mirror of
				https://github.com/Z3Prover/z3
				synced 2025-11-04 13:29:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			348 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			348 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*++
 | 
						|
Copyright (c) 2020 Microsoft Corporation
 | 
						|
 | 
						|
Module Name:
 | 
						|
 | 
						|
    recfun_solver.cpp
 | 
						|
 | 
						|
Abstract:
 | 
						|
 | 
						|
    Recursive function solver plugin
 | 
						|
 | 
						|
Author:
 | 
						|
 | 
						|
    Nikolaj Bjorner (nbjorner) 2021-02-09
 | 
						|
 | 
						|
--*/
 | 
						|
 | 
						|
#include "ast/rewriter/var_subst.h"
 | 
						|
#include "sat/smt/recfun_solver.h"
 | 
						|
#include "sat/smt/euf_solver.h"
 | 
						|
 | 
						|
 | 
						|
#define TRACEFN(x) TRACE("recfun", tout << x << '\n';)
 | 
						|
 | 
						|
 | 
						|
namespace recfun {
 | 
						|
 | 
						|
 | 
						|
    solver::solver(euf::solver& ctx):
 | 
						|
        th_euf_solver(ctx, symbol("recfun"), ctx.get_manager().mk_family_id("recfun")),
 | 
						|
        m_plugin(*reinterpret_cast<recfun::decl::plugin*>(m.get_plugin(ctx.get_manager().mk_family_id("recfun")))),
 | 
						|
        m_util(m_plugin.u()), 
 | 
						|
        m_disabled_guards(m),
 | 
						|
        m_enabled_guards(m),
 | 
						|
        m_preds(m) {
 | 
						|
    }    
 | 
						|
 | 
						|
    solver::~solver() {
 | 
						|
        reset();
 | 
						|
    }
 | 
						|
 | 
						|
    void solver::reset() {
 | 
						|
        m_stats.reset();
 | 
						|
        m_disabled_guards.reset();
 | 
						|
        m_enabled_guards.reset();
 | 
						|
        m_propagation_queue.reset();
 | 
						|
        for (auto & kv : m_guard2pending) 
 | 
						|
            dealloc(kv.m_value);
 | 
						|
        m_guard2pending.reset();
 | 
						|
    }
 | 
						|
 | 
						|
    expr_ref solver::apply_args(vars const & vars, expr_ref_vector const & args, expr * e) {
 | 
						|
        SASSERT(is_standard_order(vars));
 | 
						|
        var_subst subst(m, true);
 | 
						|
        expr_ref new_body = subst(e, args);
 | 
						|
        ctx.get_rewriter()(new_body);
 | 
						|
        return new_body;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * For functions f(args) that are given as macros f(vs) = rhs
 | 
						|
     * 
 | 
						|
     * 1. substitute `e.args` for `vs` into the macro rhs
 | 
						|
     * 2. add unit clause `f(args) = rhs`
 | 
						|
     */
 | 
						|
    void solver::assert_macro_axiom(case_expansion & e) {
 | 
						|
        m_stats.m_macro_expansions++;
 | 
						|
        TRACEFN("case expansion " << e);
 | 
						|
        SASSERT(e.m_def->is_fun_macro());
 | 
						|
        auto & vars = e.m_def->get_vars();
 | 
						|
        app_ref lhs = e.m_lhs;
 | 
						|
        expr_ref rhs = apply_args(vars, e.m_args, e.m_def->get_rhs());
 | 
						|
        unsigned generation = std::max(ctx.get_max_generation(lhs), ctx.get_max_generation(rhs));
 | 
						|
        euf::solver::scoped_generation _sgen(ctx, generation + 1);
 | 
						|
        auto eq = eq_internalize(lhs, rhs);
 | 
						|
        add_unit(eq);        
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Add case axioms for every case expansion path.
 | 
						|
     *
 | 
						|
     * assert `p(args) <=> And(guards)` (with CNF on the fly)
 | 
						|
     *
 | 
						|
     * also body-expand paths that do not depend on any defined fun
 | 
						|
     */
 | 
						|
    void solver::assert_case_axioms(case_expansion & e) {
 | 
						|
        if (e.m_def->is_fun_macro()) {
 | 
						|
            assert_macro_axiom(e);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        ++m_stats.m_case_expansions;
 | 
						|
        TRACEFN("assert_case_axioms " << e
 | 
						|
                << " with " << e.m_def->get_cases().size() << " cases");
 | 
						|
        SASSERT(e.m_def->is_fun_defined());
 | 
						|
        // add case-axioms for all case-paths
 | 
						|
        // assert this was not defined before.
 | 
						|
        sat::literal_vector preds;
 | 
						|
        auto & vars = e.m_def->get_vars();
 | 
						|
            
 | 
						|
        for (case_def const & c : e.m_def->get_cases()) {
 | 
						|
            // applied predicate to `args`
 | 
						|
            app_ref pred_applied = c.apply_case_predicate(e.m_args);
 | 
						|
            SASSERT(u().owns_app(pred_applied));
 | 
						|
            preds.push_back(mk_literal(pred_applied));
 | 
						|
            expr_ref_vector guards(m);
 | 
						|
            for (auto & g : c.get_guards()) 
 | 
						|
                guards.push_back(apply_args(vars, e.m_args, g));
 | 
						|
            if (c.is_immediate()) {
 | 
						|
                body_expansion be(pred_applied, c, e.m_args);
 | 
						|
                assert_body_axiom(be);            
 | 
						|
            }
 | 
						|
            else if (!is_enabled_guard(pred_applied)) {
 | 
						|
                disable_guard(pred_applied, guards);
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            assert_guard(pred_applied, guards);
 | 
						|
        }
 | 
						|
        add_clause(preds);
 | 
						|
    }
 | 
						|
    
 | 
						|
    void solver::assert_guard(expr* pred_applied, expr_ref_vector const& guards) {
 | 
						|
        sat::literal_vector lguards;
 | 
						|
        for (expr* ga : guards) 
 | 
						|
            lguards.push_back(mk_literal(ga));
 | 
						|
        add_equiv_and(mk_literal(pred_applied), lguards);
 | 
						|
    }
 | 
						|
 | 
						|
    void solver::block_core(expr_ref_vector const& core) {
 | 
						|
        sat::literal_vector clause;
 | 
						|
        for (expr* e : core)
 | 
						|
            clause.push_back(~mk_literal(e));
 | 
						|
        add_clause(clause);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * make clause `depth_limit => ~guard`
 | 
						|
     * the guard appears at a depth below the current cutoff.
 | 
						|
     */
 | 
						|
    void solver::disable_guard(expr* guard, expr_ref_vector const& guards) {
 | 
						|
        SASSERT(!is_enabled_guard(guard));
 | 
						|
        app_ref dlimit = m_util.mk_num_rounds_pred(m_num_rounds);
 | 
						|
        expr_ref_vector core(m);
 | 
						|
        core.push_back(dlimit);
 | 
						|
        core.push_back(guard);
 | 
						|
        if (!m_guard2pending.contains(guard)) {
 | 
						|
            m_disabled_guards.push_back(guard);
 | 
						|
            m_guard2pending.insert(guard, alloc(expr_ref_vector, guards));
 | 
						|
        }
 | 
						|
        TRACEFN("add clause\n" << core);
 | 
						|
        push_c(core);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * For a guarded definition guards => f(vars) = rhs
 | 
						|
     * and occurrence f(args)
 | 
						|
     *
 | 
						|
     * substitute `args` for `vars` in guards, and rhs
 | 
						|
     * add axiom guards[args/vars] => f(args) = rhs[args/vars]
 | 
						|
     *
 | 
						|
     */
 | 
						|
    void solver::assert_body_axiom(body_expansion & e) {
 | 
						|
        ++m_stats.m_body_expansions;
 | 
						|
        recfun::def & d = *e.m_cdef->get_def();
 | 
						|
        auto & vars = d.get_vars();
 | 
						|
        auto & args = e.m_args;
 | 
						|
        SASSERT(is_standard_order(vars));
 | 
						|
        sat::literal_vector clause;
 | 
						|
        for (auto & g : e.m_cdef->get_guards()) {
 | 
						|
            expr_ref guard = apply_args(vars, args, g);
 | 
						|
            if (m.is_false(guard))
 | 
						|
                return;
 | 
						|
            if (m.is_true(guard))
 | 
						|
                continue;
 | 
						|
            clause.push_back(~mk_literal(guard));
 | 
						|
        }        
 | 
						|
        expr_ref lhs(u().mk_fun_defined(d, args), m);
 | 
						|
        expr_ref rhs = apply_args(vars, args, e.m_cdef->get_rhs());
 | 
						|
        clause.push_back(eq_internalize(lhs, rhs));
 | 
						|
        add_clause(clause);
 | 
						|
    }
 | 
						|
 | 
						|
    void solver::get_antecedents(sat::literal l, sat::ext_justification_idx idx, sat::literal_vector& r, bool probing) {
 | 
						|
        UNREACHABLE();
 | 
						|
    }
 | 
						|
 | 
						|
    void solver::asserted(sat::literal l) {
 | 
						|
        expr* e = ctx.bool_var2expr(l.var());
 | 
						|
        if (!l.sign() && u().is_case_pred(e)) 
 | 
						|
            push_body_expand(e);
 | 
						|
    }
 | 
						|
 | 
						|
    sat::check_result solver::check() {
 | 
						|
        return sat::check_result::CR_DONE;
 | 
						|
    }
 | 
						|
 | 
						|
    std::ostream& solver::display(std::ostream& out) const {
 | 
						|
        return out << "disabled guards:\n" << m_disabled_guards << "\n";
 | 
						|
    }
 | 
						|
 | 
						|
    void solver::collect_statistics(statistics& st) const {
 | 
						|
        st.update("recfun macro expansion", m_stats.m_macro_expansions);
 | 
						|
        st.update("recfun case expansion", m_stats.m_case_expansions);
 | 
						|
        st.update("recfun body expansion", m_stats.m_body_expansions);
 | 
						|
    }
 | 
						|
 | 
						|
    euf::th_solver* solver::clone(euf::solver& ctx) {
 | 
						|
        return alloc(solver, ctx);
 | 
						|
    }
 | 
						|
 | 
						|
    bool solver::unit_propagate() {
 | 
						|
        force_push();
 | 
						|
        if (m_qhead == m_propagation_queue.size())
 | 
						|
            return false;
 | 
						|
        ctx.push(value_trail<unsigned>(m_qhead));
 | 
						|
        for (; m_qhead < m_propagation_queue.size() && !s().inconsistent(); ++m_qhead) {
 | 
						|
            auto& p = *m_propagation_queue[m_qhead];
 | 
						|
            if (p.is_guard()) 
 | 
						|
                assert_guard(p.guard(), *m_guard2pending[p.guard()]);
 | 
						|
            else if (p.is_core()) 
 | 
						|
                block_core(p.core());
 | 
						|
            else if (p.is_case()) 
 | 
						|
                assert_case_axioms(p.case_ex());
 | 
						|
            else 
 | 
						|
                assert_body_axiom(p.body());
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    void solver::push_prop(propagation_item* p) {
 | 
						|
        m_propagation_queue.push_back(p);        
 | 
						|
        ctx.push(push_back_vector<scoped_ptr_vector<propagation_item>>(m_propagation_queue));        
 | 
						|
    }
 | 
						|
 | 
						|
    sat::literal solver::internalize(expr* e, bool sign, bool root, bool redundant) {
 | 
						|
        force_push();
 | 
						|
        SASSERT(m.is_bool(e));
 | 
						|
        if (!visit_rec(m, e, sign, root, redundant)) {
 | 
						|
            TRACE("array", tout << mk_pp(e, m) << "\n";);
 | 
						|
            return sat::null_literal;
 | 
						|
        }
 | 
						|
        auto lit = expr2literal(e);
 | 
						|
        if (sign)
 | 
						|
            lit.neg();
 | 
						|
        return lit;
 | 
						|
    }
 | 
						|
 | 
						|
    void solver::internalize(expr* e, bool redundant) {
 | 
						|
        force_push();
 | 
						|
        visit_rec(m, e, false, false, redundant);
 | 
						|
    }
 | 
						|
 | 
						|
    bool solver::visited(expr* e) {
 | 
						|
        euf::enode* n = expr2enode(e);
 | 
						|
        return n && n->is_attached_to(get_id());        
 | 
						|
    }
 | 
						|
 | 
						|
    bool solver::visit(expr* e) {
 | 
						|
        if (visited(e))
 | 
						|
            return true;
 | 
						|
        if (!is_app(e) || to_app(e)->get_family_id() != get_id()) {
 | 
						|
            ctx.internalize(e, m_is_redundant);
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
        m_stack.push_back(sat::eframe(e));
 | 
						|
        return false;        
 | 
						|
    }
 | 
						|
 | 
						|
    bool solver::post_visit(expr* e, bool sign, bool root) {
 | 
						|
        euf::enode* n = expr2enode(e);
 | 
						|
        SASSERT(!n || !n->is_attached_to(get_id()));
 | 
						|
        if (!n) 
 | 
						|
            n = mk_enode(e, false);
 | 
						|
        SASSERT(!n->is_attached_to(get_id()));
 | 
						|
        euf::theory_var w = mk_var(n);
 | 
						|
        ctx.attach_th_var(n, this, w);
 | 
						|
        if (u().is_defined(e) && u().has_defs()) 
 | 
						|
            push_case_expand(e);
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    void solver::add_assumptions(sat::literal_set& assumptions) {
 | 
						|
        if (u().has_defs() || m_disabled_guards.empty()) {
 | 
						|
            app_ref dlimit = m_util.mk_num_rounds_pred(m_num_rounds);
 | 
						|
            TRACEFN("add_theory_assumption " << dlimit);
 | 
						|
            sat::literal assumption = mk_literal(dlimit); 
 | 
						|
            assumptions.insert(assumption);
 | 
						|
            s().assign_scoped(assumption);
 | 
						|
            for (auto g : m_disabled_guards) {
 | 
						|
                assumption = ~mk_literal(g);
 | 
						|
                assumptions.insert(assumption);
 | 
						|
                s().assign_scoped(assumption);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        for (expr* g : m_enabled_guards)
 | 
						|
            push_guard(g);
 | 
						|
    }
 | 
						|
    
 | 
						|
    bool solver::should_research(sat::literal_vector const& core) {
 | 
						|
        bool found = false;
 | 
						|
        unsigned min_gen = UINT_MAX;
 | 
						|
        expr* to_delete = nullptr;
 | 
						|
        unsigned n = 0;
 | 
						|
        for (sat::literal lit : core) {
 | 
						|
            expr* e = ctx.bool_var2expr(lit.var());
 | 
						|
            if (lit.sign() && is_disabled_guard(e)) {
 | 
						|
                found = true;
 | 
						|
                unsigned gen = ctx.get_max_generation(e);
 | 
						|
                if (gen < min_gen) 
 | 
						|
                    n = 0;
 | 
						|
 | 
						|
                if (gen <= min_gen && s().rand()() % (++n) == 0) {
 | 
						|
                    to_delete = e;
 | 
						|
                    min_gen = gen;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else if (u().is_num_rounds(e)) 
 | 
						|
                found = true;
 | 
						|
        }
 | 
						|
        if (found) {
 | 
						|
            ++m_num_rounds;
 | 
						|
            if (!to_delete && !m_disabled_guards.empty())
 | 
						|
                to_delete = m_disabled_guards.back();
 | 
						|
            if (to_delete) {
 | 
						|
                m_disabled_guards.erase(to_delete);
 | 
						|
                m_enabled_guards.push_back(to_delete);
 | 
						|
                IF_VERBOSE(2, verbose_stream() << "(smt.recfun :enable-guard " << mk_pp(to_delete, m) << ")\n");
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                IF_VERBOSE(2, verbose_stream() << "(smt.recfun :increment-round)\n");
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return found;
 | 
						|
    }
 | 
						|
 | 
						|
    bool solver::add_dep(euf::enode* n, top_sort<euf::enode>& dep) {
 | 
						|
        if (n->num_args() == 0)
 | 
						|
            dep.insert(n, nullptr);
 | 
						|
        for (auto* k : euf::enode_args(n))
 | 
						|
            dep.add(n, k);
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    void solver::add_value(euf::enode* n, model& mdl, expr_ref_vector& values) {
 | 
						|
        values.set(n->get_root_id(), n->get_root()->get_expr());
 | 
						|
    }
 | 
						|
    
 | 
						|
}
 |