3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-04 14:25:46 +00:00
z3/src/math/polysat/interval.h
2022-10-03 11:05:07 +02:00

137 lines
4.9 KiB
C++

/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
polysat intervals
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
--*/
#pragma once
#include "math/polysat/types.h"
#include "util/optional.h"
namespace polysat {
enum class ikind_t { full, proper };
struct bounds {
pdd lo; ///< lower bound, inclusive
pdd hi; ///< upper bound, exclusive
};
/**
* An interval is either [lo; hi[ (excl. upper bound) or the full domain Z_{2^w}.
* If lo > hi, the interval wraps around, i.e., represents the union of [lo; 2^w[ and [0; hi[.
* Membership test t \in [lo; hi[ is equivalent to t - lo < hi - lo.
*/
class interval {
ikind_t m_kind;
optional<bounds> m_bounds;
interval(): m_kind(ikind_t::full) {}
interval(pdd const& lo, pdd const& hi):
m_kind(ikind_t::proper), m_bounds({lo, hi}) {}
public:
static interval empty(dd::pdd_manager& m) { return proper(m.zero(), m.zero()); }
static interval full() { return {}; }
static interval proper(pdd const& lo, pdd const& hi) { return {lo, hi}; }
bool is_full() const { return m_kind == ikind_t::full; }
bool is_proper() const { return m_kind == ikind_t::proper; }
bool is_always_empty() const { return is_proper() && lo() == hi(); }
pdd const& lo() const { SASSERT(is_proper()); return m_bounds->lo; }
pdd const& hi() const { SASSERT(is_proper()); return m_bounds->hi; }
};
inline std::ostream& operator<<(std::ostream& os, interval const& i) {
if (i.is_full())
return os << "full";
else
return os << "[" << i.lo() << " ; " << i.hi() << "[";
}
class eval_interval {
interval m_symbolic;
rational m_concrete_lo;
rational m_concrete_hi;
eval_interval(interval&& i, rational const& lo_val, rational const& hi_val):
m_symbolic(std::move(i)), m_concrete_lo(lo_val), m_concrete_hi(hi_val) {}
public:
static eval_interval empty(dd::pdd_manager &m) {
return {interval::empty(m), rational::zero(), rational::zero()};
}
static eval_interval full() {
return {interval::full(), rational::zero(), rational::zero()};
}
static eval_interval proper(pdd const &lo, rational const &lo_val, pdd const &hi, rational const &hi_val) {
SASSERT(0 <= lo_val && lo_val <= lo.manager().max_value());
SASSERT(0 <= hi_val && hi_val <= hi.manager().max_value());
return {interval::proper(lo, hi), lo_val, hi_val};
}
bool is_full() const { return m_symbolic.is_full(); }
bool is_proper() const { return m_symbolic.is_proper(); }
bool is_always_empty() const { return m_symbolic.is_always_empty(); }
bool is_currently_empty() const { return is_proper() && lo_val() == hi_val(); }
interval const& symbolic() const { return m_symbolic; }
pdd const& lo() const { return m_symbolic.lo(); }
pdd const& hi() const { return m_symbolic.hi(); }
rational const& lo_val() const { SASSERT(is_proper()); return m_concrete_lo; }
rational const& hi_val() const { SASSERT(is_proper()); return m_concrete_hi; }
rational current_len() const {
SASSERT(is_proper());
return mod(hi_val() - lo_val(), rational::power_of_two(lo().power_of_2()));
}
bool currently_contains(rational const& val) const {
if (is_full())
return true;
else if (lo_val() <= hi_val())
return lo_val() <= val && val < hi_val();
else
return val < hi_val() || val >= lo_val();
}
bool currently_contains(eval_interval const& other) const {
if (is_full())
return true;
if (other.is_full())
return false;
// lo <= lo' <= hi' <= hi'
if (lo_val() <= other.lo_val() && other.lo_val() <= other.hi_val() && other.hi_val() <= hi_val())
return true;
if (lo_val() <= hi_val())
return false;
// hi < lo <= lo' <= hi'
if (lo_val() <= other.lo_val() && other.lo_val() <= other.hi_val())
return true;
// lo' <= hi' <= hi < lo
if (other.lo_val() <= other.hi_val() && other.hi_val() <= hi_val())
return true;
// hi' <= hi < lo <= lo'
if (other.hi_val() <= hi_val() && lo_val() <= other.lo_val())
return true;
return false;
}
}; // class eval_interval
inline std::ostream& operator<<(std::ostream& os, eval_interval const& i) {
if (i.is_full())
return os << "full";
else {
auto& m = i.hi().manager();
return os << i.symbolic() << " := [" << m.normalize(i.lo_val()) << ";" << m.normalize(i.hi_val()) << "[";
}
}
}