ls.size()-1, ls.c_ptr() + 1);
|
|
rhs.append(rs.size()-1, rs.c_ptr() + 1);
|
|
SASSERT(!lhs.empty() || !rhs.empty());
|
|
deps = mk_join(deps, lits);
|
|
m_eqs.push_back(eq(m_eq_id++, lhs, rhs, deps));
|
|
TRACE("seq", tout << "Propagate equal lengths " << l << " " << r << "\n";);
|
|
propagate_eq(deps, lits, l, r, true);
|
|
return true;
|
|
}
|
|
|
|
l = ls.back(); r = rs.back();
|
|
if (reduce_length(l, r, lits)) {
|
|
expr_ref_vector lhs(m), rhs(m);
|
|
lhs.append(ls.size()-1, ls.c_ptr());
|
|
rhs.append(rs.size()-1, rs.c_ptr());
|
|
SASSERT(!lhs.empty() || !rhs.empty());
|
|
deps = mk_join(deps, lits);
|
|
m_eqs.push_back(eq(m_eq_id++, lhs, rhs, deps));
|
|
TRACE("seq", tout << "Propagate equal lengths " << l << " " << r << "\n";);
|
|
propagate_eq(deps, lits, l, r, true);
|
|
return true;
|
|
}
|
|
|
|
rational len1, len2, len;
|
|
if (ls.size() > 1 && get_length(ls[0], len1) && get_length(rs[0], len2) && len1 >= len2) {
|
|
unsigned j = 1;
|
|
for (; j < rs.size() && len1 > len2 && get_length(rs[j], len); ++j) {
|
|
len2 += len;
|
|
}
|
|
if (len1 == len2 && 0 < j && j < rs.size() && reduce_length(1, j, true, ls, rs, deps)) {
|
|
TRACE("seq", tout << "l equal\n";);
|
|
return true;
|
|
}
|
|
}
|
|
if (rs.size() > 1 && get_length(rs[0], len1) && get_length(ls[0], len2) && len1 > len2) {
|
|
unsigned j = 1;
|
|
for (; j < ls.size() && len1 > len2 && get_length(ls[j], len); ++j) {
|
|
len2 += len;
|
|
}
|
|
if (len1 == len2 && 0 < j && j < ls.size() && reduce_length(j, 1, true, ls, rs, deps)) {
|
|
TRACE("seq", tout << "r equal\n";);
|
|
return true;
|
|
}
|
|
}
|
|
if (ls.size() > 1 && get_length(ls.back(), len1) && get_length(rs.back(), len2) && len1 >= len2) {
|
|
unsigned j = rs.size()-1;
|
|
for (; j > 0 && len1 > len2 && get_length(rs[j-1], len); --j) {
|
|
len2 += len;
|
|
}
|
|
if (len1 == len2 && 0 < j && j < rs.size() && reduce_length(ls.size()-1, rs.size()-j, false, ls, rs, deps)) {
|
|
TRACE("seq", tout << "l suffix equal\n";);
|
|
return true;
|
|
}
|
|
}
|
|
if (rs.size() > 1 && get_length(rs.back(), len1) && get_length(ls.back(), len2) && len1 > len2) {
|
|
unsigned j = ls.size()-1;
|
|
for (; j > 0 && len1 > len2 && get_length(ls[j-1], len); --j) {
|
|
len2 += len;
|
|
}
|
|
if (len1 == len2 && 0 < j && j < ls.size() && reduce_length(ls.size()-j, rs.size()-1, false, ls, rs, deps)) {
|
|
TRACE("seq", tout << "r suffix equal\n";);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::reduce_length(unsigned i, unsigned j, bool front, expr_ref_vector const& ls, expr_ref_vector const& rs, dependency* deps) {
|
|
context& ctx = get_context();
|
|
expr* const* ls1 = ls.c_ptr();
|
|
expr* const* ls2 = ls.c_ptr()+i;
|
|
expr* const* rs1 = rs.c_ptr();
|
|
expr* const* rs2 = rs.c_ptr()+j;
|
|
unsigned l1 = i;
|
|
unsigned l2 = ls.size()-i;
|
|
unsigned r1 = j;
|
|
unsigned r2 = rs.size()-j;
|
|
if (!front) {
|
|
std::swap(ls1, ls2);
|
|
std::swap(rs1, rs2);
|
|
std::swap(l1, l2);
|
|
std::swap(r1, r2);
|
|
}
|
|
SASSERT(0 < l1 && l1 < ls.size());
|
|
SASSERT(0 < r1 && r1 < rs.size());
|
|
expr_ref l = mk_concat(l1, ls1);
|
|
expr_ref r = mk_concat(r1, rs1);
|
|
expr_ref lenl = mk_len(l);
|
|
expr_ref lenr = mk_len(r);
|
|
literal lit = mk_eq(lenl, lenr, false);
|
|
if (ctx.get_assignment(lit) == l_true) {
|
|
// expr_ref len_eq(m.mk_eq(lenl, lenr), m);
|
|
// if (ctx.find_assignment(len_eq) == l_true) {
|
|
// literal lit = mk_eq(lenl, lenr, false);
|
|
// literal_vector lits;
|
|
expr_ref_vector lhs(m), rhs(m);
|
|
lhs.append(l2, ls2);
|
|
rhs.append(r2, rs2);
|
|
deps = mk_join(deps, lit);
|
|
m_eqs.push_back(eq(m_eq_id++, lhs, rhs, deps));
|
|
propagate_eq(deps, l, r, true);
|
|
TRACE("seq", tout << "propagate eq\nlhs: " << lhs << "\nrhs: " << rhs << "\n";);
|
|
return true;
|
|
}
|
|
else {
|
|
//TRACE("seq", tout << "Assignment: " << lenl << " = " << lenr << " " << ctx.get_assignment(lit) << "\n";);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool theory_seq::solve_binary_eq(expr_ref_vector const& ls, expr_ref_vector const& rs, dependency* dep) {
|
|
context& ctx = get_context();
|
|
ptr_vector<expr> xs, ys;
|
|
expr_ref x(m), y(m);
|
|
bool is_binary = is_binary_eq(ls, rs, x, xs, ys, y);
|
|
if (!is_binary) {
|
|
is_binary = is_binary_eq(rs, ls, x, xs, ys, y);
|
|
}
|
|
if (!is_binary) {
|
|
return false;
|
|
}
|
|
// Equation is of the form x ++ xs = ys ++ y
|
|
// where xs, ys are units.
|
|
if (x != y) {
|
|
return false;
|
|
}
|
|
if (xs.size() != ys.size()) {
|
|
TRACE("seq", tout << "binary conflict\n";);
|
|
set_conflict(dep);
|
|
return false;
|
|
}
|
|
if (xs.empty()) {
|
|
// this should have been solved already
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
|
|
// Equation is of the form x ++ xs = ys ++ x
|
|
// where |xs| = |ys| are units of same length
|
|
// then xs is a wrap-around of ys
|
|
// x ++ ab = ba ++ x
|
|
//
|
|
if (xs.size() == 1) {
|
|
enode* n1 = ensure_enode(xs[0]);
|
|
enode* n2 = ensure_enode(ys[0]);
|
|
if (n1->get_root() == n2->get_root()) {
|
|
return false;
|
|
}
|
|
literal eq = mk_eq(xs[0], ys[0], false);
|
|
switch (ctx.get_assignment(eq)) {
|
|
case l_false: {
|
|
literal_vector conflict;
|
|
conflict.push_back(~eq);
|
|
TRACE("seq", tout << conflict << "\n";);
|
|
set_conflict(dep, conflict);
|
|
break;
|
|
}
|
|
case l_true:
|
|
break;
|
|
case l_undef:
|
|
ctx.mark_as_relevant(eq);
|
|
propagate_lit(dep, 0, nullptr, eq);
|
|
m_new_propagation = true;
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::get_length(expr* e, expr_ref& len, literal_vector& lits) {
|
|
context& ctx = get_context();
|
|
expr* s, *i, *l;
|
|
rational r;
|
|
if (m_util.str.is_extract(e, s, i, l)) {
|
|
// 0 <= i <= len(s), 0 <= l, i + l <= len(s)
|
|
expr_ref zero(m_autil.mk_int(0), m);
|
|
expr_ref ls = mk_len(s);
|
|
expr_ref ls_minus_i_l(mk_sub(mk_sub(ls, i),l), m);
|
|
bool i_is_zero = m_autil.is_numeral(i, r) && r.is_zero();
|
|
literal i_ge_0 = i_is_zero?true_literal:mk_simplified_literal(m_autil.mk_ge(i, zero));
|
|
literal i_lt_len_s = ~mk_simplified_literal(m_autil.mk_ge(mk_sub(i, ls), zero));
|
|
literal li_ge_ls = mk_simplified_literal(m_autil.mk_ge(ls_minus_i_l, zero));
|
|
literal l_ge_zero = mk_simplified_literal(m_autil.mk_ge(l, zero));
|
|
literal _lits[4] = { i_ge_0, i_lt_len_s, li_ge_ls, l_ge_zero };
|
|
if (ctx.get_assignment(i_ge_0) == l_true &&
|
|
ctx.get_assignment(i_lt_len_s) == l_true &&
|
|
ctx.get_assignment(li_ge_ls) == l_true &&
|
|
ctx.get_assignment(l_ge_zero) == l_true) {
|
|
len = l;
|
|
lits.append(4, _lits);
|
|
return true;
|
|
}
|
|
TRACE("seq", tout << mk_pp(e, m) << "\n"; ctx.display_literals_verbose(tout, 4, _lits); tout << "\n";
|
|
for (unsigned i = 0; i < 4; ++i) tout << ctx.get_assignment(_lits[i]) << "\n";);
|
|
}
|
|
else if (m_util.str.is_at(e, s, i)) {
|
|
// has length 1 if 0 <= i < len(s)
|
|
expr_ref zero(m_autil.mk_int(0), m);
|
|
bool i_is_zero = m_autil.is_numeral(i, r) && r.is_zero();
|
|
literal i_ge_0 = i_is_zero?true_literal:mk_simplified_literal(m_autil.mk_ge(i, zero));
|
|
literal i_lt_len_s = ~mk_simplified_literal(m_autil.mk_ge(mk_sub(i, mk_len(s)), zero));
|
|
literal _lits[2] = { i_ge_0, i_lt_len_s};
|
|
if (ctx.get_assignment(i_ge_0) == l_true &&
|
|
ctx.get_assignment(i_lt_len_s) == l_true) {
|
|
len = m_autil.mk_int(1);
|
|
lits.append(2, _lits);
|
|
return true;
|
|
}
|
|
TRACE("seq", ctx.display_literals_verbose(tout, 2, _lits); tout << "\n";);
|
|
}
|
|
else if (is_pre(e, s, i)) {
|
|
expr_ref zero(m_autil.mk_int(0), m);
|
|
bool i_is_zero = m_autil.is_numeral(i, r) && r.is_zero();
|
|
literal i_ge_0 = i_is_zero?true_literal:mk_simplified_literal(m_autil.mk_ge(i, zero));
|
|
literal i_lt_len_s = ~mk_simplified_literal(m_autil.mk_ge(mk_sub(i, mk_len(s)), zero));
|
|
literal _lits[2] = { i_ge_0, i_lt_len_s };
|
|
if (ctx.get_assignment(i_ge_0) == l_true &&
|
|
ctx.get_assignment(i_lt_len_s) == l_true) {
|
|
len = i;
|
|
lits.append(2, _lits);
|
|
return true;
|
|
}
|
|
TRACE("seq", ctx.display_literals_verbose(tout, 2, _lits); tout << "\n";);
|
|
}
|
|
else if (is_post(e, s, l)) {
|
|
expr_ref zero(m_autil.mk_int(0), m);
|
|
literal l_ge_0 = mk_simplified_literal(m_autil.mk_ge(l, zero));
|
|
literal l_le_len_s = mk_simplified_literal(m_autil.mk_ge(mk_sub(mk_len(s), l), zero));
|
|
literal _lits[2] = { l_ge_0, l_le_len_s };
|
|
if (ctx.get_assignment(l_ge_0) == l_true &&
|
|
ctx.get_assignment(l_le_len_s) == l_true) {
|
|
len = l;
|
|
lits.append(2, _lits);
|
|
return true;
|
|
}
|
|
TRACE("seq", ctx.display_literals_verbose(tout, 2, _lits); tout << "\n";);
|
|
}
|
|
else if (is_skolem(m_tail, e)) {
|
|
s = to_app(e)->get_arg(0);
|
|
l = to_app(e)->get_arg(1);
|
|
expr_ref len_s = mk_len(s);
|
|
literal len_s_ge_l = mk_simplified_literal(m_autil.mk_ge(mk_sub(len_s, l), m_autil.mk_int(0)));
|
|
if (ctx.get_assignment(len_s_ge_l) == l_true) {
|
|
len = mk_sub(len_s, l);
|
|
lits.push_back(len_s_ge_l);
|
|
return true;
|
|
}
|
|
}
|
|
else if (m_util.str.is_unit(e)) {
|
|
len = m_autil.mk_int(1);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool theory_seq::solve_nqs(unsigned i) {
|
|
context & ctx = get_context();
|
|
for (; !ctx.inconsistent() && i < m_nqs.size(); ++i) {
|
|
if (solve_ne(i)) {
|
|
if (i + 1 != m_nqs.size()) {
|
|
ne n = m_nqs[m_nqs.size()-1];
|
|
m_nqs.set(i, n);
|
|
--i;
|
|
}
|
|
m_nqs.pop_back();
|
|
}
|
|
}
|
|
return m_new_propagation || ctx.inconsistent();
|
|
}
|
|
|
|
|
|
bool theory_seq::solve_ne(unsigned idx) {
|
|
context& ctx = get_context();
|
|
ne const& n = m_nqs[idx];
|
|
|
|
unsigned num_undef_lits = 0;
|
|
for (literal lit : n.lits()) {
|
|
switch (ctx.get_assignment(lit)) {
|
|
case l_false:
|
|
TRACE("seq", display_disequation(tout << "has false literal\n", n);
|
|
ctx.display_literal_verbose(tout, lit);
|
|
tout << "\n" << lit << " " << ctx.is_relevant(lit) << "\n";
|
|
);
|
|
return true;
|
|
case l_true:
|
|
break;
|
|
case l_undef:
|
|
++num_undef_lits;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool updated = false;
|
|
dependency* new_deps = n.dep();
|
|
vector<expr_ref_vector> new_ls, new_rs;
|
|
literal_vector new_lits(n.lits());
|
|
for (unsigned i = 0; i < n.ls().size(); ++i) {
|
|
expr_ref_vector& ls = m_ls;
|
|
expr_ref_vector& rs = m_rs;
|
|
expr_ref_vector& lhs = m_lhs;
|
|
expr_ref_vector& rhs = m_rhs;
|
|
ls.reset(); rs.reset(); lhs.reset(); rhs.reset();
|
|
dependency* deps = nullptr;
|
|
bool change = false;
|
|
change = canonize(n.ls(i), ls, deps) || change;
|
|
change = canonize(n.rs(i), rs, deps) || change;
|
|
|
|
if (!m_seq_rewrite.reduce_eq(ls, rs, lhs, rhs, change)) {
|
|
TRACE("seq", display_disequation(tout << "reduces to false: ", n);
|
|
tout << n.ls(i) << " -> " << ls << "\n";
|
|
tout << n.rs(i) << " -> " << rs << "\n";);
|
|
|
|
return true;
|
|
}
|
|
else if (!change) {
|
|
TRACE("seq", tout << "no change " << n.ls(i) << " " << n.rs(i) << "\n";);
|
|
if (updated) {
|
|
new_ls.push_back(n.ls(i));
|
|
new_rs.push_back(n.rs(i));
|
|
}
|
|
continue;
|
|
}
|
|
else {
|
|
if (!updated) {
|
|
for (unsigned j = 0; j < i; ++j) {
|
|
new_ls.push_back(n.ls(j));
|
|
new_rs.push_back(n.rs(j));
|
|
}
|
|
}
|
|
updated = true;
|
|
if (!ls.empty() || !rs.empty()) {
|
|
new_ls.push_back(ls);
|
|
new_rs.push_back(rs);
|
|
}
|
|
TRACE("seq",
|
|
tout << lhs << " != " << rhs << "\n";
|
|
for (unsigned j = 0; j < new_ls.size(); ++j) tout << new_ls[j] << " != " << new_rs[j] << "\n";
|
|
tout << n.ls(i) << " != " << n.rs(i) << "\n";);
|
|
|
|
for (unsigned j = 0; j < lhs.size(); ++j) {
|
|
expr* nl = lhs[j].get();
|
|
expr* nr = rhs[j].get();
|
|
if (m_util.is_seq(nl) || m_util.is_re(nl)) {
|
|
ls.reset();
|
|
rs.reset();
|
|
m_util.str.get_concat(nl, ls);
|
|
m_util.str.get_concat(nr, rs);
|
|
new_ls.push_back(ls);
|
|
new_rs.push_back(rs);
|
|
}
|
|
else if (nl != nr) {
|
|
literal lit(mk_eq(nl, nr, false));
|
|
ctx.mark_as_relevant(lit);
|
|
new_lits.push_back(lit);
|
|
switch (ctx.get_assignment(lit)) {
|
|
case l_false:
|
|
return true;
|
|
case l_true:
|
|
break;
|
|
case l_undef:
|
|
++num_undef_lits;
|
|
m_new_propagation = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
new_deps = m_dm.mk_join(deps, new_deps);
|
|
}
|
|
}
|
|
|
|
TRACE("seq", display_disequation(tout, n););
|
|
|
|
if (!updated && num_undef_lits == 0) {
|
|
return false;
|
|
}
|
|
if (!updated) {
|
|
for (unsigned j = 0; j < n.ls().size(); ++j) {
|
|
new_ls.push_back(n.ls(j));
|
|
new_rs.push_back(n.rs(j));
|
|
}
|
|
}
|
|
|
|
if (num_undef_lits == 1 && new_ls.empty()) {
|
|
literal_vector lits;
|
|
literal undef_lit = null_literal;
|
|
for (literal lit : new_lits) {
|
|
switch (ctx.get_assignment(lit)) {
|
|
case l_true:
|
|
lits.push_back(lit);
|
|
break;
|
|
case l_false:
|
|
UNREACHABLE();
|
|
break;
|
|
case l_undef:
|
|
SASSERT(undef_lit == null_literal);
|
|
undef_lit = lit;
|
|
break;
|
|
}
|
|
}
|
|
TRACE("seq", tout << "propagate: " << undef_lit << "\n";);
|
|
SASSERT(undef_lit != null_literal);
|
|
propagate_lit(new_deps, lits.size(), lits.c_ptr(), ~undef_lit);
|
|
return true;
|
|
}
|
|
if (updated) {
|
|
if (num_undef_lits == 0 && new_ls.empty()) {
|
|
TRACE("seq", tout << "conflict\n";);
|
|
|
|
dependency* deps1 = nullptr;
|
|
if (explain_eq(n.l(), n.r(), deps1)) {
|
|
literal diseq = mk_eq(n.l(), n.r(), false);
|
|
if (ctx.get_assignment(diseq) == l_false) {
|
|
new_lits.reset();
|
|
new_lits.push_back(~diseq);
|
|
new_deps = deps1;
|
|
TRACE("seq", tout << "conflict explained\n";);
|
|
}
|
|
}
|
|
set_conflict(new_deps, new_lits);
|
|
SASSERT(m_new_propagation);
|
|
}
|
|
else {
|
|
m_nqs.push_back(ne(n.l(), n.r(), new_ls, new_rs, new_lits, new_deps));
|
|
}
|
|
}
|
|
return updated;
|
|
}
|
|
|
|
|
|
bool theory_seq::solve_nc(unsigned idx) {
|
|
nc const& n = m_ncs[idx];
|
|
dependency* deps = n.deps();
|
|
literal len_gt = n.len_gt();
|
|
context& ctx = get_context();
|
|
expr_ref c = canonize(n.contains(), deps);
|
|
expr* a = nullptr, *b = nullptr;
|
|
|
|
CTRACE("seq", c != n.contains(), tout << n.contains() << " => " << c << "\n";);
|
|
|
|
|
|
if (m.is_true(c)) {
|
|
literal_vector lits;
|
|
set_conflict(deps, lits);
|
|
return true;
|
|
}
|
|
|
|
if (m.is_false(c)) {
|
|
return true;
|
|
}
|
|
|
|
if (ctx.get_assignment(len_gt) == l_true) {
|
|
TRACE("seq", tout << len_gt << " is true\n";);
|
|
return true;
|
|
}
|
|
|
|
if (m.is_eq(c, a, b)) {
|
|
literal eq = mk_eq(a, b, false);
|
|
propagate_lit(deps, 0, nullptr, ~eq);
|
|
return true;
|
|
}
|
|
|
|
if (m.is_or(c)) {
|
|
for (expr* arg : *to_app(c)) {
|
|
expr_ref ci(arg, m);
|
|
m_ncs.push_back(nc(ci, len_gt, deps));
|
|
}
|
|
m_new_propagation = true;
|
|
return true;
|
|
}
|
|
|
|
if (m.is_and(c)) {
|
|
enode_pair_vector eqs;
|
|
literal_vector lits;
|
|
if (!linearize(deps, eqs, lits)) {
|
|
return false;
|
|
}
|
|
for (enode_pair const& p : eqs) {
|
|
lits.push_back(~mk_eq(p.first->get_owner(), p.second->get_owner(), false));
|
|
}
|
|
for (expr* arg : *to_app(c)) {
|
|
if (m.is_eq(arg, a, b)) {
|
|
lits.push_back(~mk_eq(a, b, false));
|
|
}
|
|
else {
|
|
lits.push_back(~mk_literal(arg));
|
|
}
|
|
}
|
|
TRACE("seq", ctx.display_literals_verbose(tout, lits.size(), lits.c_ptr()) << "\n";);
|
|
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
|
|
return true;
|
|
}
|
|
|
|
if (c != n.contains()) {
|
|
m_ncs.push_back(nc(c, len_gt, deps));
|
|
m_new_propagation = true;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
theory_seq::cell* theory_seq::mk_cell(cell* p, expr* e, dependency* d) {
|
|
cell* c = alloc(cell, p, e, d);
|
|
m_all_cells.push_back(c);
|
|
return c;
|
|
}
|
|
|
|
void theory_seq::unfold(cell* c, ptr_vector<cell>& cons) {
|
|
dependency* dep = nullptr;
|
|
expr* a, *e1, *e2;
|
|
if (m_rep.find1(c->m_expr, a, dep)) {
|
|
cell* c1 = mk_cell(c, a, m_dm.mk_join(dep, c->m_dep));
|
|
unfold(c1, cons);
|
|
}
|
|
else if (m_util.str.is_concat(c->m_expr, e1, e2)) {
|
|
cell* c1 = mk_cell(c, e1, c->m_dep);
|
|
cell* c2 = mk_cell(nullptr, e2, nullptr);
|
|
unfold(c1, cons);
|
|
unfold(c2, cons);
|
|
}
|
|
else {
|
|
cons.push_back(c);
|
|
}
|
|
c->m_last = cons.size()-1;
|
|
}
|
|
//
|
|
// a -> a1.a2, a2 -> a3.a4 -> ...
|
|
// b -> b1.b2, b2 -> b3.a4
|
|
//
|
|
// e1
|
|
//
|
|
|
|
void theory_seq::display_explain(std::ostream& out, unsigned indent, expr* e) {
|
|
expr* e1, *e2, *a;
|
|
dependency* dep = nullptr;
|
|
smt2_pp_environment_dbg env(m);
|
|
params_ref p;
|
|
for (unsigned i = 0; i < indent; ++i) out << " ";
|
|
ast_smt2_pp(out, e, env, p, indent);
|
|
out << "\n";
|
|
|
|
if (m_rep.find1(e, a, dep)) {
|
|
display_explain(out, indent + 1, a);
|
|
}
|
|
else if (m_util.str.is_concat(e, e1, e2)) {
|
|
display_explain(out, indent + 1, e1);
|
|
display_explain(out, indent + 1, e2);
|
|
}
|
|
}
|
|
|
|
bool theory_seq::explain_eq(expr* e1, expr* e2, dependency*& dep) {
|
|
|
|
if (e1 == e2) {
|
|
return true;
|
|
}
|
|
expr* a1, *a2;
|
|
ptr_vector<cell> v1, v2;
|
|
unsigned cells_sz = m_all_cells.size();
|
|
cell* c1 = mk_cell(nullptr, e1, nullptr);
|
|
cell* c2 = mk_cell(nullptr, e2, nullptr);
|
|
unfold(c1, v1);
|
|
unfold(c2, v2);
|
|
unsigned i = 0, j = 0;
|
|
|
|
TRACE("seq",
|
|
tout << "1:\n";
|
|
display_explain(tout, 0, e1);
|
|
tout << "2:\n";
|
|
display_explain(tout, 0, e2););
|
|
|
|
bool result = true;
|
|
while (i < v1.size() || j < v2.size()) {
|
|
if (i == v1.size()) {
|
|
while (j < v2.size() && m_util.str.is_empty(v2[j]->m_expr)) {
|
|
dep = m_dm.mk_join(dep, v2[j]->m_dep);
|
|
++j;
|
|
}
|
|
result = j == v2.size();
|
|
break;
|
|
}
|
|
if (j == v2.size()) {
|
|
while (i < v1.size() && m_util.str.is_empty(v1[i]->m_expr)) {
|
|
dep = m_dm.mk_join(dep, v1[i]->m_dep);
|
|
++i;
|
|
}
|
|
result = i == v1.size();
|
|
break;
|
|
}
|
|
cell* c1 = v1[i];
|
|
cell* c2 = v2[j];
|
|
e1 = c1->m_expr;
|
|
e2 = c2->m_expr;
|
|
if (e1 == e2) {
|
|
if (c1->m_parent && c2->m_parent &&
|
|
c1->m_parent->m_expr == c2->m_parent->m_expr) {
|
|
TRACE("seq", tout << "parent: " << mk_pp(e1, m) << " " << mk_pp(c1->m_parent->m_expr, m) << "\n";);
|
|
c1 = c1->m_parent;
|
|
c2 = c2->m_parent;
|
|
v1[c1->m_last] = c1;
|
|
i = c1->m_last;
|
|
v2[c2->m_last] = c2;
|
|
j = c2->m_last;
|
|
}
|
|
else {
|
|
dep = m_dm.mk_join(dep, c1->m_dep);
|
|
dep = m_dm.mk_join(dep, c2->m_dep);
|
|
++i;
|
|
++j;
|
|
}
|
|
}
|
|
else if (m_util.str.is_empty(e1)) {
|
|
dep = m_dm.mk_join(dep, c1->m_dep);
|
|
++i;
|
|
}
|
|
else if (m_util.str.is_empty(e2)) {
|
|
dep = m_dm.mk_join(dep, c2->m_dep);
|
|
++j;
|
|
}
|
|
else if (m_util.str.is_unit(e1, a1) &&
|
|
m_util.str.is_unit(e2, a2)) {
|
|
if (explain_eq(a1, a2, dep)) {
|
|
++i;
|
|
++j;
|
|
}
|
|
else {
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
TRACE("seq", tout << "Could not solve " << mk_pp(e1, m) << " = " << mk_pp(e2, m) << "\n";);
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
m_all_cells.resize(cells_sz);
|
|
return result;
|
|
|
|
}
|
|
|
|
bool theory_seq::explain_empty(expr_ref_vector& es, dependency*& dep) {
|
|
while (!es.empty()) {
|
|
expr* e = es.back();
|
|
if (m_util.str.is_empty(e)) {
|
|
es.pop_back();
|
|
continue;
|
|
}
|
|
expr* a;
|
|
if (m_rep.find1(e, a, dep)) {
|
|
es.pop_back();
|
|
m_util.str.get_concat(a, es);
|
|
continue;
|
|
}
|
|
TRACE("seq", tout << "Could not set to empty: " << es << "\n";);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool theory_seq::simplify_and_solve_eqs() {
|
|
context & ctx = get_context();
|
|
m_new_solution = true;
|
|
while (m_new_solution && !ctx.inconsistent()) {
|
|
m_new_solution = false;
|
|
solve_eqs(0);
|
|
}
|
|
return m_new_propagation || ctx.inconsistent();
|
|
}
|
|
|
|
void theory_seq::internalize_eq_eh(app * atom, bool_var v) {
|
|
}
|
|
|
|
bool theory_seq::internalize_atom(app* a, bool) {
|
|
return internalize_term(a);
|
|
}
|
|
|
|
bool theory_seq::internalize_term(app* term) {
|
|
context & ctx = get_context();
|
|
if (ctx.e_internalized(term)) {
|
|
enode* e = ctx.get_enode(term);
|
|
mk_var(e);
|
|
return true;
|
|
}
|
|
for (auto arg : *term) {
|
|
mk_var(ensure_enode(arg));
|
|
}
|
|
if (m.is_bool(term)) {
|
|
bool_var bv = ctx.mk_bool_var(term);
|
|
ctx.set_var_theory(bv, get_id());
|
|
ctx.mark_as_relevant(bv);
|
|
}
|
|
|
|
enode* e = nullptr;
|
|
if (ctx.e_internalized(term)) {
|
|
e = ctx.get_enode(term);
|
|
}
|
|
else {
|
|
e = ctx.mk_enode(term, false, m.is_bool(term), true);
|
|
}
|
|
mk_var(e);
|
|
return true;
|
|
}
|
|
|
|
void theory_seq::add_length(expr* l) {
|
|
expr* e = nullptr;
|
|
VERIFY(m_util.str.is_length(l, e));
|
|
SASSERT(!m_length.contains(l));
|
|
m_length.push_back(l);
|
|
m_has_length.insert(e);
|
|
m_trail_stack.push(insert_obj_trail<theory_seq, expr>(m_has_length, e));
|
|
m_trail_stack.push(push_back_vector<theory_seq, expr_ref_vector>(m_length));
|
|
}
|
|
|
|
|
|
/*
|
|
ensure that all elements in equivalence class occur under an application of 'length'
|
|
*/
|
|
void theory_seq::enforce_length(expr* e) {
|
|
enode* n = ensure_enode(e);
|
|
enode* n1 = n;
|
|
do {
|
|
expr* o = n->get_owner();
|
|
if (!has_length(o)) {
|
|
expr_ref len = mk_len(o);
|
|
enque_axiom(len);
|
|
add_length(len);
|
|
}
|
|
n = n->get_next();
|
|
}
|
|
while (n1 != n);
|
|
}
|
|
|
|
|
|
void theory_seq::add_int_string(expr* e) {
|
|
m_int_string.push_back(e);
|
|
m_trail_stack.push(push_back_vector<theory_seq, expr_ref_vector>(m_int_string));
|
|
}
|
|
|
|
bool theory_seq::check_int_string() {
|
|
bool change = false;
|
|
for (expr * e : m_int_string) {
|
|
if (check_int_string(e)) {
|
|
change = true;
|
|
}
|
|
}
|
|
return change;
|
|
}
|
|
|
|
bool theory_seq::check_int_string(expr* e) {
|
|
return
|
|
get_context().inconsistent() ||
|
|
(m_util.str.is_itos(e) && add_itos_val_axiom(e)) ||
|
|
(m_util.str.is_stoi(e) && add_stoi_val_axiom(e));
|
|
}
|
|
|
|
|
|
void theory_seq::add_stoi_axiom(expr* e) {
|
|
TRACE("seq", tout << mk_pp(e, m) << "\n";);
|
|
expr* s = nullptr;
|
|
VERIFY (m_util.str.is_stoi(e, s));
|
|
|
|
// stoi(s) >= -1
|
|
literal l = mk_simplified_literal(m_autil.mk_ge(e, m_autil.mk_int(-1)));
|
|
add_axiom(l);
|
|
|
|
// stoi("") = -1
|
|
add_axiom(mk_eq(m_util.str.mk_stoi(m_util.str.mk_empty(m.get_sort(s))), m_autil.mk_int(-1), false));
|
|
}
|
|
|
|
void theory_seq::add_itos_axiom(expr* e) {
|
|
rational val;
|
|
expr* n = nullptr;
|
|
TRACE("seq", tout << mk_pp(e, m) << "\n";);
|
|
VERIFY(m_util.str.is_itos(e, n));
|
|
|
|
// itos(n) = "" <=> n < 0
|
|
expr_ref zero(m_autil.mk_int(0), m);
|
|
literal eq1 = mk_literal(m_util.str.mk_is_empty(e));
|
|
literal ge0 = mk_literal(m_autil.mk_ge(n, zero));
|
|
// n >= 0 => itos(n) != ""
|
|
// itos(n) = "" or n >= 0
|
|
add_axiom(~eq1, ~ge0);
|
|
add_axiom(eq1, ge0);
|
|
|
|
// n >= 0 => stoi(itos(n)) = n
|
|
app_ref stoi(m_util.str.mk_stoi(e), m);
|
|
add_axiom(~ge0, mk_preferred_eq(stoi, n));
|
|
|
|
}
|
|
|
|
|
|
void theory_seq::ensure_digit_axiom() {
|
|
|
|
if (m_si_axioms.empty()) {
|
|
for (unsigned i = 0; i < 10; ++i) {
|
|
expr_ref cnst(m_util.mk_char('0'+i), m);
|
|
add_axiom(mk_eq(digit2int(cnst), m_autil.mk_int(i), false));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool theory_seq::add_itos_val_axiom(expr* e) {
|
|
rational val, val2;
|
|
expr* n = nullptr;
|
|
TRACE("seq", tout << mk_pp(e, m) << "\n";);
|
|
VERIFY(m_util.str.is_itos(e, n));
|
|
|
|
if (m_util.str.is_stoi(n)) {
|
|
return false;
|
|
}
|
|
enforce_length(e);
|
|
|
|
if (get_length(e, val) && val.is_pos() && val.is_unsigned() && (!m_si_axioms.find(e, val2) || val != val2)) {
|
|
add_si_axiom(e, n, val.get_unsigned());
|
|
m_si_axioms.insert(e, val);
|
|
m_trail_stack.push(push_replay(alloc(replay_is_axiom, m, e)));
|
|
m_trail_stack.push(insert_map<theory_seq, obj_map<expr, rational>, expr*>(m_si_axioms, e));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool theory_seq::add_stoi_val_axiom(expr* e) {
|
|
context& ctx = get_context();
|
|
expr* n = nullptr;
|
|
rational val, val2;
|
|
VERIFY(m_util.str.is_stoi(e, n));
|
|
|
|
TRACE("seq", tout << mk_pp(e, m) << " " << ctx.get_scope_level () << " " << get_length(n, val) << " " << val << "\n";);
|
|
|
|
if (m_util.str.is_itos(n)) {
|
|
return false;
|
|
}
|
|
enforce_length(n);
|
|
|
|
if (get_length(n, val) && val.is_pos() && val.is_unsigned() && (!m_si_axioms.find(e, val2) || val2 != val)) {
|
|
add_si_axiom(n, e, val.get_unsigned());
|
|
m_si_axioms.insert(e, val);
|
|
m_trail_stack.push(push_replay(alloc(replay_is_axiom, m, e)));
|
|
m_trail_stack.push(insert_map<theory_seq, obj_map<expr, rational>, expr*>(m_si_axioms, e));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
literal theory_seq::is_digit(expr* ch) {
|
|
literal isd = mk_literal(mk_skolem(symbol("seq.is_digit"), ch, nullptr, nullptr, nullptr, m.mk_bool_sort()));
|
|
expr_ref d2i = digit2int(ch);
|
|
expr_ref _lo(m_util.mk_le(m_util.mk_char('0'), ch), m);
|
|
expr_ref _hi(m_util.mk_le(ch, m_util.mk_char('9')), m);
|
|
literal lo = mk_literal(_lo);
|
|
literal hi = mk_literal(_hi);
|
|
add_axiom(~lo, ~hi, isd);
|
|
add_axiom(~isd, lo);
|
|
add_axiom(~isd, hi);
|
|
return isd;
|
|
}
|
|
|
|
expr_ref theory_seq::digit2int(expr* ch) {
|
|
return expr_ref(mk_skolem(symbol("seq.digit2int"), ch, nullptr, nullptr, nullptr, m_autil.mk_int()), m);
|
|
}
|
|
|
|
|
|
|
|
// n >= 0 & len(e) = k => is_digit(e_i) for i = 0..k-1
|
|
// n >= 0 & len(e) = k => n = sum 10^i*digit(e_i)
|
|
// n < 0 & len(e) = k => \/_i ~is_digit(e_i) for i = 0..k-1
|
|
// 10^k <= n < 10^{k+1}-1 => len(e) = k
|
|
|
|
void theory_seq::add_si_axiom(expr* e, expr* n, unsigned k) {
|
|
context& ctx = get_context();
|
|
zstring s;
|
|
expr_ref ith_char(m), num(m), coeff(m);
|
|
expr_ref_vector nums(m), chars(m);
|
|
expr_ref len = mk_len(e);
|
|
literal len_eq_k = mk_preferred_eq(len, m_autil.mk_int(k));
|
|
literal ge0 = mk_literal(m_autil.mk_ge(n, m_autil.mk_int(0)));
|
|
literal_vector digits;
|
|
digits.push_back(~len_eq_k);
|
|
digits.push_back(ge0);
|
|
ensure_digit_axiom();
|
|
for (unsigned i = 0; i < k; ++i) {
|
|
ith_char = mk_nth(e, m_autil.mk_int(i));
|
|
literal isd = is_digit(ith_char);
|
|
add_axiom(~len_eq_k, ~ge0, isd);
|
|
chars.push_back(m_util.str.mk_unit(ith_char));
|
|
nums.push_back(digit2int(ith_char));
|
|
}
|
|
++m_stats.m_add_axiom;
|
|
ctx.mk_th_axiom(get_id(), digits.size(), digits.c_ptr());
|
|
rational c(1);
|
|
for (unsigned i = k; i-- > 0; c *= rational(10)) {
|
|
coeff = m_autil.mk_int(c);
|
|
nums[i] = m_autil.mk_mul(coeff, nums.get(i));
|
|
}
|
|
num = m_autil.mk_add(nums.size(), nums.c_ptr());
|
|
ctx.get_rewriter()(num);
|
|
m_new_propagation = true;
|
|
add_axiom(~len_eq_k, ~ge0, mk_preferred_eq(n, num));
|
|
|
|
add_axiom(~len_eq_k, ~ge0, mk_preferred_eq(e, m_util.str.mk_concat(chars)));
|
|
|
|
SASSERT(k > 0);
|
|
rational lb = power(rational(10), k - 1);
|
|
rational ub = power(rational(10), k) - 1;
|
|
arith_util& a = m_autil;
|
|
literal lbl = mk_literal(a.mk_ge(n, a.mk_int(lb)));
|
|
literal ubl = mk_literal(a.mk_le(n, a.mk_int(ub)));
|
|
literal ge_k = mk_literal(a.mk_ge(len, a.mk_int(k)));
|
|
literal le_k = mk_literal(a.mk_le(len, a.mk_int(k)));
|
|
// n >= lb => len(s) >= k
|
|
// n >= 0 & len(s) >= k => n >= lb
|
|
// 0 <= n <= ub => len(s) <= k
|
|
add_axiom(~lbl, ge_k);
|
|
add_axiom(~ge0, lbl, ~ge_k);
|
|
add_axiom(~ge0, ~ubl, le_k);
|
|
}
|
|
|
|
|
|
|
|
void theory_seq::apply_sort_cnstr(enode* n, sort* s) {
|
|
mk_var(n);
|
|
}
|
|
|
|
void theory_seq::display(std::ostream & out) const {
|
|
if (m_eqs.empty() &&
|
|
m_nqs.empty() &&
|
|
m_rep.empty() &&
|
|
m_exclude.empty()) {
|
|
return;
|
|
}
|
|
out << "Theory seq\n";
|
|
if (!m_eqs.empty()) {
|
|
out << "Equations:\n";
|
|
display_equations(out);
|
|
}
|
|
if (!m_nqs.empty()) {
|
|
display_disequations(out);
|
|
}
|
|
if (!m_re2aut.empty()) {
|
|
out << "Regex\n";
|
|
for (auto const& kv : m_re2aut) {
|
|
out << mk_pp(kv.m_key, m) << "\n";
|
|
display_expr disp(m);
|
|
if (kv.m_value) {
|
|
kv.m_value->display(out, disp);
|
|
}
|
|
}
|
|
}
|
|
if (!m_rep.empty()) {
|
|
out << "Solved equations:\n";
|
|
m_rep.display(out);
|
|
}
|
|
if (!m_exclude.empty()) {
|
|
out << "Exclusions:\n";
|
|
m_exclude.display(out);
|
|
}
|
|
|
|
for (auto e : m_length) {
|
|
rational lo(-1), hi(-1);
|
|
lower_bound(e, lo);
|
|
upper_bound(e, hi);
|
|
if (lo.is_pos() || !hi.is_minus_one()) {
|
|
out << mk_pp(e, m) << " [" << lo << ":" << hi << "]\n";
|
|
}
|
|
}
|
|
|
|
if (!m_ncs.empty()) {
|
|
out << "Non contains:\n";
|
|
for (auto const& nc : m_ncs) {
|
|
display_nc(out, nc);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
std::ostream& theory_seq::display_nc(std::ostream& out, nc const& nc) const {
|
|
out << "not " << mk_pp(nc.contains(), m) << "\n";
|
|
display_deps(out << " <- ", nc.deps()) << "\n";
|
|
return out;
|
|
}
|
|
|
|
std::ostream& theory_seq::display_equations(std::ostream& out) const {
|
|
for (auto const& e : m_eqs) {
|
|
display_equation(out, e);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::ostream& theory_seq::display_equation(std::ostream& out, eq const& e) const {
|
|
out << e.ls() << " = " << e.rs() << " <- \n";
|
|
return display_deps(out, e.dep());
|
|
}
|
|
|
|
std::ostream& theory_seq::display_disequations(std::ostream& out) const {
|
|
bool first = true;
|
|
for (ne const& n : m_nqs) {
|
|
if (first) out << "Disequations:\n";
|
|
first = false;
|
|
display_disequation(out, n);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::ostream& theory_seq::display_disequation(std::ostream& out, ne const& e) const {
|
|
for (literal lit : e.lits()) {
|
|
out << lit << " ";
|
|
}
|
|
if (!e.lits().empty()) {
|
|
out << "\n";
|
|
}
|
|
for (unsigned j = 0; j < e.ls().size(); ++j) {
|
|
out << e.ls(j) << " != " << e.rs(j) << "\n";
|
|
}
|
|
if (e.dep()) {
|
|
display_deps(out, e.dep());
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::ostream& theory_seq::display_deps(std::ostream& out, literal_vector const& lits, enode_pair_vector const& eqs) const {
|
|
context& ctx = get_context();
|
|
smt2_pp_environment_dbg env(m);
|
|
params_ref p;
|
|
for (auto const& eq : eqs) {
|
|
out << " (= ";
|
|
ast_smt2_pp(out, eq.first->get_owner(), env, p, 5);
|
|
out << "\n ";
|
|
ast_smt2_pp(out, eq.second->get_owner(), env, p, 5);
|
|
out << ")\n";
|
|
}
|
|
for (literal l : lits) {
|
|
if (l == true_literal) {
|
|
out << " true";
|
|
}
|
|
else if (l == false_literal) {
|
|
out << " false";
|
|
}
|
|
else {
|
|
expr* e = ctx.bool_var2expr(l.var());
|
|
if (l.sign()) {
|
|
ast_smt2_pp(out << " (not ", e, env, p, 7);
|
|
out << ")";
|
|
}
|
|
else {
|
|
ast_smt2_pp(out << " ", e, env, p, 2);
|
|
}
|
|
}
|
|
out << "\n";
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::ostream& theory_seq::display_deps(std::ostream& out, dependency* dep) const {
|
|
literal_vector lits;
|
|
enode_pair_vector eqs;
|
|
linearize(dep, eqs, lits);
|
|
display_deps(out, lits, eqs);
|
|
return out;
|
|
}
|
|
|
|
void theory_seq::collect_statistics(::statistics & st) const {
|
|
st.update("seq num splits", m_stats.m_num_splits);
|
|
st.update("seq num reductions", m_stats.m_num_reductions);
|
|
st.update("seq length coherence", m_stats.m_check_length_coherence);
|
|
st.update("seq branch", m_stats.m_branch_variable);
|
|
st.update("seq solve !=", m_stats.m_solve_nqs);
|
|
st.update("seq solve =", m_stats.m_solve_eqs);
|
|
st.update("seq add axiom", m_stats.m_add_axiom);
|
|
st.update("seq extensionality", m_stats.m_extensionality);
|
|
st.update("seq fixed length", m_stats.m_fixed_length);
|
|
st.update("seq int.to.str", m_stats.m_int_string);
|
|
st.update("seq automata", m_stats.m_propagate_automata);
|
|
}
|
|
|
|
void theory_seq::init_search_eh() {
|
|
m_re2aut.reset();
|
|
m_res.reset();
|
|
m_automata.reset();
|
|
}
|
|
|
|
void theory_seq::init_model(expr_ref_vector const& es) {
|
|
expr_ref new_s(m);
|
|
for (auto e : es) {
|
|
dependency* eqs = nullptr;
|
|
expr_ref s = canonize(e, eqs);
|
|
if (is_var(s)) {
|
|
new_s = m_factory->get_fresh_value(m.get_sort(s));
|
|
m_rep.update(s, new_s, eqs);
|
|
}
|
|
}
|
|
}
|
|
|
|
void theory_seq::finalize_model(model_generator& mg) {
|
|
m_rep.pop_scope(1);
|
|
}
|
|
|
|
void theory_seq::init_model(model_generator & mg) {
|
|
enable_trace("seq");
|
|
TRACE("seq", display(tout << "level: " << get_context().get_scope_level() << "\n"););
|
|
m_rep.push_scope();
|
|
m_factory = alloc(seq_factory, get_manager(), get_family_id(), mg.get_model());
|
|
mg.register_factory(m_factory);
|
|
for (ne const& n : m_nqs) {
|
|
m_factory->register_value(n.l());
|
|
m_factory->register_value(n.r());
|
|
}
|
|
for (ne const& n : m_nqs) {
|
|
for (unsigned i = 0; i < n.ls().size(); ++i) {
|
|
init_model(n.ls(i));
|
|
init_model(n.rs(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
class theory_seq::seq_value_proc : public model_value_proc {
|
|
enum source_t { unit_source, int_source, string_source };
|
|
theory_seq& th;
|
|
sort* m_sort;
|
|
svector<model_value_dependency> m_dependencies;
|
|
ptr_vector<expr> m_strings;
|
|
svector<source_t> m_source;
|
|
public:
|
|
seq_value_proc(theory_seq& th, sort* s): th(th), m_sort(s) {
|
|
}
|
|
~seq_value_proc() override {}
|
|
void add_unit(enode* n) {
|
|
m_dependencies.push_back(model_value_dependency(n));
|
|
m_source.push_back(unit_source);
|
|
}
|
|
void add_int(enode* n) {
|
|
m_dependencies.push_back(model_value_dependency(n));
|
|
m_source.push_back(int_source);
|
|
}
|
|
void add_string(expr* n) {
|
|
m_strings.push_back(n);
|
|
m_source.push_back(string_source);
|
|
}
|
|
void get_dependencies(buffer<model_value_dependency> & result) override {
|
|
result.append(m_dependencies.size(), m_dependencies.c_ptr());
|
|
}
|
|
|
|
void add_buffer(svector<unsigned>& sbuffer, zstring const& zs) {
|
|
for (unsigned i = 0; i < zs.length(); ++i) {
|
|
sbuffer.push_back(zs[i]);
|
|
}
|
|
}
|
|
|
|
app * mk_value(model_generator & mg, ptr_vector<expr> & values) override {
|
|
SASSERT(values.size() == m_dependencies.size());
|
|
expr_ref_vector args(th.m);
|
|
unsigned j = 0, k = 0;
|
|
rational val;
|
|
bool is_string = th.m_util.is_string(m_sort);
|
|
expr_ref result(th.m);
|
|
if (is_string) {
|
|
unsigned_vector sbuffer;
|
|
unsigned ch;
|
|
for (source_t src : m_source) {
|
|
switch (src) {
|
|
case unit_source: {
|
|
VERIFY(th.m_util.is_const_char(values[j++], ch));
|
|
sbuffer.push_back(ch);
|
|
break;
|
|
}
|
|
case string_source: {
|
|
dependency* deps = nullptr;
|
|
expr_ref tmp = th.canonize(m_strings[k], deps);
|
|
zstring zs;
|
|
if (th.m_util.str.is_string(tmp, zs)) {
|
|
add_buffer(sbuffer, zs);
|
|
}
|
|
else {
|
|
TRACE("seq", tout << "Not a string: " << tmp << "\n";);
|
|
}
|
|
++k;
|
|
break;
|
|
}
|
|
case int_source: {
|
|
std::ostringstream strm;
|
|
arith_util arith(th.m);
|
|
VERIFY(arith.is_numeral(values[j++], val));
|
|
|
|
if (val.is_neg()) {
|
|
strm << "";
|
|
}
|
|
else {
|
|
strm << val;
|
|
}
|
|
zstring zs(strm.str().c_str());
|
|
add_buffer(sbuffer, zs);
|
|
break;
|
|
}
|
|
}
|
|
// TRACE("seq", tout << src << " " << sbuffer << "\n";);
|
|
}
|
|
result = th.m_util.str.mk_string(zstring(sbuffer.size(), sbuffer.c_ptr()));
|
|
}
|
|
else {
|
|
for (source_t src : m_source) {
|
|
switch (src) {
|
|
case unit_source:
|
|
args.push_back(th.m_util.str.mk_unit(values[j++]));
|
|
break;
|
|
case string_source:
|
|
args.push_back(m_strings[k++]);
|
|
break;
|
|
case int_source:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
result = th.mk_concat(args, m_sort);
|
|
th.m_rewrite(result);
|
|
}
|
|
th.m_factory->add_trail(result);
|
|
TRACE("seq", tout << result << "\n";);
|
|
return to_app(result);
|
|
}
|
|
};
|
|
|
|
app* theory_seq::get_ite_value(expr* e) {
|
|
expr* e1, *e2, *e3;
|
|
while (m.is_ite(e, e1, e2, e3)) {
|
|
if (get_root(e2) == get_root(e)) {
|
|
e = e2;
|
|
}
|
|
else if (get_root(e3) == get_root(e)) {
|
|
e = e3;
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
return to_app(e);
|
|
}
|
|
|
|
model_value_proc * theory_seq::mk_value(enode * n, model_generator & mg) {
|
|
app* e = n->get_owner();
|
|
context& ctx = get_context();
|
|
TRACE("seq", tout << mk_pp(n->get_owner(), m) << "\n";);
|
|
e = get_ite_value(e);
|
|
if (m_util.is_seq(e)) {
|
|
ptr_vector<expr> concats;
|
|
get_ite_concat(e, concats);
|
|
sort* srt = m.get_sort(e);
|
|
seq_value_proc* sv = alloc(seq_value_proc, *this, srt);
|
|
|
|
TRACE("seq", tout << mk_pp(e, m) << "\n";);
|
|
for (expr* c : concats) {
|
|
expr *c1;
|
|
TRACE("seq", tout << mk_pp(c, m) << "\n";);
|
|
if (m_util.str.is_unit(c, c1)) {
|
|
if (ctx.e_internalized(c1)) {
|
|
sv->add_unit(ctx.get_enode(c1));
|
|
}
|
|
}
|
|
else if (m_util.str.is_itos(c, c1)) {
|
|
if (ctx.e_internalized(c1)) {
|
|
sv->add_int(ctx.get_enode(c1));
|
|
}
|
|
}
|
|
else if (m_util.str.is_string(c)) {
|
|
sv->add_string(c);
|
|
}
|
|
else {
|
|
sv->add_string(mk_value(to_app(c)));
|
|
}
|
|
}
|
|
return sv;
|
|
}
|
|
else {
|
|
return alloc(expr_wrapper_proc, mk_value(e));
|
|
}
|
|
}
|
|
|
|
|
|
app* theory_seq::mk_value(app* e) {
|
|
expr_ref result(m);
|
|
context& ctx = get_context();
|
|
e = get_ite_value(e);
|
|
result = m_rep.find(e);
|
|
|
|
if (is_var(result)) {
|
|
SASSERT(m_factory);
|
|
expr_ref val(m);
|
|
val = m_factory->get_some_value(m.get_sort(result));
|
|
if (val) {
|
|
result = val;
|
|
}
|
|
}
|
|
else {
|
|
m_rewrite(result);
|
|
}
|
|
m_factory->add_trail(result);
|
|
TRACE("seq", tout << mk_pp(e, m) << " -> " << result << "\n";);
|
|
m_rep.update(e, result, nullptr);
|
|
return to_app(result);
|
|
}
|
|
|
|
|
|
theory_var theory_seq::mk_var(enode* n) {
|
|
if (!m_util.is_seq(n->get_owner()) &&
|
|
!m_util.is_re(n->get_owner())) {
|
|
return null_theory_var;
|
|
}
|
|
if (is_attached_to_var(n)) {
|
|
return n->get_th_var(get_id());
|
|
}
|
|
else {
|
|
theory_var v = theory::mk_var(n);
|
|
m_find.mk_var();
|
|
get_context().attach_th_var(n, this, v);
|
|
get_context().mark_as_relevant(n);
|
|
return v;
|
|
}
|
|
}
|
|
|
|
bool theory_seq::can_propagate() {
|
|
return m_axioms_head < m_axioms.size() || !m_replay.empty() || m_new_solution;
|
|
}
|
|
|
|
expr_ref theory_seq::canonize(expr* e, dependency*& eqs) {
|
|
expr_ref result = expand(e, eqs);
|
|
TRACE("seq", tout << mk_pp(e, m) << " expands to " << result << "\n";);
|
|
m_rewrite(result);
|
|
TRACE("seq", tout << mk_pp(e, m) << " rewrites to " << result << "\n";);
|
|
return result;
|
|
}
|
|
|
|
bool theory_seq::canonize(expr* e, expr_ref_vector& es, dependency*& eqs) {
|
|
expr* e1, *e2;
|
|
expr_ref e3(e, m);
|
|
bool change = false;
|
|
while (true) {
|
|
if (m_util.str.is_concat(e3, e1, e2)) {
|
|
canonize(e1, es, eqs);
|
|
e3 = e2;
|
|
change = true;
|
|
}
|
|
else if (m_util.str.is_empty(e3)) {
|
|
return true;
|
|
}
|
|
else {
|
|
expr_ref e4 = expand(e3, eqs);
|
|
change |= e4 != e3;
|
|
m_util.str.get_concat(e4, es);
|
|
break;
|
|
}
|
|
}
|
|
return change;
|
|
}
|
|
|
|
bool theory_seq::canonize(expr_ref_vector const& es, expr_ref_vector& result, dependency*& eqs) {
|
|
bool change = false;
|
|
for (expr* e : es) {
|
|
change = canonize(e, result, eqs) || change;
|
|
SASSERT(!m_util.str.is_concat(e) || change);
|
|
}
|
|
return change;
|
|
}
|
|
|
|
expr_ref theory_seq::expand(expr* e, dependency*& eqs) {
|
|
unsigned sz = m_expand_todo.size();
|
|
m_expand_todo.push_back(e);
|
|
expr_ref result(m);
|
|
while (m_expand_todo.size() != sz) {
|
|
expr* e = m_expand_todo.back();
|
|
result = expand1(e, eqs);
|
|
if (result.get()) m_expand_todo.pop_back();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
expr_ref theory_seq::try_expand(expr* e, dependency*& eqs){
|
|
expr_ref result(m);
|
|
expr_dep ed;
|
|
if (m_rep.find_cache(e, ed)) {
|
|
if (e != ed.first) {
|
|
eqs = m_dm.mk_join(eqs, ed.second);
|
|
}
|
|
result = ed.first;
|
|
}
|
|
else {
|
|
m_expand_todo.push_back(e);
|
|
}
|
|
return result;
|
|
}
|
|
expr_ref theory_seq::expand1(expr* e0, dependency*& eqs) {
|
|
expr_ref result(m);
|
|
result = try_expand(e0, eqs);
|
|
if (result) return result;
|
|
dependency* deps = nullptr;
|
|
expr* e = m_rep.find(e0, deps);
|
|
expr* e1, *e2, *e3;
|
|
expr_ref arg1(m), arg2(m);
|
|
context& ctx = get_context();
|
|
if (m_util.str.is_concat(e, e1, e2)) {
|
|
arg1 = try_expand(e1, deps);
|
|
arg2 = try_expand(e2, deps);
|
|
if (!arg1 || !arg2) return result;
|
|
result = mk_concat(arg1, arg2);
|
|
}
|
|
else if (m_util.str.is_empty(e) || m_util.str.is_string(e)) {
|
|
result = e;
|
|
}
|
|
else if (m_util.str.is_prefix(e, e1, e2)) {
|
|
arg1 = try_expand(e1, deps);
|
|
arg2 = try_expand(e2, deps);
|
|
if (!arg1 || !arg2) return result;
|
|
result = m_util.str.mk_prefix(arg1, arg2);
|
|
}
|
|
else if (m_util.str.is_suffix(e, e1, e2)) {
|
|
arg1 = try_expand(e1, deps);
|
|
arg2 = try_expand(e2, deps);
|
|
if (!arg1 || !arg2) return result;
|
|
result = m_util.str.mk_suffix(arg1, arg2);
|
|
}
|
|
else if (m_util.str.is_contains(e, e1, e2)) {
|
|
arg1 = try_expand(e1, deps);
|
|
arg2 = try_expand(e2, deps);
|
|
if (!arg1 || !arg2) return result;
|
|
result = m_util.str.mk_contains(arg1, arg2);
|
|
}
|
|
else if (m_util.str.is_unit(e, e1)) {
|
|
arg1 = try_expand(e1, deps);
|
|
if (!arg1) return result;
|
|
result = m_util.str.mk_unit(arg1);
|
|
}
|
|
else if (m_util.str.is_index(e, e1, e2)) {
|
|
arg1 = try_expand(e1, deps);
|
|
arg2 = try_expand(e2, deps);
|
|
if (!arg1 || !arg2) return result;
|
|
result = m_util.str.mk_index(arg1, arg2, m_autil.mk_int(0));
|
|
}
|
|
else if (m_util.str.is_index(e, e1, e2, e3)) {
|
|
arg1 = try_expand(e1, deps);
|
|
arg2 = try_expand(e2, deps);
|
|
if (!arg1 || !arg2) return result;
|
|
result = m_util.str.mk_index(arg1, arg2, e3);
|
|
}
|
|
else if (m.is_ite(e, e1, e2, e3)) {
|
|
if (ctx.e_internalized(e) && ctx.e_internalized(e2) && ctx.get_enode(e)->get_root() == ctx.get_enode(e2)->get_root()) {
|
|
result = try_expand(e2, deps);
|
|
if (!result) return result;
|
|
add_dependency(deps, ctx.get_enode(e), ctx.get_enode(e2));
|
|
}
|
|
else if (ctx.e_internalized(e) && ctx.e_internalized(e2) && ctx.get_enode(e)->get_root() == ctx.get_enode(e3)->get_root()) {
|
|
result = try_expand(e3, deps);
|
|
if (!result) return result;
|
|
add_dependency(deps, ctx.get_enode(e), ctx.get_enode(e3));
|
|
}
|
|
else {
|
|
literal lit(mk_literal(e1));
|
|
switch (ctx.get_assignment(lit)) {
|
|
case l_true:
|
|
deps = m_dm.mk_join(deps, m_dm.mk_leaf(assumption(lit)));
|
|
result = try_expand(e2, deps);
|
|
if (!result) return result;
|
|
break;
|
|
case l_false:
|
|
deps = m_dm.mk_join(deps, m_dm.mk_leaf(assumption(~lit)));
|
|
result = try_expand(e3, deps);
|
|
if (!result) return result;
|
|
break;
|
|
case l_undef:
|
|
result = e;
|
|
m_reset_cache = true;
|
|
TRACE("seq", tout << "undef: " << result << "\n";
|
|
tout << lit << "@ level: " << ctx.get_scope_level() << "\n";);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if (m_util.str.is_itos(e, e1)) {
|
|
rational val;
|
|
TRACE("seq", tout << mk_pp(e, m) << "\n";);
|
|
if (get_num_value(e1, val)) {
|
|
TRACE("seq", tout << mk_pp(e, m) << " -> " << val << "\n";);
|
|
expr_ref num(m), res(m);
|
|
num = m_autil.mk_numeral(val, true);
|
|
if (!ctx.e_internalized(num)) {
|
|
ctx.internalize(num, false);
|
|
}
|
|
enode* n1 = ctx.get_enode(num);
|
|
enode* n2 = ctx.get_enode(e1);
|
|
res = m_util.str.mk_string(symbol(val.to_string().c_str()));
|
|
#if 1
|
|
if (val.is_neg()) {
|
|
result = e;
|
|
}
|
|
// TBD remove this: using roots is unsound for propagation.
|
|
else if (n1->get_root() == n2->get_root()) {
|
|
result = res;
|
|
deps = m_dm.mk_join(deps, m_dm.mk_leaf(assumption(n1, n2)));
|
|
}
|
|
else {
|
|
TRACE("seq", tout << "mk equalities\n";);
|
|
literal l1 = mk_preferred_eq(num, e1);
|
|
literal l2 = mk_preferred_eq(e, res);
|
|
TRACE("seq", tout << "add axiom " << l1 << " " << l2 << "\n";);
|
|
add_axiom(l1, ~l2);
|
|
add_axiom(~l1, l2);
|
|
result = e;
|
|
}
|
|
#else
|
|
TRACE("seq", tout << "add axiom\n";);
|
|
add_axiom(~mk_eq(num, e1, false), mk_eq(e, res, false));
|
|
add_axiom(mk_eq(num, e1, false), ~mk_eq(e, res, false));
|
|
result = e;
|
|
#endif
|
|
}
|
|
else {
|
|
result = e;
|
|
}
|
|
}
|
|
else {
|
|
result = e;
|
|
}
|
|
if (result == e0) {
|
|
deps = nullptr;
|
|
}
|
|
expr_dep edr(result, deps);
|
|
m_rep.add_cache(e0, edr);
|
|
eqs = m_dm.mk_join(eqs, deps);
|
|
TRACE("seq_verbose", tout << mk_pp(e0, m) << " |--> " << result << "\n";
|
|
if (eqs) display_deps(tout, eqs););
|
|
return result;
|
|
}
|
|
|
|
void theory_seq::add_dependency(dependency*& dep, enode* a, enode* b) {
|
|
if (a != b) {
|
|
dep = m_dm.mk_join(dep, m_dm.mk_leaf(assumption(a, b)));
|
|
}
|
|
}
|
|
|
|
|
|
void theory_seq::propagate() {
|
|
context & ctx = get_context();
|
|
while (m_axioms_head < m_axioms.size() && !ctx.inconsistent()) {
|
|
expr_ref e(m);
|
|
e = m_axioms[m_axioms_head].get();
|
|
deque_axiom(e);
|
|
++m_axioms_head;
|
|
}
|
|
while (!m_replay.empty() && !ctx.inconsistent()) {
|
|
apply* app = m_replay[m_replay.size() - 1];
|
|
TRACE("seq", tout << "replay at level: " << ctx.get_scope_level() << "\n";);
|
|
(*app)(*this);
|
|
m_replay.pop_back();
|
|
}
|
|
if (m_new_solution) {
|
|
simplify_and_solve_eqs();
|
|
m_new_solution = false;
|
|
}
|
|
}
|
|
|
|
void theory_seq::enque_axiom(expr* e) {
|
|
TRACE("seq", tout << "enqueue_axiom " << mk_pp(e, m) << " " << m_axiom_set.contains(e) << "\n";);
|
|
if (!m_axiom_set.contains(e)) {
|
|
TRACE("seq", tout << "add axiom " << mk_pp(e, m) << "\n";);
|
|
m_axioms.push_back(e);
|
|
m_axiom_set.insert(e);
|
|
m_trail_stack.push(push_back_vector<theory_seq, expr_ref_vector>(m_axioms));
|
|
m_trail_stack.push(insert_obj_trail<theory_seq, expr>(m_axiom_set, e));;
|
|
}
|
|
}
|
|
|
|
void theory_seq::deque_axiom(expr* n) {
|
|
TRACE("seq", tout << "deque: " << mk_pp(n, m) << "\n";);
|
|
if (m_util.str.is_length(n)) {
|
|
add_length_axiom(n);
|
|
}
|
|
else if (m_util.str.is_empty(n) && !has_length(n) && !m_has_length.empty()) {
|
|
enforce_length(n);
|
|
}
|
|
else if (m_util.str.is_index(n)) {
|
|
add_indexof_axiom(n);
|
|
}
|
|
else if (m_util.str.is_replace(n)) {
|
|
add_replace_axiom(n);
|
|
}
|
|
else if (m_util.str.is_extract(n)) {
|
|
add_extract_axiom(n);
|
|
}
|
|
else if (m_util.str.is_at(n)) {
|
|
add_at_axiom(n);
|
|
}
|
|
else if (m_util.str.is_string(n)) {
|
|
add_elim_string_axiom(n);
|
|
}
|
|
else if (m_util.str.is_itos(n)) {
|
|
add_itos_axiom(n);
|
|
}
|
|
else if (m_util.str.is_stoi(n)) {
|
|
add_stoi_axiom(n);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
encode that s is not contained in of xs1
|
|
where s1 is all of s, except the last element.
|
|
|
|
s = "" or s = s1*(unit c)
|
|
s = "" or !contains(x*s1, s)
|
|
*/
|
|
void theory_seq::tightest_prefix(expr* s, expr* x) {
|
|
expr_ref s1 = mk_first(s);
|
|
expr_ref c = mk_last(s);
|
|
expr_ref s1c = mk_concat(s1, m_util.str.mk_unit(c));
|
|
literal s_eq_emp = mk_eq_empty(s);
|
|
add_axiom(s_eq_emp, mk_seq_eq(s, s1c));
|
|
add_axiom(s_eq_emp, ~mk_literal(m_util.str.mk_contains(mk_concat(x, s1), s)));
|
|
}
|
|
|
|
/*
|
|
[[str.indexof]](w, w2, i) is the smallest n such that for some some w1, w3
|
|
- w = w1w2w3
|
|
- i <= n = |w1|
|
|
|
|
if [[str.contains]](w, w2) = true, |w2| > 0 and i >= 0.
|
|
|
|
[[str.indexof]](w,w2,i) = -1 otherwise.
|
|
|
|
|
|
let i = Index(t, s, offset):
|
|
// index of s in t starting at offset.
|
|
|
|
|
|
|t| = 0 => |s| = 0 or indexof(t,s,offset) = -1
|
|
|t| = 0 & |s| = 0 => indexof(t,s,offset) = 0
|
|
|
|
offset >= len(t) => |s| = 0 or i = -1
|
|
|
|
len(t) != 0 & !contains(t, s) => i = -1
|
|
|
|
|
|
offset = 0 & len(t) != 0 & contains(t, s) => t = xsy & i = len(x)
|
|
tightest_prefix(x, s)
|
|
|
|
|
|
0 <= offset < len(t) => xy = t &
|
|
len(x) = offset &
|
|
(-1 = indexof(y, s, 0) => -1 = i) &
|
|
(indexof(y, s, 0) >= 0 => indexof(t, s, 0) + offset = i)
|
|
|
|
offset < 0 => i = -1
|
|
|
|
optional lemmas:
|
|
(len(s) > len(t) -> i = -1)
|
|
(len(s) <= len(t) -> i <= len(t)-len(s))
|
|
*/
|
|
void theory_seq::add_indexof_axiom(expr* i) {
|
|
expr* s = nullptr, *t = nullptr, *offset = nullptr;
|
|
rational r;
|
|
VERIFY(m_util.str.is_index(i, t, s) ||
|
|
m_util.str.is_index(i, t, s, offset));
|
|
expr_ref minus_one(m_autil.mk_int(-1), m);
|
|
expr_ref zero(m_autil.mk_int(0), m);
|
|
expr_ref xsy(m);
|
|
|
|
literal cnt = mk_literal(m_util.str.mk_contains(t, s));
|
|
literal i_eq_m1 = mk_eq(i, minus_one, false);
|
|
literal i_eq_0 = mk_eq(i, zero, false);
|
|
literal s_eq_empty = mk_eq_empty(s);
|
|
literal t_eq_empty = mk_eq_empty(t);
|
|
|
|
// |t| = 0 => |s| = 0 or indexof(t,s,offset) = -1
|
|
// ~contains(t,s) <=> indexof(t,s,offset) = -1
|
|
|
|
add_axiom(cnt, i_eq_m1);
|
|
// add_axiom(~cnt, ~i_eq_m1);
|
|
add_axiom(~t_eq_empty, s_eq_empty, i_eq_m1);
|
|
|
|
if (!offset || (m_autil.is_numeral(offset, r) && r.is_zero())) {
|
|
expr_ref x = mk_skolem(m_indexof_left, t, s);
|
|
expr_ref y = mk_skolem(m_indexof_right, t, s);
|
|
xsy = mk_concat(x, s, y);
|
|
expr_ref lenx = mk_len(x);
|
|
// |s| = 0 => indexof(t,s,0) = 0
|
|
// contains(t,s) & |s| != 0 => t = xsy & indexof(t,s,0) = |x|
|
|
add_axiom(~s_eq_empty, i_eq_0);
|
|
add_axiom(~cnt, s_eq_empty, mk_seq_eq(t, xsy));
|
|
add_axiom(~cnt, s_eq_empty, mk_eq(i, lenx, false));
|
|
add_axiom(~cnt, mk_literal(m_autil.mk_ge(i, zero)));
|
|
tightest_prefix(s, x);
|
|
}
|
|
else {
|
|
// offset >= len(t) => |s| = 0 or indexof(t, s, offset) = -1
|
|
// offset > len(t) => indexof(t, s, offset) = -1
|
|
// offset = len(t) & |s| = 0 => indexof(t, s, offset) = offset
|
|
expr_ref len_t = mk_len(t);
|
|
literal offset_ge_len = mk_simplified_literal(m_autil.mk_ge(mk_sub(offset, len_t), zero));
|
|
literal offset_le_len = mk_simplified_literal(m_autil.mk_le(mk_sub(offset, len_t), zero));
|
|
literal i_eq_offset = mk_eq(i, offset, false);
|
|
add_axiom(~offset_ge_len, s_eq_empty, i_eq_m1);
|
|
add_axiom(offset_le_len, i_eq_m1);
|
|
add_axiom(~offset_ge_len, ~offset_le_len, ~s_eq_empty, i_eq_offset);
|
|
|
|
expr_ref x = mk_skolem(m_indexof_left, t, s, offset);
|
|
expr_ref y = mk_skolem(m_indexof_right, t, s, offset);
|
|
expr_ref indexof0(m_util.str.mk_index(y, s, zero), m);
|
|
expr_ref offset_p_indexof0(m_autil.mk_add(offset, indexof0), m);
|
|
literal offset_ge_0 = mk_simplified_literal(m_autil.mk_ge(offset, zero));
|
|
|
|
// 0 <= offset & offset < len(t) => t = xy
|
|
// 0 <= offset & offset < len(t) => len(x) = offset
|
|
// 0 <= offset & offset < len(t) & -1 = indexof(y,s,0) = -1 => -1 = i
|
|
// 0 <= offset & offset < len(t) & indexof(y,s,0) >= 0 = -1 =>
|
|
// -1 = indexof(y,s,0) + offset = indexof(t, s, offset)
|
|
|
|
add_axiom(~offset_ge_0, offset_ge_len, mk_seq_eq(t, mk_concat(x, y)));
|
|
add_axiom(~offset_ge_0, offset_ge_len, mk_eq(mk_len(x), offset, false));
|
|
add_axiom(~offset_ge_0, offset_ge_len,
|
|
~mk_eq(indexof0, minus_one, false), i_eq_m1);
|
|
add_axiom(~offset_ge_0, offset_ge_len,
|
|
~mk_simplified_literal(m_autil.mk_ge(indexof0, zero)),
|
|
mk_eq(offset_p_indexof0, i, false));
|
|
|
|
// offset < 0 => -1 = i
|
|
add_axiom(offset_ge_0, i_eq_m1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
let r = replace(a, s, t)
|
|
|
|
a = "" => s = "" or r = a
|
|
contains(a, s) or r = a
|
|
s = "" => r = t+a
|
|
|
|
tightest_prefix(s, x)
|
|
(contains(a, s) -> r = xty & a = xsy) &
|
|
(!contains(a, s) -> r = a)
|
|
|
|
*/
|
|
void theory_seq::add_replace_axiom(expr* r) {
|
|
context& ctx = get_context();
|
|
expr* a = nullptr, *s = nullptr, *t = nullptr;
|
|
VERIFY(m_util.str.is_replace(r, a, s, t));
|
|
expr_ref x = mk_skolem(m_indexof_left, a, s);
|
|
expr_ref y = mk_skolem(m_indexof_right, a, s);
|
|
expr_ref xty = mk_concat(x, t, y);
|
|
expr_ref xsy = mk_concat(x, s, y);
|
|
literal a_emp = mk_eq_empty(a, true);
|
|
literal s_emp = mk_eq_empty(s, true);
|
|
literal cnt = mk_literal(m_util.str.mk_contains(a, s));
|
|
add_axiom(~a_emp, s_emp, mk_seq_eq(r, a));
|
|
add_axiom(cnt, mk_seq_eq(r, a));
|
|
add_axiom(~s_emp, mk_seq_eq(r, mk_concat(t, a)));
|
|
add_axiom(~cnt, a_emp, s_emp, mk_seq_eq(a, xsy));
|
|
add_axiom(~cnt, a_emp, s_emp, mk_seq_eq(r, xty));
|
|
ctx.force_phase(cnt);
|
|
tightest_prefix(s, x);
|
|
}
|
|
|
|
expr_ref theory_seq::add_elim_string_axiom(expr* n) {
|
|
zstring s;
|
|
TRACE("seq", tout << mk_pp(n, m) << "\n";);
|
|
VERIFY(m_util.str.is_string(n, s));
|
|
if (s.length() == 0) {
|
|
return expr_ref(n, m);
|
|
}
|
|
expr_ref result(m_util.str.mk_unit(m_util.str.mk_char(s, s.length()-1)), m);
|
|
for (unsigned i = s.length()-1; i-- > 0; ) {
|
|
result = mk_concat(m_util.str.mk_unit(m_util.str.mk_char(s, i)), result);
|
|
}
|
|
add_axiom(mk_eq(n, result, false));
|
|
m_rep.update(n, result, nullptr);
|
|
m_new_solution = true;
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
let n = len(x)
|
|
- len(a ++ b) = len(a) + len(b) if x = a ++ b
|
|
- len(unit(u)) = 1 if x = unit(u)
|
|
- len(str) = str.length() if x = str
|
|
- len(empty) = 0 if x = empty
|
|
- len(int.to.str(i)) >= 1 if x = int.to.str(i) and more generally if i = 0 then 1 else 1+floor(log(|i|))
|
|
- len(x) >= 0 otherwise
|
|
*/
|
|
void theory_seq::add_length_axiom(expr* n) {
|
|
context& ctx = get_context();
|
|
expr* x = nullptr;
|
|
VERIFY(m_util.str.is_length(n, x));
|
|
if (m_util.str.is_concat(x) ||
|
|
m_util.str.is_unit(x) ||
|
|
m_util.str.is_empty(x) ||
|
|
m_util.str.is_string(x)) {
|
|
expr_ref len(n, m);
|
|
m_rewrite(len);
|
|
SASSERT(n != len);
|
|
add_axiom(mk_eq(len, n, false));
|
|
}
|
|
else if (m_util.str.is_itos(x)) {
|
|
add_itos_length_axiom(n);
|
|
}
|
|
else {
|
|
add_axiom(mk_literal(m_autil.mk_ge(n, m_autil.mk_int(0))));
|
|
}
|
|
if (!ctx.at_base_level()) {
|
|
m_trail_stack.push(push_replay(alloc(replay_axiom, m, n)));
|
|
}
|
|
}
|
|
|
|
void theory_seq::add_itos_length_axiom(expr* len) {
|
|
expr* x = nullptr, *n = nullptr;
|
|
VERIFY(m_util.str.is_length(len, x));
|
|
VERIFY(m_util.str.is_itos(x, n));
|
|
|
|
unsigned num_char1 = 1, num_char2 = 1;
|
|
rational len1, len2;
|
|
rational ten(10);
|
|
if (get_num_value(n, len1)) {
|
|
if (len1.is_neg()) {
|
|
return;
|
|
}
|
|
// 0 <= x < 10
|
|
// 10 <= x < 100
|
|
// 100 <= x < 1000
|
|
rational upper(10);
|
|
while (len1 > upper) {
|
|
++num_char1;
|
|
upper *= ten;
|
|
}
|
|
SASSERT(len1 <= upper);
|
|
}
|
|
if (get_num_value(len, len2) && len2.is_unsigned()) {
|
|
num_char2 = len2.get_unsigned();
|
|
}
|
|
unsigned num_char = std::max(num_char1, num_char2);
|
|
|
|
|
|
literal len_le(mk_literal(m_autil.mk_le(len, m_autil.mk_int(num_char))));
|
|
literal len_ge(mk_literal(m_autil.mk_ge(len, m_autil.mk_int(num_char))));
|
|
literal n_ge_0(mk_literal(m_autil.mk_ge(n, m_autil.mk_int(0))));
|
|
add_axiom(~n_ge_0, mk_literal(m_autil.mk_ge(len, m_autil.mk_int(1))));
|
|
|
|
if (num_char == 1) {
|
|
literal n_ge_10(mk_literal(m_autil.mk_ge(n, m_autil.mk_int(10))));
|
|
add_axiom(~n_ge_0, n_ge_10, len_le);
|
|
add_axiom(~len_le, ~n_ge_10);
|
|
return;
|
|
}
|
|
rational hi(1);
|
|
for (unsigned i = 2; i < num_char; ++i) {
|
|
hi *= ten;
|
|
}
|
|
// n >= hi*10 <=> len >= num_chars
|
|
// n < 100*hi <=> len <= num_chars
|
|
literal n_ge_10hi = mk_literal(m_autil.mk_ge(n, m_autil.mk_numeral(ten*hi, true)));
|
|
literal n_ge_100hi = mk_literal(m_autil.mk_ge(n, m_autil.mk_numeral(ten*ten*hi, true)));
|
|
|
|
add_axiom(~n_ge_10hi, len_ge);
|
|
add_axiom(~n_ge_100hi, ~len_le);
|
|
}
|
|
|
|
|
|
|
|
void theory_seq::propagate_in_re(expr* n, bool is_true) {
|
|
TRACE("seq", tout << mk_pp(n, m) << " <- " << (is_true?"true":"false") << "\n";);
|
|
|
|
expr_ref tmp(n, m);
|
|
m_rewrite(tmp);
|
|
if (m.is_true(tmp)) {
|
|
if (!is_true) {
|
|
literal_vector lits;
|
|
lits.push_back(mk_literal(n));
|
|
set_conflict(nullptr, lits);
|
|
}
|
|
return;
|
|
}
|
|
else if (m.is_false(tmp)) {
|
|
if (is_true) {
|
|
literal_vector lits;
|
|
lits.push_back(~mk_literal(n));
|
|
set_conflict(nullptr, lits);
|
|
}
|
|
return;
|
|
}
|
|
|
|
expr* s = nullptr, *_re = nullptr;
|
|
VERIFY(m_util.str.is_in_re(n, s, _re));
|
|
expr_ref re(_re, m);
|
|
context& ctx = get_context();
|
|
literal lit = ctx.get_literal(n);
|
|
if (!is_true) {
|
|
re = m_util.re.mk_complement(re);
|
|
lit.neg();
|
|
}
|
|
|
|
literal_vector lits;
|
|
for (unsigned i = 0; i < m_s_in_re.size(); ++i) {
|
|
auto const& entry = m_s_in_re[i];
|
|
if (entry.m_active && get_root(entry.m_s) == get_root(s) && entry.m_re != re) {
|
|
m_trail_stack.push(vector_value_trail<theory_seq, s_in_re, true>(m_s_in_re, i));
|
|
m_s_in_re[i].m_active = false;
|
|
IF_VERBOSE(11, verbose_stream() << "intersect " << re << " " << mk_pp(entry.m_re, m) << " " << mk_pp(s, m) << " " << mk_pp(entry.m_s, m) << "\n";);
|
|
re = m_util.re.mk_inter(entry.m_re, re);
|
|
m_rewrite(re);
|
|
lits.push_back(~entry.m_lit);
|
|
enode* n1 = ensure_enode(entry.m_s);
|
|
enode* n2 = ensure_enode(s);
|
|
if (n1 != n2) {
|
|
lits.push_back(~mk_eq(n1->get_owner(), n2->get_owner(), false));
|
|
}
|
|
}
|
|
}
|
|
|
|
IF_VERBOSE(11, verbose_stream() << mk_pp(s, m) << " in " << re << "\n");
|
|
eautomaton* a = get_automaton(re);
|
|
if (!a) return;
|
|
|
|
m_s_in_re.push_back(s_in_re(lit, s, re, a));
|
|
m_trail_stack.push(push_back_vector<theory_seq, vector<s_in_re>>(m_s_in_re));
|
|
|
|
expr_ref len = mk_len(s);
|
|
|
|
expr_ref zero(m_autil.mk_int(0), m);
|
|
unsigned_vector states;
|
|
a->get_epsilon_closure(a->init(), states);
|
|
lits.push_back(~lit);
|
|
|
|
for (unsigned st : states) {
|
|
lits.push_back(mk_accept(s, zero, re, st));
|
|
}
|
|
if (lits.size() == 2) {
|
|
propagate_lit(nullptr, 1, &lit, lits[1]);
|
|
}
|
|
else {
|
|
TRACE("seq", ctx.display_literals_verbose(tout, lits) << "\n";);
|
|
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
|
|
}
|
|
}
|
|
|
|
|
|
expr_ref theory_seq::mk_sub(expr* a, expr* b) {
|
|
expr_ref result(m_autil.mk_sub(a, b), m);
|
|
m_rewrite(result);
|
|
return result;
|
|
}
|
|
|
|
expr_ref theory_seq::mk_add(expr* a, expr* b) {
|
|
expr_ref result(m_autil.mk_add(a, b), m);
|
|
m_rewrite(result);
|
|
return result;
|
|
}
|
|
|
|
enode* theory_seq::ensure_enode(expr* e) {
|
|
context& ctx = get_context();
|
|
if (!ctx.e_internalized(e)) {
|
|
ctx.internalize(e, false);
|
|
}
|
|
enode* n = ctx.get_enode(e);
|
|
ctx.mark_as_relevant(n);
|
|
return n;
|
|
}
|
|
|
|
template <class T>
|
|
static T* get_th_arith(context& ctx, theory_id afid, expr* e) {
|
|
theory* th = ctx.get_theory(afid);
|
|
if (th && ctx.e_internalized(e)) {
|
|
return dynamic_cast<T*>(th);
|
|
}
|
|
else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
|
|
bool theory_seq::get_num_value(expr* e, rational& val) const {
|
|
return m_arith_value.get_value_equiv(e, val) && val.is_int();
|
|
}
|
|
|
|
bool theory_seq::lower_bound(expr* e, rational& lo) const {
|
|
VERIFY(m_autil.is_int(e));
|
|
bool is_strict = true;
|
|
return m_arith_value.get_lo(e, lo, is_strict) && !is_strict && lo.is_int();
|
|
|
|
}
|
|
|
|
bool theory_seq::upper_bound(expr* e, rational& hi) const {
|
|
VERIFY(m_autil.is_int(e));
|
|
bool is_strict = true;
|
|
return m_arith_value.get_up(e, hi, is_strict) && !is_strict && hi.is_int();
|
|
}
|
|
|
|
|
|
|
|
// The difference with lower_bound function is that since in some cases,
|
|
// the lower bound is not updated for all the enodes in the same eqc,
|
|
// we have to traverse the eqc to query for the better lower bound.
|
|
bool theory_seq::lower_bound2(expr* _e, rational& lo) {
|
|
context& ctx = get_context();
|
|
expr_ref e = mk_len(_e);
|
|
expr_ref _lo(m);
|
|
theory_mi_arith* tha = get_th_arith<theory_mi_arith>(ctx, m_autil.get_family_id(), e);
|
|
if (!tha) {
|
|
theory_i_arith* thi = get_th_arith<theory_i_arith>(ctx, m_autil.get_family_id(), e);
|
|
if (!thi || !thi->get_lower(ctx.get_enode(e), _lo) || !m_autil.is_numeral(_lo, lo)) return false;
|
|
}
|
|
enode *ee = ctx.get_enode(e);
|
|
if (tha && (!tha->get_lower(ee, _lo) || m_autil.is_numeral(_lo, lo))) {
|
|
enode *next = ee->get_next();
|
|
bool flag = false;
|
|
while (next != ee) {
|
|
if (!m_autil.is_numeral(next->get_owner()) && !m_util.str.is_length(next->get_owner())) {
|
|
expr *var = next->get_owner();
|
|
TRACE("seq", tout << mk_pp(var, m) << "\n";);
|
|
expr_ref _lo2(m);
|
|
rational lo2;
|
|
if (tha->get_lower(next, _lo2) && m_autil.is_numeral(_lo2, lo2) && lo2>lo) {
|
|
flag = true;
|
|
lo = lo2;
|
|
literal low(mk_literal(m_autil.mk_ge(var, _lo2)));
|
|
add_axiom(~low, mk_literal(m_autil.mk_ge(e, _lo2)));
|
|
}
|
|
}
|
|
next = next->get_next();
|
|
}
|
|
if (flag)
|
|
return true;
|
|
if (!tha->get_lower(ee, _lo))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool theory_seq::get_length(expr* e, rational& val) const {
|
|
context& ctx = get_context();
|
|
rational val1;
|
|
expr_ref len(m), len_val(m);
|
|
expr* e1 = nullptr, *e2 = nullptr;
|
|
ptr_vector<expr> todo;
|
|
todo.push_back(e);
|
|
val.reset();
|
|
zstring s;
|
|
while (!todo.empty()) {
|
|
expr* c = todo.back();
|
|
todo.pop_back();
|
|
if (m_util.str.is_concat(c, e1, e2)) {
|
|
todo.push_back(e1);
|
|
todo.push_back(e2);
|
|
}
|
|
else if (m_util.str.is_unit(c)) {
|
|
val += rational(1);
|
|
}
|
|
else if (m_util.str.is_empty(c)) {
|
|
continue;
|
|
}
|
|
else if (m_util.str.is_string(c, s)) {
|
|
val += rational(s.length());
|
|
}
|
|
else if (!has_length(c)) {
|
|
TRACE("seq", tout << "literal has no length " << mk_pp(c, m) << "\n";);
|
|
return false;
|
|
}
|
|
else {
|
|
len = mk_len(c);
|
|
if (m_arith_value.get_value(len, val1)) {
|
|
val += val1;
|
|
}
|
|
else {
|
|
TRACE("seq", tout << "length has not been internalized " << mk_pp(c, m) << "\n";);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
CTRACE("seq", !val.is_int(), tout << "length is not an integer\n";);
|
|
return val.is_int();
|
|
}
|
|
|
|
/*
|
|
|
|
let e = extract(s, i, l)
|
|
|
|
i is start index, l is length of substring starting at index.
|
|
|
|
i < 0 => e = ""
|
|
i >= |s| => e = ""
|
|
l <= 0 => e = ""
|
|
0 <= i < |s| & l > 0 => s = xey, |x| = i, |e| = min(l, |s|-i)
|
|
|
|
this translates to:
|
|
|
|
0 <= i <= |s| -> s = xey
|
|
0 <= i <= |s| -> len(x) = i
|
|
0 <= i <= |s| & 0 <= l <= |s| - i -> |e| = l
|
|
0 <= i <= |s| & |s| < l + i -> |e| = |s| - i
|
|
i >= |s| => |e| = 0
|
|
i < 0 => |e| = 0
|
|
l <= 0 => |e| = 0
|
|
|
|
It follows that:
|
|
|e| = min(l, |s| - i) for 0 <= i < |s| and 0 < |l|
|
|
|
|
|
|
*/
|
|
|
|
void theory_seq::add_extract_axiom(expr* e) {
|
|
TRACE("seq", tout << mk_pp(e, m) << "\n";);
|
|
expr* s = nullptr, *i = nullptr, *l = nullptr;
|
|
VERIFY(m_util.str.is_extract(e, s, i, l));
|
|
if (is_tail(s, i, l)) {
|
|
add_tail_axiom(e, s);
|
|
return;
|
|
}
|
|
if (is_drop_last(s, i, l)) {
|
|
add_drop_last_axiom(e, s);
|
|
return;
|
|
}
|
|
if (is_extract_prefix0(s, i, l)) {
|
|
add_extract_prefix_axiom(e, s, l);
|
|
return;
|
|
}
|
|
if (is_extract_suffix(s, i, l)) {
|
|
add_extract_suffix_axiom(e, s, i);
|
|
return;
|
|
}
|
|
expr_ref x(mk_skolem(m_pre, s, i), m);
|
|
expr_ref ls = mk_len(s);
|
|
expr_ref lx = mk_len(x);
|
|
expr_ref le = mk_len(e);
|
|
expr_ref ls_minus_i_l(mk_sub(mk_sub(ls, i), l), m);
|
|
expr_ref y(mk_skolem(m_post, s, ls_minus_i_l), m);
|
|
expr_ref xe = mk_concat(x, e);
|
|
expr_ref xey = mk_concat(x, e, y);
|
|
expr_ref zero(m_autil.mk_int(0), m);
|
|
|
|
literal i_ge_0 = mk_simplified_literal(m_autil.mk_ge(i, zero));
|
|
literal ls_le_i = mk_simplified_literal(m_autil.mk_le(mk_sub(i, ls), zero));
|
|
literal li_ge_ls = mk_simplified_literal(m_autil.mk_ge(ls_minus_i_l, zero));
|
|
literal l_ge_zero = mk_simplified_literal(m_autil.mk_ge(l, zero));
|
|
literal ls_le_0 = mk_simplified_literal(m_autil.mk_le(ls, zero));
|
|
literal le_is_0 = mk_eq(le, zero, false);
|
|
|
|
add_axiom(~i_ge_0, ~ls_le_i, mk_seq_eq(xey, s));
|
|
add_axiom(~i_ge_0, ~ls_le_i, mk_eq(lx, i, false));
|
|
add_axiom(~i_ge_0, ~ls_le_i, ~l_ge_zero, ~li_ge_ls, mk_eq(le, l, false));
|
|
add_axiom(~i_ge_0, ~ls_le_i, li_ge_ls, mk_eq(le, mk_sub(ls, i), false));
|
|
add_axiom(~i_ge_0, ~ls_le_i, l_ge_zero, mk_eq(le, zero, false));
|
|
add_axiom(i_ge_0, le_is_0);
|
|
add_axiom(ls_le_i, le_is_0);
|
|
add_axiom(~ls_le_0, le_is_0);
|
|
}
|
|
|
|
void theory_seq::add_tail_axiom(expr* e, expr* s) {
|
|
expr_ref head(m), tail(m);
|
|
mk_decompose(s, head, tail);
|
|
literal emp = mk_eq_empty(s);
|
|
add_axiom(emp, mk_seq_eq(s, mk_concat(head, e)));
|
|
add_axiom(~emp, mk_eq_empty(e));
|
|
}
|
|
|
|
void theory_seq::add_drop_last_axiom(expr* e, expr* s) {
|
|
literal emp = mk_eq_empty(s);
|
|
add_axiom(emp, mk_seq_eq(s, mk_concat(e, m_util.str.mk_unit(mk_last(s)))));
|
|
add_axiom(~emp, mk_eq_empty(e));
|
|
}
|
|
|
|
bool theory_seq::is_drop_last(expr* s, expr* i, expr* l) {
|
|
rational i1;
|
|
if (!m_autil.is_numeral(i, i1) || !i1.is_zero()) {
|
|
return false;
|
|
}
|
|
expr_ref l2(m), l1(l, m);
|
|
l2 = mk_sub(mk_len(s), m_autil.mk_int(1));
|
|
m_rewrite(l1);
|
|
m_rewrite(l2);
|
|
return l1 == l2;
|
|
}
|
|
|
|
bool theory_seq::is_tail(expr* s, expr* i, expr* l) {
|
|
rational i1;
|
|
if (!m_autil.is_numeral(i, i1) || !i1.is_one()) {
|
|
return false;
|
|
}
|
|
expr_ref l2(m), l1(l, m);
|
|
l2 = mk_sub(mk_len(s), m_autil.mk_int(1));
|
|
m_rewrite(l1);
|
|
m_rewrite(l2);
|
|
return l1 == l2;
|
|
}
|
|
|
|
bool theory_seq::is_extract_prefix0(expr* s, expr* i, expr* l) {
|
|
rational i1;
|
|
return m_autil.is_numeral(i, i1) && i1.is_zero();
|
|
}
|
|
|
|
bool theory_seq::is_extract_suffix(expr* s, expr* i, expr* l) {
|
|
expr_ref len(m_autil.mk_add(l, i), m);
|
|
m_rewrite(len);
|
|
return m_util.str.is_length(len, l) && l == s;
|
|
}
|
|
|
|
/*
|
|
0 <= l <= len(s) => s = ey & l = len(e)
|
|
len(s) < l => s = e
|
|
l < 0 => e = empty
|
|
*/
|
|
void theory_seq::add_extract_prefix_axiom(expr* e, expr* s, expr* l) {
|
|
TRACE("seq", tout << mk_pp(e, m) << " " << mk_pp(s, m) << " " << mk_pp(l, m) << "\n";);
|
|
expr_ref le = mk_len(e);
|
|
expr_ref ls = mk_len(s);
|
|
expr_ref ls_minus_l(mk_sub(ls, l), m);
|
|
expr_ref y(mk_skolem(m_post, s, ls_minus_l), m);
|
|
expr_ref zero(m_autil.mk_int(0), m);
|
|
expr_ref ey = mk_concat(e, y);
|
|
literal l_ge_0 = mk_simplified_literal(m_autil.mk_ge(l, zero));
|
|
literal l_le_s = mk_simplified_literal(m_autil.mk_le(mk_sub(l, ls), zero));
|
|
add_axiom(~l_ge_0, ~l_le_s, mk_seq_eq(s, ey));
|
|
add_axiom(~l_ge_0, ~l_le_s, mk_eq(l, le, false));
|
|
add_axiom(~l_ge_0, ~l_le_s, mk_eq(ls_minus_l, mk_len(y), false));
|
|
add_axiom(l_le_s, mk_eq(e, s, false));
|
|
add_axiom(l_ge_0, mk_eq_empty(e));
|
|
}
|
|
|
|
/*
|
|
0 <= i <= len(s) => s = xe & i = len(x)
|
|
i < 0 => e = empty
|
|
i > len(s) => e = empty
|
|
*/
|
|
void theory_seq::add_extract_suffix_axiom(expr* e, expr* s, expr* i) {
|
|
expr_ref x(mk_skolem(m_pre, s, i), m);
|
|
expr_ref lx = mk_len(x);
|
|
expr_ref ls = mk_len(s);
|
|
expr_ref zero(m_autil.mk_int(0), m);
|
|
expr_ref xe = mk_concat(x, e);
|
|
literal le_is_0 = mk_eq_empty(e);
|
|
literal i_ge_0 = mk_simplified_literal(m_autil.mk_ge(i, zero));
|
|
literal i_le_s = mk_simplified_literal(m_autil.mk_le(mk_sub(i, ls), zero));
|
|
add_axiom(~i_ge_0, ~i_le_s, mk_seq_eq(s, xe));
|
|
add_axiom(~i_ge_0, ~i_le_s, mk_eq(i, lx, false));
|
|
add_axiom(i_ge_0, le_is_0);
|
|
add_axiom(i_le_s, le_is_0);
|
|
}
|
|
|
|
|
|
/*
|
|
let e = at(s, i)
|
|
|
|
0 <= i < len(s) -> s = xey & len(x) = i & len(e) = 1
|
|
i < 0 \/ i >= len(s) -> e = empty
|
|
|
|
*/
|
|
void theory_seq::add_at_axiom(expr* e) {
|
|
expr* s = nullptr, *i = nullptr;
|
|
VERIFY(m_util.str.is_at(e, s, i));
|
|
expr_ref zero(m_autil.mk_int(0), m);
|
|
expr_ref one(m_autil.mk_int(1), m);
|
|
expr_ref emp(m_util.str.mk_empty(m.get_sort(e)), m);
|
|
expr_ref len_s = mk_len(s);
|
|
literal i_ge_0 = mk_simplified_literal(m_autil.mk_ge(i, zero));
|
|
literal i_ge_len_s = mk_simplified_literal(m_autil.mk_ge(mk_sub(i, mk_len(s)), zero));
|
|
|
|
rational iv;
|
|
if (m_autil.is_numeral(i, iv) && iv.is_int() && !iv.is_neg()) {
|
|
expr_ref_vector es(m);
|
|
expr_ref nth(m);
|
|
unsigned k = iv.get_unsigned();
|
|
for (unsigned j = 0; j <= k; ++j) {
|
|
es.push_back(m_util.str.mk_unit(mk_nth(s, m_autil.mk_int(j))));
|
|
}
|
|
nth = es.back();
|
|
es.push_back(mk_skolem(m_tail, s, m_autil.mk_int(k)));
|
|
add_axiom(~i_ge_0, i_ge_len_s, mk_seq_eq(s, m_util.str.mk_concat(es)));
|
|
add_axiom(~i_ge_0, i_ge_len_s, mk_seq_eq(nth, e));
|
|
}
|
|
else {
|
|
expr_ref len_e = mk_len(e);
|
|
expr_ref x = mk_skolem(m_pre, s, i);
|
|
expr_ref y = mk_skolem(m_tail, s, i);
|
|
expr_ref xey = mk_concat(x, e, y);
|
|
expr_ref len_x = mk_len(x);
|
|
add_axiom(~i_ge_0, i_ge_len_s, mk_seq_eq(s, xey));
|
|
add_axiom(~i_ge_0, i_ge_len_s, mk_eq(one, len_e, false));
|
|
add_axiom(~i_ge_0, i_ge_len_s, mk_eq(i, len_x, false));
|
|
}
|
|
|
|
add_axiom(i_ge_0, mk_eq(e, emp, false));
|
|
add_axiom(~i_ge_len_s, mk_eq(e, emp, false));
|
|
}
|
|
|
|
|
|
/*
|
|
lit => s = (nth s 0) ++ (nth s 1) ++ ... ++ (nth s idx) ++ (tail s idx)
|
|
*/
|
|
void theory_seq::ensure_nth(literal lit, expr* s, expr* idx) {
|
|
rational r;
|
|
SASSERT(get_context().get_assignment(lit) == l_true);
|
|
VERIFY(m_autil.is_numeral(idx, r) && r.is_unsigned());
|
|
unsigned _idx = r.get_unsigned();
|
|
expr_ref head(m), tail(m), conc(m), len1(m), len2(m);
|
|
expr_ref_vector elems(m);
|
|
|
|
expr* s2 = s;
|
|
for (unsigned j = 0; j <= _idx; ++j) {
|
|
mk_decompose(s2, head, tail);
|
|
elems.push_back(head);
|
|
len1 = mk_len(s2);
|
|
len2 = m_autil.mk_add(m_autil.mk_int(1), mk_len(tail));
|
|
propagate_eq(lit, len1, len2, false);
|
|
s2 = tail;
|
|
}
|
|
elems.push_back(s2);
|
|
conc = mk_concat(elems, m.get_sort(s));
|
|
propagate_eq(lit, s, conc, true);
|
|
}
|
|
|
|
literal theory_seq::mk_simplified_literal(expr * _e) {
|
|
expr_ref e(_e, m);
|
|
m_rewrite(e);
|
|
return mk_literal(e);
|
|
}
|
|
|
|
literal theory_seq::mk_literal(expr* _e) {
|
|
expr_ref e(_e, m);
|
|
context& ctx = get_context();
|
|
ensure_enode(e);
|
|
return ctx.get_literal(e);
|
|
}
|
|
|
|
literal theory_seq::mk_seq_eq(expr* a, expr* b) {
|
|
SASSERT(m_util.is_seq(a));
|
|
return mk_literal(mk_skolem(m_eq, a, b, nullptr, nullptr, m.mk_bool_sort()));
|
|
}
|
|
|
|
literal theory_seq::mk_preferred_eq(expr* a, expr* b) {
|
|
context& ctx = get_context();
|
|
ctx.assume_eq(ensure_enode(a), ensure_enode(b));
|
|
literal lit = mk_eq(a, b, false);
|
|
ctx.force_phase(lit);
|
|
return lit;
|
|
}
|
|
|
|
literal theory_seq::mk_eq_empty(expr* _e, bool phase) {
|
|
context& ctx = get_context();
|
|
expr_ref e(_e, m);
|
|
SASSERT(m_util.is_seq(e));
|
|
expr_ref emp(m);
|
|
zstring s;
|
|
if (m_util.str.is_empty(e)) {
|
|
return true_literal;
|
|
}
|
|
expr_ref_vector concats(m);
|
|
m_util.str.get_concat(e, concats);
|
|
for (auto c : concats) {
|
|
if (m_util.str.is_unit(c)) {
|
|
return false_literal;
|
|
}
|
|
if (m_util.str.is_string(c, s) && s.length() > 0) {
|
|
return false_literal;
|
|
}
|
|
}
|
|
emp = m_util.str.mk_empty(m.get_sort(e));
|
|
|
|
literal lit = mk_eq(e, emp, false);
|
|
ctx.force_phase(phase?lit:~lit);
|
|
ctx.mark_as_relevant(lit);
|
|
return lit;
|
|
}
|
|
|
|
void theory_seq::add_axiom(literal l1, literal l2, literal l3, literal l4, literal l5) {
|
|
context& ctx = get_context();
|
|
literal_vector lits;
|
|
if (l1 == true_literal || l2 == true_literal || l3 == true_literal || l4 == true_literal || l5 == true_literal) return;
|
|
if (l1 != null_literal && l1 != false_literal) { ctx.mark_as_relevant(l1); lits.push_back(l1); }
|
|
if (l2 != null_literal && l2 != false_literal) { ctx.mark_as_relevant(l2); lits.push_back(l2); }
|
|
if (l3 != null_literal && l3 != false_literal) { ctx.mark_as_relevant(l3); lits.push_back(l3); }
|
|
if (l4 != null_literal && l4 != false_literal) { ctx.mark_as_relevant(l4); lits.push_back(l4); }
|
|
if (l5 != null_literal && l5 != false_literal) { ctx.mark_as_relevant(l5); lits.push_back(l5); }
|
|
TRACE("seq", ctx.display_literals_verbose(tout << "assert:\n", lits) << "\n";);
|
|
m_new_propagation = true;
|
|
++m_stats.m_add_axiom;
|
|
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
|
|
}
|
|
|
|
expr_ref theory_seq::coalesce_chars(expr* const& e) {
|
|
context& ctx = get_context();
|
|
expr* s;
|
|
unsigned ch;
|
|
expr_ref result(m);
|
|
if (m_util.str.is_concat(e)) {
|
|
expr_ref_vector rs(m), concats(m);
|
|
m_util.str.get_concat(e, concats);
|
|
for (unsigned i = 0; i < concats.size(); ++i) {
|
|
expr_ref tmp(coalesce_chars(concats[i].get()), m);
|
|
if (m_util.str.is_empty(tmp)) continue;
|
|
zstring zs, a;
|
|
bool flag = false;
|
|
while (m_util.str.is_string(tmp, a)) {
|
|
if (flag)
|
|
zs = zs + a;
|
|
else
|
|
zs = a;
|
|
flag = true;
|
|
if (i < concats.size()-1)
|
|
tmp = coalesce_chars(concats[++i].get());
|
|
else {
|
|
++i;
|
|
break;
|
|
}
|
|
}
|
|
if (flag) {
|
|
rs.push_back(m_util.str.mk_string(zs));
|
|
if (i < concats.size())
|
|
rs.push_back(tmp);
|
|
}
|
|
else
|
|
rs.push_back(tmp);
|
|
}
|
|
SASSERT(rs.size() > 0);
|
|
if (rs.size() > 1) {
|
|
return expr_ref(m_util.str.mk_concat(rs.size(), rs.c_ptr()), m);
|
|
}
|
|
else {
|
|
result = e;
|
|
return result;
|
|
}
|
|
}
|
|
else if (m_util.str.is_unit(e, s) && m_util.is_const_char(s, ch) &&
|
|
BR_FAILED != m_seq_rewrite.mk_app_core(to_app(e)->get_decl(), 1, &s, result)) {
|
|
if (!ctx.e_internalized(result))
|
|
ctx.internalize(result, false);
|
|
return result;
|
|
}
|
|
result = e;
|
|
return result;
|
|
}
|
|
|
|
expr_ref theory_seq::mk_skolem(symbol const& name, expr* e1, expr* e2, expr* e3, expr*e4, sort* range) {
|
|
expr* es[4] = { e1, e2, e3, e4 };
|
|
unsigned len = e4?4:(e3?3:(e2?2:1));
|
|
|
|
if (!range) {
|
|
range = m.get_sort(e1);
|
|
}
|
|
expr_ref_vector pinned(m);
|
|
if (name == m_seq_align) {
|
|
for (unsigned i = 0; i < len; ++i) {
|
|
pinned.push_back(coalesce_chars(es[i]));
|
|
es[i] = pinned.back();
|
|
TRACE("seq", tout << mk_pp(es[i], m) << "\n";);
|
|
}
|
|
}
|
|
return expr_ref(m_util.mk_skolem(name, len, es, range), m);
|
|
}
|
|
|
|
bool theory_seq::is_skolem(symbol const& s, expr* e) const {
|
|
return m_util.is_skolem(e) && to_app(e)->get_decl()->get_parameter(0).get_symbol() == s;
|
|
}
|
|
|
|
theory_seq::dependency* theory_seq::mk_join(dependency* deps, literal lit) {
|
|
return m_dm.mk_join(deps, m_dm.mk_leaf(assumption(lit)));
|
|
}
|
|
|
|
theory_seq::dependency* theory_seq::mk_join(dependency* deps, literal_vector const& lits) {
|
|
for (literal l : lits) {
|
|
deps = mk_join(deps, l);
|
|
}
|
|
return deps;
|
|
}
|
|
|
|
void theory_seq::propagate_eq(literal lit, expr* e1, expr* e2, bool add_to_eqs) {
|
|
literal_vector lits;
|
|
lits.push_back(lit);
|
|
propagate_eq(nullptr, lits, e1, e2, add_to_eqs);
|
|
}
|
|
|
|
void theory_seq::propagate_eq(dependency* deps, literal_vector const& _lits, expr* e1, expr* e2, bool add_to_eqs) {
|
|
context& ctx = get_context();
|
|
|
|
enode* n1 = ensure_enode(e1);
|
|
enode* n2 = ensure_enode(e2);
|
|
if (n1->get_root() == n2->get_root()) {
|
|
return;
|
|
}
|
|
ctx.mark_as_relevant(n1);
|
|
ctx.mark_as_relevant(n2);
|
|
|
|
literal_vector lits(_lits);
|
|
enode_pair_vector eqs;
|
|
if (!linearize(deps, eqs, lits))
|
|
return;
|
|
|
|
if (add_to_eqs) {
|
|
deps = mk_join(deps, _lits);
|
|
new_eq_eh(deps, n1, n2);
|
|
}
|
|
TRACE("seq",
|
|
tout << "assert: " << mk_pp(e1, m) << " = " << mk_pp(e2, m) << " <- \n";
|
|
if (!lits.empty()) { ctx.display_literals_verbose(tout, lits) << "\n"; });
|
|
justification* js =
|
|
ctx.mk_justification(
|
|
ext_theory_eq_propagation_justification(
|
|
get_id(), ctx.get_region(), lits.size(), lits.c_ptr(), eqs.size(), eqs.c_ptr(), n1, n2));
|
|
|
|
m_new_propagation = true;
|
|
ctx.assign_eq(n1, n2, eq_justification(js));
|
|
}
|
|
|
|
|
|
void theory_seq::assign_eh(bool_var v, bool is_true) {
|
|
context & ctx = get_context();
|
|
expr* e = ctx.bool_var2expr(v);
|
|
expr* e1 = nullptr, *e2 = nullptr;
|
|
expr_ref f(m);
|
|
literal lit(v, !is_true);
|
|
|
|
if (m_util.str.is_prefix(e, e1, e2)) {
|
|
if (is_true) {
|
|
f = mk_skolem(m_prefix, e1, e2);
|
|
f = mk_concat(e1, f);
|
|
propagate_eq(lit, f, e2, true);
|
|
}
|
|
else {
|
|
propagate_not_prefix(e);
|
|
}
|
|
}
|
|
else if (m_util.str.is_suffix(e, e1, e2)) {
|
|
if (is_true) {
|
|
f = mk_skolem(m_suffix, e1, e2);
|
|
f = mk_concat(f, e1);
|
|
propagate_eq(lit, f, e2, true);
|
|
}
|
|
else {
|
|
propagate_not_suffix(e);
|
|
}
|
|
}
|
|
else if (m_util.str.is_contains(e, e1, e2)) {
|
|
expr_ref_vector disj(m);
|
|
// disabled pending regression on issue 1196
|
|
if (false && m_seq_rewrite.reduce_contains(e1, e2, disj)) {
|
|
literal_vector lits;
|
|
literal lit = mk_literal(e);
|
|
lits.push_back(~lit);
|
|
for (expr* d : disj) {
|
|
lits.push_back(mk_literal(d));
|
|
}
|
|
++m_stats.m_add_axiom;
|
|
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
|
|
for (expr* d : disj) {
|
|
add_axiom(lit, ~mk_literal(d));
|
|
}
|
|
}
|
|
else if (is_true) {
|
|
expr_ref f1 = mk_skolem(m_indexof_left, e1, e2);
|
|
expr_ref f2 = mk_skolem(m_indexof_right, e1, e2);
|
|
f = mk_concat(f1, e2, f2);
|
|
propagate_eq(lit, f, e1, true);
|
|
}
|
|
else if (!canonizes(false, e)) {
|
|
propagate_non_empty(lit, e2);
|
|
dependency* dep = m_dm.mk_leaf(assumption(lit));
|
|
literal len_gt = mk_simplified_literal(m_autil.mk_le(mk_sub(mk_len(e1), mk_len(e2)),
|
|
m_autil.mk_int(-1)));
|
|
ctx.force_phase(len_gt);
|
|
m_ncs.push_back(nc(expr_ref(e, m), len_gt, dep));
|
|
}
|
|
}
|
|
else if (is_accept(e)) {
|
|
if (is_true) {
|
|
propagate_accept(lit, e);
|
|
}
|
|
}
|
|
else if (is_step(e)) {
|
|
if (is_true) {
|
|
propagate_step(lit, e);
|
|
}
|
|
}
|
|
else if (is_eq(e, e1, e2)) {
|
|
if (is_true) {
|
|
propagate_eq(lit, e1, e2, true);
|
|
}
|
|
}
|
|
else if (m_util.str.is_in_re(e)) {
|
|
propagate_in_re(e, is_true);
|
|
}
|
|
else if (is_skolem(symbol("seq.split"), e)) {
|
|
// propagate equalities
|
|
}
|
|
else if (is_skolem(symbol("seq.is_digit"), e)) {
|
|
// no-op
|
|
}
|
|
else if (is_max_unfolding(e)) {
|
|
// no-op
|
|
}
|
|
else {
|
|
TRACE("seq", tout << mk_pp(e, m) << "\n";);
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void theory_seq::new_eq_eh(theory_var v1, theory_var v2) {
|
|
enode* n1 = get_enode(v1);
|
|
enode* n2 = get_enode(v2);
|
|
dependency* deps = m_dm.mk_leaf(assumption(n1, n2));
|
|
new_eq_eh(deps, n1, n2);
|
|
}
|
|
|
|
void theory_seq::new_eq_eh(dependency* deps, enode* n1, enode* n2) {
|
|
TRACE("seq", tout << expr_ref(n1->get_owner(), m) << " = " << expr_ref(n2->get_owner(), m) << "\n";);
|
|
if (n1 != n2 && m_util.is_seq(n1->get_owner())) {
|
|
theory_var v1 = n1->get_th_var(get_id());
|
|
theory_var v2 = n2->get_th_var(get_id());
|
|
if (m_find.find(v1) == m_find.find(v2)) {
|
|
return;
|
|
}
|
|
m_find.merge(v1, v2);
|
|
expr_ref o1(n1->get_owner(), m);
|
|
expr_ref o2(n2->get_owner(), m);
|
|
TRACE("seq", tout << o1 << " = " << o2 << "\n";);
|
|
m_eqs.push_back(mk_eqdep(o1, o2, deps));
|
|
solve_eqs(m_eqs.size()-1);
|
|
enforce_length_coherence(n1, n2);
|
|
}
|
|
else if (n1 != n2 && m_util.is_re(n1->get_owner())) {
|
|
// create an expression for the symmetric difference and imply it is empty.
|
|
enode_pair_vector eqs;
|
|
literal_vector lits;
|
|
if (!linearize(deps, eqs, lits))
|
|
return;
|
|
context& ctx = get_context();
|
|
eqs.push_back(enode_pair(n1, n2));
|
|
expr_ref r1(n1->get_owner(), m);
|
|
expr_ref r2(n2->get_owner(), m);
|
|
ctx.get_rewriter()(r1);
|
|
ctx.get_rewriter()(r2);
|
|
if (r1 == r2) {
|
|
return;
|
|
}
|
|
#if 0
|
|
expr* d1 = m_util.re.mk_inter(r1, m_util.re.mk_complement(r2));
|
|
expr* d2 = m_util.re.mk_inter(r2, m_util.re.mk_complement(r1));
|
|
expr_ref diff(m_util.re.mk_union(d1, d2), m);
|
|
lit = mk_literal(m_util.re.mk_is_empty(diff));
|
|
justification* js =
|
|
ctx.mk_justification(
|
|
ext_theory_propagation_justification(
|
|
get_id(), ctx.get_region(), lits.size(), lits.c_ptr(), eqs.size(), eqs.c_ptr(), lit));
|
|
ctx.assign(lit, js);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void theory_seq::new_diseq_eh(theory_var v1, theory_var v2) {
|
|
enode* n1 = get_enode(v1);
|
|
enode* n2 = get_enode(v2);
|
|
expr_ref e1(n1->get_owner(), m);
|
|
expr_ref e2(n2->get_owner(), m);
|
|
SASSERT(n1->get_root() != n2->get_root());
|
|
m_exclude.update(e1, e2);
|
|
expr_ref eq(m.mk_eq(e1, e2), m);
|
|
TRACE("seq", tout << "new disequality " << get_context().get_scope_level() << ": " << eq << "\n";);
|
|
m_rewrite(eq);
|
|
if (!m.is_false(eq)) {
|
|
literal lit = mk_eq(e1, e2, false);
|
|
|
|
if (m_util.str.is_empty(e2)) {
|
|
std::swap(e1, e2);
|
|
}
|
|
|
|
dependency* dep = m_dm.mk_leaf(assumption(~lit));
|
|
m_nqs.push_back(ne(e1, e2, dep));
|
|
solve_nqs(m_nqs.size() - 1);
|
|
}
|
|
}
|
|
|
|
void theory_seq::push_scope_eh() {
|
|
theory::push_scope_eh();
|
|
m_rep.push_scope();
|
|
m_exclude.push_scope();
|
|
m_dm.push_scope();
|
|
m_trail_stack.push_scope();
|
|
m_trail_stack.push(value_trail<theory_seq, unsigned>(m_axioms_head));
|
|
m_eqs.push_scope();
|
|
m_nqs.push_scope();
|
|
m_ncs.push_scope();
|
|
}
|
|
|
|
void theory_seq::pop_scope_eh(unsigned num_scopes) {
|
|
context& ctx = get_context();
|
|
m_trail_stack.pop_scope(num_scopes);
|
|
theory::pop_scope_eh(num_scopes);
|
|
m_dm.pop_scope(num_scopes);
|
|
m_rep.pop_scope(num_scopes);
|
|
m_exclude.pop_scope(num_scopes);
|
|
m_eqs.pop_scope(num_scopes);
|
|
m_nqs.pop_scope(num_scopes);
|
|
m_ncs.pop_scope(num_scopes);
|
|
m_rewrite.reset();
|
|
if (ctx.get_base_level() > ctx.get_scope_level() - num_scopes) {
|
|
m_replay.reset();
|
|
}
|
|
if (m_len_prop_lvl > (int) ctx.get_scope_level()) {
|
|
m_len_prop_lvl = ctx.get_scope_level();
|
|
m_len_offset.reset();
|
|
}
|
|
}
|
|
|
|
void theory_seq::restart_eh() {
|
|
}
|
|
|
|
void theory_seq::relevant_eh(app* n) {
|
|
if (m_util.str.is_index(n) ||
|
|
m_util.str.is_replace(n) ||
|
|
m_util.str.is_extract(n) ||
|
|
m_util.str.is_at(n) ||
|
|
m_util.str.is_empty(n) ||
|
|
m_util.str.is_string(n) ||
|
|
m_util.str.is_itos(n) ||
|
|
m_util.str.is_stoi(n)) {
|
|
enque_axiom(n);
|
|
}
|
|
|
|
if (m_util.str.is_itos(n) ||
|
|
m_util.str.is_stoi(n)) {
|
|
add_int_string(n);
|
|
}
|
|
|
|
expr* arg;
|
|
if (m_util.str.is_length(n, arg) && !has_length(arg) && get_context().e_internalized(arg)) {
|
|
enforce_length(arg);
|
|
}
|
|
}
|
|
|
|
|
|
eautomaton* theory_seq::get_automaton(expr* re) {
|
|
eautomaton* result = nullptr;
|
|
if (m_re2aut.find(re, result)) {
|
|
return result;
|
|
}
|
|
if (!m_mk_aut.has_solver()) {
|
|
m_mk_aut.set_solver(alloc(seq_expr_solver, m, get_context().get_fparams()));
|
|
}
|
|
result = m_mk_aut(re);
|
|
CTRACE("seq", result, { display_expr d(m); result->display(tout, d); });
|
|
m_automata.push_back(result);
|
|
m_re2aut.insert(re, result);
|
|
m_res.push_back(re);
|
|
return result;
|
|
}
|
|
|
|
literal theory_seq::mk_accept(expr* s, expr* idx, expr* re, expr* state) {
|
|
expr_ref_vector args(m);
|
|
args.push_back(s).push_back(idx).push_back(re).push_back(state);
|
|
return mk_literal(m_util.mk_skolem(m_accept, args.size(), args.c_ptr(), m.mk_bool_sort()));
|
|
}
|
|
|
|
bool theory_seq::is_accept(expr* e, expr*& s, expr*& idx, expr*& re, unsigned& i, eautomaton*& aut) {
|
|
if (is_accept(e)) {
|
|
rational r;
|
|
s = to_app(e)->get_arg(0);
|
|
idx = to_app(e)->get_arg(1);
|
|
re = to_app(e)->get_arg(2);
|
|
TRACE("seq", tout << mk_pp(re, m) << "\n";);
|
|
VERIFY(m_autil.is_numeral(to_app(e)->get_arg(3), r));
|
|
SASSERT(r.is_unsigned());
|
|
i = r.get_unsigned();
|
|
aut = get_automaton(re);
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool theory_seq::is_step(expr* e) const {
|
|
return is_skolem(m_aut_step, e);
|
|
}
|
|
|
|
bool theory_seq::is_step(expr* e, expr*& s, expr*& idx, expr*& re, expr*& i, expr*& j, expr*& t) const {
|
|
if (is_step(e)) {
|
|
s = to_app(e)->get_arg(0);
|
|
idx = to_app(e)->get_arg(1);
|
|
re = to_app(e)->get_arg(2);
|
|
i = to_app(e)->get_arg(3);
|
|
j = to_app(e)->get_arg(4);
|
|
t = to_app(e)->get_arg(5);
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
expr_ref theory_seq::mk_step(expr* s, expr* idx, expr* re, unsigned i, unsigned j, expr* t) {
|
|
expr_ref_vector args(m);
|
|
args.push_back(s).push_back(idx).push_back(re);
|
|
args.push_back(m_autil.mk_int(i));
|
|
args.push_back(m_autil.mk_int(j));
|
|
args.push_back(t);
|
|
return expr_ref(m_util.mk_skolem(m_aut_step, args.size(), args.c_ptr(), m.mk_bool_sort()), m);
|
|
}
|
|
|
|
/**
|
|
step(s, idx, re, i, j, t) -> nth(s, idx) == t & len(s) > idx
|
|
step(s, idx, re, i, j, t) -> accept(s, idx + 1, re, j)
|
|
*/
|
|
void theory_seq::propagate_step(literal lit, expr* step) {
|
|
SASSERT(get_context().get_assignment(lit) == l_true);
|
|
expr* re = nullptr, *s = nullptr, *t = nullptr, *idx = nullptr, *i = nullptr, *j = nullptr;
|
|
VERIFY(is_step(step, s, idx, re, i, j, t));
|
|
|
|
TRACE("seq", tout << mk_pp(step, m) << " -> " << mk_pp(t, m) << "\n";);
|
|
propagate_lit(nullptr, 1, &lit, mk_literal(t));
|
|
|
|
expr_ref len_s = mk_len(s);
|
|
rational lo;
|
|
rational _idx;
|
|
VERIFY(m_autil.is_numeral(idx, _idx));
|
|
if (lower_bound(len_s, lo) && lo.is_unsigned() && lo >= _idx) {
|
|
// skip
|
|
}
|
|
else {
|
|
propagate_lit(nullptr, 1, &lit, ~mk_literal(m_autil.mk_le(len_s, idx)));
|
|
}
|
|
ensure_nth(lit, s, idx);
|
|
|
|
expr_ref idx1(m_autil.mk_int(_idx + 1), m);
|
|
propagate_lit(nullptr, 1, &lit, mk_accept(s, idx1, re, j));
|
|
}
|
|
|
|
/**
|
|
acc(s, idx, re, i) -> \/ step(s, idx, re, i, j, t) if i is non-final
|
|
acc(s, idx, re, i) -> len(s) <= idx \/ step(s, idx, re, i, j, t) if i is final
|
|
acc(s, idx, re, i) -> len(s) >= idx if i is final
|
|
acc(s, idx, re, i) -> len(s) > idx if i is non-final
|
|
acc(s, idx, re, i) -> idx < max_unfolding
|
|
*/
|
|
void theory_seq::propagate_accept(literal lit, expr* acc) {
|
|
++m_stats.m_propagate_automata;
|
|
expr *e = nullptr, *idx = nullptr, *re = nullptr;
|
|
unsigned src = 0;
|
|
context& ctx = get_context();
|
|
rational _idx;
|
|
eautomaton* aut = nullptr;
|
|
VERIFY(is_accept(acc, e, idx, re, src, aut));
|
|
VERIFY(m_autil.is_numeral(idx, _idx));
|
|
VERIFY(aut);
|
|
if (aut->is_sink_state(src)) {
|
|
propagate_lit(nullptr, 1, &lit, false_literal);
|
|
return;
|
|
}
|
|
if (_idx.get_unsigned() > m_max_unfolding_depth &&
|
|
m_max_unfolding_lit != null_literal && ctx.get_scope_level() > 0) {
|
|
propagate_lit(nullptr, 1, &lit, ~m_max_unfolding_lit);
|
|
return;
|
|
}
|
|
|
|
expr_ref len = mk_len(e);
|
|
|
|
literal_vector lits;
|
|
lits.push_back(~lit);
|
|
if (aut->is_final_state(src)) {
|
|
lits.push_back(mk_literal(m_autil.mk_le(len, idx)));
|
|
propagate_lit(nullptr, 1, &lit, mk_literal(m_autil.mk_ge(len, idx)));
|
|
}
|
|
else {
|
|
propagate_lit(nullptr, 1, &lit, ~mk_literal(m_autil.mk_le(len, idx)));
|
|
}
|
|
eautomaton::moves mvs;
|
|
aut->get_moves_from(src, mvs);
|
|
TRACE("seq", tout << mvs.size() << "\n";);
|
|
for (auto const& mv : mvs) {
|
|
expr_ref nth = mk_nth(e, idx);
|
|
expr_ref t = mv.t()->accept(nth);
|
|
ctx.get_rewriter()(t);
|
|
literal step = mk_literal(mk_step(e, idx, re, src, mv.dst(), t));
|
|
lits.push_back(step);
|
|
}
|
|
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
|
|
}
|
|
|
|
void theory_seq::add_theory_assumptions(expr_ref_vector & assumptions) {
|
|
TRACE("seq", tout << "add_theory_assumption " << m_util.has_re() << "\n";);
|
|
if (m_util.has_re()) {
|
|
expr_ref dlimit(m);
|
|
dlimit = mk_max_unfolding_depth();
|
|
m_trail_stack.push(value_trail<theory_seq, literal>(m_max_unfolding_lit));
|
|
m_max_unfolding_lit = mk_literal(dlimit);
|
|
assumptions.push_back(dlimit);
|
|
}
|
|
}
|
|
|
|
bool theory_seq::should_research(expr_ref_vector & unsat_core) {
|
|
TRACE("seq", tout << unsat_core << " " << m_util.has_re() << "\n";);
|
|
if (!m_util.has_re()) {
|
|
return false;
|
|
}
|
|
for (auto & e : unsat_core) {
|
|
if (is_max_unfolding(e)) {
|
|
m_max_unfolding_depth = (3 * m_max_unfolding_depth) / 2 + 1;
|
|
IF_VERBOSE(1, verbose_stream() << "(smt.seq :increase-depth " << m_max_unfolding_depth << ")\n");
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
!prefix(e1,e2) => e1 != ""
|
|
!prefix(e1,e2) => len(e1) > len(e2) or e1 = xcy & e2 = xdz & c != d
|
|
*/
|
|
|
|
void theory_seq::propagate_not_prefix(expr* e) {
|
|
context& ctx = get_context();
|
|
expr* e1 = nullptr, *e2 = nullptr;
|
|
VERIFY(m_util.str.is_prefix(e, e1, e2));
|
|
literal lit = ctx.get_literal(e);
|
|
SASSERT(ctx.get_assignment(lit) == l_false);
|
|
if (canonizes(false, e)) {
|
|
return;
|
|
}
|
|
propagate_non_empty(~lit, e1);
|
|
literal e1_gt_e2 = mk_simplified_literal(m_autil.mk_ge(mk_sub(mk_len(e1), mk_len(e2)), m_autil.mk_int(1)));
|
|
sort* char_sort = nullptr;
|
|
VERIFY(m_util.is_seq(m.get_sort(e1), char_sort));
|
|
expr_ref x = mk_skolem(symbol("seq.prefix.x"), e1, e2);
|
|
expr_ref y = mk_skolem(symbol("seq.prefix.y"), e1, e2);
|
|
expr_ref z = mk_skolem(symbol("seq.prefix.z"), e1, e2);
|
|
expr_ref c = mk_skolem(symbol("seq.prefix.c"), e1, e2, nullptr, nullptr, char_sort);
|
|
expr_ref d = mk_skolem(symbol("seq.prefix.d"), e1, e2, nullptr, nullptr, char_sort);
|
|
add_axiom(lit, e1_gt_e2, mk_seq_eq(e1, mk_concat(x, m_util.str.mk_unit(c), y)));
|
|
add_axiom(lit, e1_gt_e2, mk_seq_eq(e2, mk_concat(x, m_util.str.mk_unit(d), z)), mk_seq_eq(e2, x));
|
|
add_axiom(lit, e1_gt_e2, ~mk_eq(c, d, false));
|
|
}
|
|
|
|
|
|
/*
|
|
!suffix(e1,e2) => e1 != ""
|
|
!suffix(e1,e2) => len(e1) > len(e2) or e1 = ycx & e2 = zdx & c != d
|
|
*/
|
|
|
|
void theory_seq::propagate_not_suffix(expr* e) {
|
|
context& ctx = get_context();
|
|
expr* e1 = nullptr, *e2 = nullptr;
|
|
VERIFY(m_util.str.is_suffix(e, e1, e2));
|
|
literal lit = ctx.get_literal(e);
|
|
SASSERT(ctx.get_assignment(lit) == l_false);
|
|
if (canonizes(false, e)) {
|
|
return;
|
|
}
|
|
propagate_non_empty(~lit, e1);
|
|
literal e1_gt_e2 = mk_simplified_literal(m_autil.mk_ge(mk_sub(mk_len(e1), mk_len(e2)), m_autil.mk_int(1)));
|
|
sort* char_sort = nullptr;
|
|
VERIFY(m_util.is_seq(m.get_sort(e1), char_sort));
|
|
expr_ref x = mk_skolem(symbol("seq.suffix.x"), e1, e2);
|
|
expr_ref y = mk_skolem(symbol("seq.suffix.y"), e1, e2);
|
|
expr_ref z = mk_skolem(symbol("seq.suffix.z"), e1, e2);
|
|
expr_ref c = mk_skolem(symbol("seq.suffix.c"), e1, e2, nullptr, nullptr, char_sort);
|
|
expr_ref d = mk_skolem(symbol("seq.suffix.d"), e1, e2, nullptr, nullptr, char_sort);
|
|
add_axiom(lit, e1_gt_e2, mk_seq_eq(e1, mk_concat(y, m_util.str.mk_unit(c), x)));
|
|
add_axiom(lit, e1_gt_e2, mk_seq_eq(e2, mk_concat(z, m_util.str.mk_unit(d), x)));
|
|
add_axiom(lit, e1_gt_e2, ~mk_eq(c, d, false));
|
|
}
|
|
|
|
|
|
|
|
bool theory_seq::canonizes(bool sign, expr* e) {
|
|
context& ctx = get_context();
|
|
dependency* deps = nullptr;
|
|
expr_ref cont = canonize(e, deps);
|
|
TRACE("seq", tout << mk_pp(e, m) << " -> " << cont << "\n";
|
|
if (deps) display_deps(tout, deps););
|
|
if ((m.is_true(cont) && !sign) ||
|
|
(m.is_false(cont) && sign)) {
|
|
TRACE("seq", display(tout); tout << ctx.get_assignment(ctx.get_literal(e)) << "\n";);
|
|
propagate_lit(deps, 0, nullptr, ctx.get_literal(e));
|
|
return true;
|
|
}
|
|
if ((m.is_false(cont) && !sign) ||
|
|
(m.is_true(cont) && sign)) {
|
|
TRACE("seq", display(tout););
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void theory_seq::get_ite_concat(expr* e, ptr_vector<expr>& concats) {
|
|
expr* e1 = nullptr, *e2 = nullptr;
|
|
while (true) {
|
|
e = m_rep.find(e);
|
|
e = get_ite_value(e);
|
|
if (m_util.str.is_concat(e, e1, e2)) {
|
|
get_ite_concat(e1, concats);
|
|
e = e2;
|
|
continue;
|
|
}
|
|
concats.push_back(e);
|
|
return;
|
|
}
|
|
}
|