3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-05 17:14:07 +00:00
z3/src/ast/ast.h
Nikolaj Bjorner ebcacaa26d update new assertions
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2017-08-25 17:44:33 -07:00

2512 lines
97 KiB
C++

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
ast.h
Abstract:
Expression DAG
Author:
Leonardo de Moura (leonardo) 2006-09-18.
Revision History:
--*/
#ifndef AST_H_
#define AST_H_
#include "util/vector.h"
#include "util/hashtable.h"
#include "util/buffer.h"
#include "util/symbol.h"
#include "util/rational.h"
#include "util/hash.h"
#include "util/optional.h"
#include "util/trace.h"
#include "util/bit_vector.h"
#include "util/symbol_table.h"
#include "util/tptr.h"
#include "util/memory_manager.h"
#include "util/small_object_allocator.h"
#include "util/obj_ref.h"
#include "util/ref_vector.h"
#include "util/ref_buffer.h"
#include "util/obj_mark.h"
#include "util/obj_hashtable.h"
#include "util/id_gen.h"
#include "util/map.h"
#include "util/parray.h"
#include "util/dictionary.h"
#include "util/chashtable.h"
#include "util/z3_exception.h"
#include "util/dependency.h"
#include "util/rlimit.h"
#define RECYCLE_FREE_AST_INDICES
#ifdef _MSC_VER
#pragma warning(disable : 4200)
#pragma warning(disable : 4355)
#endif
class ast;
class ast_manager;
/**
\brief Generic exception for AST related errors.
We used to use fatal_error_msg to report errors inside plugins.
*/
class ast_exception : public default_exception {
public:
ast_exception(char const * msg):default_exception(msg) {}
};
typedef int family_id;
const family_id null_family_id = -1;
// -----------------------------------
//
// parameter
//
// -----------------------------------
/**
\brief Interpreted function declarations and sorts may have parameters that are used
to encode extra information associated with them.
*/
class parameter {
public:
enum kind_t {
PARAM_INT,
PARAM_AST,
PARAM_SYMBOL,
PARAM_RATIONAL,
PARAM_DOUBLE,
// PARAM_EXTERNAL is used for handling decl_plugin specific parameters.
// For example, it is used for handling mpf numbers in float_decl_plugin,
// and irrational algebraic numbers in arith_decl_plugin.
// PARAM_EXTERNAL is not supported by z3 low level input format. This format is legacy, so
// this is not a big problem.
// Remark: PARAM_EXTERNAL can only be used to decorate theory decls.
PARAM_EXTERNAL
};
private:
kind_t m_kind;
// It is not possible to use tag pointers, since symbols are already tagged.
union {
int m_int; // for PARAM_INT
ast* m_ast; // for PARAM_AST
void const* m_symbol; // for PARAM_SYMBOL
rational* m_rational; // for PARAM_RATIONAL
double m_dval; // for PARAM_DOUBLE (remark: this is not used in float_decl_plugin)
unsigned m_ext_id; // for PARAM_EXTERNAL
};
public:
parameter(): m_kind(PARAM_INT), m_int(0) {}
explicit parameter(int val): m_kind(PARAM_INT), m_int(val) {}
explicit parameter(unsigned val): m_kind(PARAM_INT), m_int(val) {}
explicit parameter(ast * p): m_kind(PARAM_AST), m_ast(p) {}
explicit parameter(symbol const & s): m_kind(PARAM_SYMBOL), m_symbol(s.c_ptr()) {}
explicit parameter(rational const & r): m_kind(PARAM_RATIONAL), m_rational(alloc(rational, r)) {}
explicit parameter(double d):m_kind(PARAM_DOUBLE), m_dval(d) {}
explicit parameter(const char *s):m_kind(PARAM_SYMBOL), m_symbol(symbol(s).c_ptr()) {}
explicit parameter(unsigned ext_id, bool):m_kind(PARAM_EXTERNAL), m_ext_id(ext_id) {}
parameter(parameter const&);
~parameter();
parameter& operator=(parameter const& other);
kind_t get_kind() const { return m_kind; }
bool is_int() const { return m_kind == PARAM_INT; }
bool is_ast() const { return m_kind == PARAM_AST; }
bool is_symbol() const { return m_kind == PARAM_SYMBOL; }
bool is_rational() const { return m_kind == PARAM_RATIONAL; }
bool is_double() const { return m_kind == PARAM_DOUBLE; }
bool is_external() const { return m_kind == PARAM_EXTERNAL; }
bool is_int(int & i) const { return is_int() && (i = get_int(), true); }
bool is_ast(ast * & a) const { return is_ast() && (a = get_ast(), true); }
bool is_symbol(symbol & s) const { return is_symbol() && (s = get_symbol(), true); }
bool is_rational(rational & r) const { return is_rational() && (r = get_rational(), true); }
bool is_double(double & d) const { return is_double() && (d = get_double(), true); }
bool is_external(unsigned & id) const { return is_external() && (id = get_ext_id(), true); }
/**
\brief This method is invoked when the parameter is
attached to a function declaration or sort.
*/
void init_eh(ast_manager & m);
/**
\brief This method is invoked before the function
declaration or sort associated with the parameter is
deleted.
*/
void del_eh(ast_manager & m, family_id fid);
int get_int() const { SASSERT(is_int()); return m_int; }
ast * get_ast() const { SASSERT(is_ast()); return m_ast; }
symbol get_symbol() const { SASSERT(is_symbol()); return symbol::mk_symbol_from_c_ptr(m_symbol); }
rational const & get_rational() const { SASSERT(is_rational()); return *m_rational; }
double get_double() const { SASSERT(is_double()); return m_dval; }
unsigned get_ext_id() const { SASSERT(is_external()); return m_ext_id; }
bool operator==(parameter const & p) const;
bool operator!=(parameter const & p) const { return !operator==(p); }
unsigned hash() const;
std::ostream& display(std::ostream& out) const;
};
inline std::ostream& operator<<(std::ostream& out, parameter const & p) {
return p.display(out);
}
void display_parameters(std::ostream & out, unsigned n, parameter const * p);
// -----------------------------------
//
// family_manager
//
// -----------------------------------
/**
\brief Interpreted functions and sorts are grouped in families.
Each family has an unique ID. This class models the mapping
between symbols (family names) and the unique IDs.
*/
class family_manager {
family_id m_next_id;
symbol_table<family_id> m_families;
svector<symbol> m_names;
public:
family_manager():m_next_id(0) {}
/**
\brief Return the family_id for s, a new id is created if !has_family(s)
If has_family(s), then this method is equivalent to get_family_id(s)
*/
family_id mk_family_id(symbol const & s);
/**
\brief Return the family_id for s, return null_family_id if s was not registered in the manager.
*/
family_id get_family_id(symbol const & s) const;
bool has_family(symbol const & s) const;
void get_dom(svector<symbol>& dom) const { m_families.get_dom(dom); }
void get_range(svector<family_id> & range) const { m_families.get_range(range); }
symbol const & get_name(family_id fid) const { return fid >= 0 && fid < static_cast<int>(m_names.size()) ? m_names[fid] : symbol::null; }
bool has_family(family_id fid) const { return fid >= 0 && fid < static_cast<int>(m_names.size()); }
};
// -----------------------------------
//
// decl_info
//
// -----------------------------------
/**
\brief Each interpreted function declaration or sort has a kind.
Kinds are used to identify interpreted functions and sorts in a family.
*/
typedef int decl_kind;
const decl_kind null_decl_kind = -1;
/**
\brief Interpreted function declarations and sorts are associated with
a family id, kind, and parameters.
*/
class decl_info {
family_id m_family_id;
decl_kind m_kind;
vector<parameter> m_parameters;
public:
bool m_private_parameters;
decl_info(family_id family_id = null_family_id, decl_kind k = null_decl_kind,
unsigned num_parameters = 0, parameter const * parameters = 0, bool private_params = false);
decl_info(decl_info const& other);
~decl_info() {}
void init_eh(ast_manager & m);
void del_eh(ast_manager & m);
family_id get_family_id() const { return m_family_id; }
decl_kind get_decl_kind() const { return m_kind; }
unsigned get_num_parameters() const { return m_parameters.size(); }
parameter const & get_parameter(unsigned idx) const { return m_parameters[idx]; }
parameter const * get_parameters() const { return m_parameters.begin(); }
bool private_parameters() const { return m_private_parameters; }
unsigned hash() const;
bool operator==(decl_info const & info) const;
};
std::ostream & operator<<(std::ostream & out, decl_info const & info);
// -----------------------------------
//
// sort_size
//
// -----------------------------------
/**
\brief Models the number of elements of a sort.
*/
class sort_size {
enum kind_t {
SS_FINITE,
// For some sorts it may be too expensive to compute the
// number of elements precisely (e.g., arrays). In this
// cases, we mark the sort as too big. That is, the number
// of elements is at least bigger than 2^64.
SS_FINITE_VERY_BIG,
SS_INFINITE
} m_kind;
uint64 m_size; // It is only meaningful if m_kind == SS_FINITE
sort_size(kind_t k, uint64 r):m_kind(k), m_size(r) {}
public:
sort_size():m_kind(SS_INFINITE) {}
sort_size(uint64 const & sz):m_kind(SS_FINITE), m_size(sz) {}
sort_size(sort_size const& other): m_kind(other.m_kind), m_size(other.m_size) {}
explicit sort_size(rational const& r) {
if (r.is_uint64()) {
m_kind = SS_FINITE;
m_size = r.get_uint64();
}
else {
m_kind = SS_FINITE_VERY_BIG;
m_size = 0;
}
}
static sort_size mk_infinite() { return sort_size(SS_INFINITE, 0); }
static sort_size mk_very_big() { return sort_size(SS_FINITE_VERY_BIG, 0); }
static sort_size mk_finite(uint64 r) { return sort_size(SS_FINITE, r); }
bool is_infinite() const { return m_kind == SS_INFINITE; }
bool is_very_big() const { return m_kind == SS_FINITE_VERY_BIG; }
bool is_finite() const { return m_kind == SS_FINITE; }
static bool is_very_big_base2(unsigned power) { return power >= 64; }
uint64 size() const { SASSERT(is_finite()); return m_size; }
};
std::ostream& operator<<(std::ostream& out, sort_size const & ss);
// -----------------------------------
//
// sort_info
//
// -----------------------------------
/**
\brief Extra information that may be attached to intepreted sorts.
*/
class sort_info : public decl_info {
sort_size m_num_elements;
public:
sort_info(family_id family_id = null_family_id, decl_kind k = null_decl_kind,
unsigned num_parameters = 0, parameter const * parameters = 0, bool private_parameters = false):
decl_info(family_id, k, num_parameters, parameters, private_parameters) {
}
sort_info(family_id family_id, decl_kind k, uint64 num_elements,
unsigned num_parameters = 0, parameter const * parameters = 0, bool private_parameters = false):
decl_info(family_id, k, num_parameters, parameters, private_parameters), m_num_elements(num_elements) {
}
sort_info(family_id family_id, decl_kind k, sort_size const& num_elements,
unsigned num_parameters = 0, parameter const * parameters = 0, bool private_parameters = false):
decl_info(family_id, k, num_parameters, parameters, private_parameters), m_num_elements(num_elements) {
}
sort_info(sort_info const& other) : decl_info(other), m_num_elements(other.m_num_elements) {
}
~sort_info() {}
bool is_infinite() const { return m_num_elements.is_infinite(); }
bool is_very_big() const { return m_num_elements.is_very_big(); }
sort_size const & get_num_elements() const { return m_num_elements; }
};
std::ostream & operator<<(std::ostream & out, sort_info const & info);
// -----------------------------------
//
// func_decl_info
//
// -----------------------------------
/**
\brief Extra information that may be attached to interpreted function decls.
*/
struct func_decl_info : public decl_info {
bool m_left_assoc:1;
bool m_right_assoc:1;
bool m_flat_associative:1;
bool m_commutative:1;
bool m_chainable:1;
bool m_pairwise:1;
bool m_injective:1;
bool m_idempotent:1;
bool m_skolem:1;
func_decl_info(family_id family_id = null_family_id, decl_kind k = null_decl_kind, unsigned num_parameters = 0, parameter const * parameters = 0);
~func_decl_info() {}
bool is_associative() const { return m_left_assoc && m_right_assoc; }
bool is_left_associative() const { return m_left_assoc; }
bool is_right_associative() const { return m_right_assoc; }
bool is_flat_associative() const { return m_flat_associative; }
bool is_commutative() const { return m_commutative; }
bool is_chainable() const { return m_chainable; }
bool is_pairwise() const { return m_pairwise; }
bool is_injective() const { return m_injective; }
bool is_idempotent() const { return m_idempotent; }
bool is_skolem() const { return m_skolem; }
void set_associative(bool flag = true) { m_left_assoc = flag; m_right_assoc = flag; }
void set_left_associative(bool flag = true) { m_left_assoc = flag; }
void set_right_associative(bool flag = true) { m_right_assoc = flag; }
void set_flat_associative(bool flag = true) { m_flat_associative = flag; }
void set_commutative(bool flag = true) { m_commutative = flag; }
void set_chainable(bool flag = true) { m_chainable = flag; }
void set_pairwise(bool flag = true) { m_pairwise = flag; }
void set_injective(bool flag = true) { m_injective = flag; }
void set_idempotent(bool flag = true) { m_idempotent = flag; }
void set_skolem(bool flag = true) { m_skolem = flag; }
bool operator==(func_decl_info const & info) const;
// Return true if the func_decl_info is equivalent to the null one (i.e., it does not contain any useful info).
bool is_null() const {
return
get_family_id() == null_family_id && !is_left_associative() && !is_right_associative() && !is_commutative() &&
!is_chainable() && !is_pairwise() && !is_injective() && !is_idempotent() && !is_skolem();
}
};
std::ostream & operator<<(std::ostream & out, func_decl_info const & info);
// -----------------------------------
//
// ast
//
// -----------------------------------
typedef enum { AST_APP, AST_VAR, AST_QUANTIFIER, AST_SORT, AST_FUNC_DECL } ast_kind;
char const * get_ast_kind_name(ast_kind k);
class shared_occs_mark;
class ast {
protected:
friend class ast_manager;
unsigned m_id;
unsigned m_kind:16;
// Warning: the marks should be used carefully, since they are shared.
unsigned m_mark1:1;
unsigned m_mark2:1;
// Private mark used by shared_occs functor
// Motivation for this field:
// - A mark cannot be used by more than one owner.
// So, it is only safe to use mark by "self-contained" code.
// They should be viewed as temporary information.
// - The functor shared_occs is used by some AST pretty printers.
// - So, a code that uses marks could not use the pretty printer if
// shared_occs used one of the public marks.
// - This was a constant source of assertion violations.
unsigned m_mark_shared_occs:1;
friend class shared_occs_mark;
void mark_so(bool flag) { m_mark_shared_occs = flag; }
void reset_mark_so() { m_mark_shared_occs = false; }
bool is_marked_so() const { return m_mark_shared_occs; }
unsigned m_ref_count;
unsigned m_hash;
#ifdef Z3DEBUG
// In debug mode, we store who is the owner of the mark.
void * m_mark1_owner;
void * m_mark2_owner;
#endif
void inc_ref() {
SASSERT(m_ref_count < UINT_MAX);
m_ref_count ++;
}
void dec_ref() {
SASSERT(m_ref_count > 0);
m_ref_count --;
}
ast(ast_kind k):m_id(UINT_MAX), m_kind(k), m_mark1(false), m_mark2(false), m_mark_shared_occs(false), m_ref_count(0) {
DEBUG_CODE({
m_mark1_owner = 0;
m_mark2_owner = 0;
});
}
public:
unsigned get_id() const { return m_id; }
unsigned get_ref_count() const { return m_ref_count; }
ast_kind get_kind() const { return static_cast<ast_kind>(m_kind); }
unsigned hash() const { return m_hash; }
#ifdef Z3DEBUG
void mark1(bool flag, void * owner) { SASSERT(m_mark1_owner == 0 || m_mark1_owner == owner); m_mark1 = flag; m_mark1_owner = owner; }
void mark2(bool flag, void * owner) { SASSERT(m_mark2_owner == 0 || m_mark2_owner == owner); m_mark2 = flag; m_mark2_owner = owner; }
void reset_mark1(void * owner) { SASSERT(m_mark1_owner == 0 || m_mark1_owner == owner); m_mark1 = false; m_mark1_owner = 0; }
void reset_mark2(void * owner) { SASSERT(m_mark2_owner == 0 || m_mark2_owner == owner); m_mark2 = false; m_mark2_owner = 0; }
bool is_marked1(void * owner) const { SASSERT(m_mark1_owner == 0 || m_mark1_owner == owner); return m_mark1; }
bool is_marked2(void * owner) const { SASSERT(m_mark2_owner == 0 || m_mark2_owner == owner); return m_mark2; }
#define AST_MARK1(A,F,O) A->mark1(F, O)
#define AST_MARK2(A,F,O) A->mark2(F, O)
#define AST_RESET_MARK1(A,O) A->reset_mark1(O)
#define AST_RESET_MARK2(A,O) A->reset_mark2(O)
#define AST_IS_MARKED1(A,O) A->is_marked1(O)
#define AST_IS_MARKED2(A,O) A->is_marked2(O)
#else
void mark1(bool flag) { m_mark1 = flag; }
void mark2(bool flag) { m_mark2 = flag; }
void reset_mark1() { m_mark1 = false; }
void reset_mark2() { m_mark2 = false; }
bool is_marked1() const { return m_mark1; }
bool is_marked2() const { return m_mark2; }
#define AST_MARK1(A,F,O) A->mark1(F)
#define AST_MARK2(A,F,O) A->mark2(F)
#define AST_RESET_MARK1(A,O) A->reset_mark1()
#define AST_RESET_MARK2(A,O) A->reset_mark2()
#define AST_IS_MARKED1(A,O) A->is_marked1()
#define AST_IS_MARKED2(A,O) A->is_marked2()
#endif
};
#define MATCH_TERNARY(_MATCHER_) \
bool _MATCHER_(expr const* n, expr*& a1, expr*& a2, expr *& a3) const { \
if (_MATCHER_(n) && to_app(n)->get_num_args() == 3) { \
a1 = to_app(n)->get_arg(0); a2 = to_app(n)->get_arg(1); a3 = to_app(n)->get_arg(2); return true; } \
return false; \
}
#define MATCH_BINARY(_MATCHER_) \
bool _MATCHER_(expr const* n, expr*& s, expr*& t) const { \
if (_MATCHER_(n) && to_app(n)->get_num_args() == 2) { s = to_app(n)->get_arg(0); t = to_app(n)->get_arg(1); return true; } \
return false; \
}
#define MATCH_UNARY(_MATCHER_) \
bool _MATCHER_(expr const* n, expr*& s) const { \
if (_MATCHER_(n) && to_app(n)->get_num_args() == 1) { s = to_app(n)->get_arg(0); return true; } \
return false; \
}
// -----------------------------------
//
// decl
//
// -----------------------------------
/**
The ids of expressions and declarations are in different ranges.
*/
const unsigned c_first_decl_id = (1u << 31u);
/**
\brief Superclass for function declarations and sorts.
*/
class decl : public ast {
protected:
friend class ast_manager;
symbol m_name;
decl_info * m_info;
decl(ast_kind k, symbol const & name, decl_info * info):ast(k), m_name(name), m_info(info) {}
public:
unsigned get_decl_id() const { SASSERT(get_id() >= c_first_decl_id); return get_id() - c_first_decl_id; }
symbol const & get_name() const { return m_name; }
decl_info * get_info() const { return m_info; }
family_id get_family_id() const { return m_info == 0 ? null_family_id : m_info->get_family_id(); }
decl_kind get_decl_kind() const { return m_info == 0 ? null_decl_kind : m_info->get_decl_kind(); }
unsigned get_num_parameters() const { return m_info == 0 ? 0 : m_info->get_num_parameters(); }
parameter const & get_parameter(unsigned idx) const { return m_info->get_parameter(idx); }
parameter const * get_parameters() const { return m_info == 0 ? 0 : m_info->get_parameters(); }
bool private_parameters() const { return m_info != 0 && m_info->private_parameters(); }
};
// -----------------------------------
//
// sort
//
// -----------------------------------
class sort : public decl {
friend class ast_manager;
static unsigned get_obj_size() { return sizeof(sort); }
sort(symbol const & name, sort_info * info):decl(AST_SORT, name, info) {}
public:
sort_info * get_info() const { return static_cast<sort_info*>(m_info); }
bool is_infinite() const { return get_info() == 0 || get_info()->is_infinite(); }
bool is_very_big() const { return get_info() == 0 || get_info()->is_very_big(); }
bool is_sort_of(family_id fid, decl_kind k) const { return get_family_id() == fid && get_decl_kind() == k; }
sort_size const & get_num_elements() const { return get_info()->get_num_elements(); }
unsigned get_size() const { return get_obj_size(); }
};
// -----------------------------------
//
// func_decl
//
// -----------------------------------
class func_decl : public decl {
friend class ast_manager;
unsigned m_arity;
sort * m_range;
sort * m_domain[0];
static unsigned get_obj_size(unsigned arity) { return sizeof(func_decl) + arity * sizeof(sort *); }
func_decl(symbol const & name, unsigned arity, sort * const * domain, sort * range, func_decl_info * info);
public:
func_decl_info * get_info() const { return static_cast<func_decl_info*>(m_info); }
bool is_associative() const { return get_info() != 0 && get_info()->is_associative(); }
bool is_left_associative() const { return get_info() != 0 && get_info()->is_left_associative(); }
bool is_right_associative() const { return get_info() != 0 && get_info()->is_right_associative(); }
bool is_flat_associative() const { return get_info() != 0 && get_info()->is_flat_associative(); }
bool is_commutative() const { return get_info() != 0 && get_info()->is_commutative(); }
bool is_chainable() const { return get_info() != 0 && get_info()->is_chainable(); }
bool is_pairwise() const { return get_info() != 0 && get_info()->is_pairwise(); }
bool is_injective() const { return get_info() != 0 && get_info()->is_injective(); }
bool is_skolem() const { return get_info() != 0 && get_info()->is_skolem(); }
bool is_idempotent() const { return get_info() != 0 && get_info()->is_idempotent(); }
unsigned get_arity() const { return m_arity; }
sort * get_domain(unsigned idx) const { SASSERT(idx < get_arity()); return m_domain[idx]; }
sort * const * get_domain() const { return m_domain; }
sort * get_range() const { return m_range; }
unsigned get_size() const { return get_obj_size(m_arity); }
};
// -----------------------------------
//
// expression
//
// -----------------------------------
/**
\brief Superclass for applications, variables and quantifiers.
*/
class expr : public ast {
protected:
friend class ast_manager;
expr(ast_kind k):ast(k) {}
public:
};
// -----------------------------------
//
// application
//
// -----------------------------------
#define APP_DEPTH_NUM_BITS 16
const unsigned c_max_depth = ((1 << APP_DEPTH_NUM_BITS) - 1);
struct app_flags {
unsigned m_depth:APP_DEPTH_NUM_BITS; // if app is to deep, it doesn't matter.
unsigned m_ground:1; // application does not have free variables or nested quantifiers.
unsigned m_has_quantifiers:1; // application has nested quantifiers.
unsigned m_has_labels:1; // application has nested labels.
};
class app : public expr {
friend class ast_manager;
func_decl * m_decl;
unsigned m_num_args;
expr * m_args[0];
static app_flags g_constant_flags;
// remark: store term depth in the end of the app. the depth is only stored if the num_args > 0
static unsigned get_obj_size(unsigned num_args) {
return num_args == 0 ? sizeof(app) : sizeof(app) + num_args * sizeof(expr *) + sizeof(app_flags);
}
friend class tmp_app;
app_flags * flags() const { return m_num_args == 0 ? &g_constant_flags : reinterpret_cast<app_flags*>(const_cast<expr**>(m_args + m_num_args)); }
app(func_decl * decl, unsigned num_args, expr * const * args);
public:
func_decl * get_decl() const { return m_decl; }
family_id get_family_id() const { return get_decl()->get_family_id(); }
decl_kind get_decl_kind() const { return get_decl()->get_decl_kind(); }
bool is_app_of(family_id fid, decl_kind k) const { return get_family_id() == fid && get_decl_kind() == k; }
unsigned get_num_args() const { return m_num_args; }
expr * get_arg(unsigned idx) const { SASSERT(idx < m_num_args); return m_args[idx]; }
expr * const * get_args() const { return m_args; }
unsigned get_size() const { return get_obj_size(get_num_args()); }
expr * const * begin() const { return m_args; }
expr * const * end() const { return m_args + m_num_args; }
unsigned get_depth() const { return flags()->m_depth; }
bool is_ground() const { return flags()->m_ground; }
bool has_quantifiers() const { return flags()->m_has_quantifiers; }
bool has_labels() const { return flags()->m_has_labels; }
};
// -----------------------------------
//
// temporary application: little hack to avoid
// the creation of temporary expressions to just
// check the presence of the expression in
// some container/index.
//
// -----------------------------------
class tmp_app {
unsigned m_num_args;
char * m_data;
public:
tmp_app(unsigned num_args):
m_num_args(num_args) {
unsigned sz = app::get_obj_size(num_args);
m_data = alloc_svect(char, sz);
memset(m_data, 0, sz);
get_app()->m_num_args = m_num_args;
}
~tmp_app() {
dealloc_svect(m_data);
}
app * get_app() {
return reinterpret_cast<app*>(m_data);
}
expr ** get_args() {
return get_app()->m_args;
}
void set_decl(func_decl * d) {
get_app()->m_decl = d;
}
void set_num_args(unsigned num_args) {
get_app()->m_num_args = num_args;
}
void set_arg(unsigned idx, expr * arg) {
get_args()[idx] = arg;
SASSERT(get_app()->get_arg(idx) == arg);
}
void copy(app * source) {
SASSERT(source->get_num_args() <= m_num_args);
new (m_data) app(source->get_decl(), source->get_num_args(), source->get_args());
SASSERT(get_app()->get_decl() == source->get_decl());
SASSERT(get_app()->get_arg(0) == source->get_arg(0));
SASSERT(get_app()->get_arg(1) == source->get_arg(1));
}
void copy_swapping_args(app * source) {
SASSERT(source->get_num_args() == 2 && m_num_args >= 2);
expr * args[2] = { source->get_arg(1), source->get_arg(0) };
new (m_data) app(source->get_decl(), 2, args);
SASSERT(get_app()->get_decl() == source->get_decl());
SASSERT(get_app()->get_arg(0) == source->get_arg(1));
SASSERT(get_app()->get_arg(1) == source->get_arg(0));
}
};
// -----------------------------------
//
// variables
//
// -----------------------------------
class var : public expr {
friend class ast_manager;
unsigned m_idx;
sort * m_sort;
static unsigned get_obj_size() { return sizeof(var); }
var(unsigned idx, sort * s):expr(AST_VAR), m_idx(idx), m_sort(s) {}
public:
unsigned get_idx() const { return m_idx; }
sort * get_sort() const { return m_sort; }
unsigned get_size() const { return get_obj_size(); }
};
// -----------------------------------
//
// quantifier
//
// -----------------------------------
class quantifier : public expr {
friend class ast_manager;
bool m_forall;
unsigned m_num_decls;
expr * m_expr;
unsigned m_depth;
// extra fields
int m_weight;
bool m_has_unused_vars;
bool m_has_labels;
symbol m_qid;
symbol m_skid;
unsigned m_num_patterns;
unsigned m_num_no_patterns;
char m_patterns_decls[0];
static unsigned get_obj_size(unsigned num_decls, unsigned num_patterns, unsigned num_no_patterns) {
return sizeof(quantifier) + num_decls * (sizeof(sort *) + sizeof(symbol)) + (num_patterns + num_no_patterns) * sizeof(expr*);
}
quantifier(bool forall, unsigned num_decls, sort * const * decl_sorts, symbol const * decl_names, expr * body,
int weight, symbol const & qid, symbol const & skid, unsigned num_patterns, expr * const * patterns,
unsigned num_no_patterns, expr * const * no_patterns);
public:
bool is_forall() const { return m_forall; }
bool is_exists() const { return !m_forall; }
unsigned get_num_decls() const { return m_num_decls; }
sort * const * get_decl_sorts() const { return reinterpret_cast<sort * const *>(m_patterns_decls); }
symbol const * get_decl_names() const { return reinterpret_cast<symbol const *>(get_decl_sorts() + m_num_decls); }
sort * get_decl_sort(unsigned idx) const { return get_decl_sorts()[idx]; }
symbol const & get_decl_name(unsigned idx) const { return get_decl_names()[idx]; }
expr * get_expr() const { return m_expr; }
unsigned get_depth() const { return m_depth; }
int get_weight() const { return m_weight; }
symbol const & get_qid() const { return m_qid; }
symbol const & get_skid() const { return m_skid; }
unsigned get_num_patterns() const { return m_num_patterns; }
expr * const * get_patterns() const { return reinterpret_cast<expr * const *>(get_decl_names() + m_num_decls); }
expr * get_pattern(unsigned idx) const { return get_patterns()[idx]; }
unsigned get_num_no_patterns() const { return m_num_no_patterns; }
expr * const * get_no_patterns() const { return reinterpret_cast<expr * const *>(get_decl_names() + m_num_decls); }
expr * get_no_pattern(unsigned idx) const { return get_no_patterns()[idx]; }
bool has_patterns() const { return m_num_patterns > 0 || m_num_no_patterns > 0; }
unsigned get_size() const { return get_obj_size(m_num_decls, m_num_patterns, m_num_no_patterns); }
bool may_have_unused_vars() const { return m_has_unused_vars; }
void set_no_unused_vars() { m_has_unused_vars = false; }
bool has_labels() const { return m_has_labels; }
unsigned get_num_children() const { return 1 + get_num_patterns() + get_num_no_patterns(); }
expr * get_child(unsigned idx) const {
SASSERT(idx < get_num_children());
if (idx == 0)
return get_expr();
else if (idx <= get_num_patterns())
return get_pattern(idx - 1);
else
return get_no_pattern(idx - get_num_patterns() - 1);
}
};
// -----------------------------------
//
// AST recognisers
//
// -----------------------------------
inline bool is_decl(ast const * n) { ast_kind k = n->get_kind(); return k == AST_FUNC_DECL || k == AST_SORT; }
inline bool is_sort(ast const * n) { return n->get_kind() == AST_SORT; }
inline bool is_func_decl(ast const * n) { return n->get_kind() == AST_FUNC_DECL; }
inline bool is_expr(ast const * n) { return !is_decl(n); }
inline bool is_app(ast const * n) { return n->get_kind() == AST_APP; }
inline bool is_var(ast const * n) { return n->get_kind() == AST_VAR; }
inline bool is_var(ast const * n, unsigned& idx) { return is_var(n) && (idx = static_cast<var const*>(n)->get_idx(), true); }
inline bool is_quantifier(ast const * n) { return n->get_kind() == AST_QUANTIFIER; }
inline bool is_forall(ast const * n) { return is_quantifier(n) && static_cast<quantifier const *>(n)->is_forall(); }
inline bool is_exists(ast const * n) { return is_quantifier(n) && static_cast<quantifier const *>(n)->is_exists(); }
// -----------------------------------
//
// AST coercions
//
// -----------------------------------
inline decl * to_decl(ast * n) { SASSERT(is_decl(n)); return static_cast<decl *>(n); }
inline sort * to_sort(ast * n) { SASSERT(is_sort(n)); return static_cast<sort *>(n); }
inline func_decl * to_func_decl(ast * n) { SASSERT(is_func_decl(n)); return static_cast<func_decl *>(n); }
inline expr * to_expr(ast * n) { SASSERT(is_expr(n)); return static_cast<expr *>(n); }
inline app * to_app(ast * n) { SASSERT(is_app(n)); return static_cast<app *>(n); }
inline var * to_var(ast * n) { SASSERT(is_var(n)); return static_cast<var *>(n); }
inline quantifier * to_quantifier(ast * n) { SASSERT(is_quantifier(n)); return static_cast<quantifier *>(n); }
inline decl const * to_decl(ast const * n) { SASSERT(is_decl(n)); return static_cast<decl const *>(n); }
inline sort const * to_sort(ast const * n) { SASSERT(is_sort(n)); return static_cast<sort const *>(n); }
inline func_decl const * to_func_decl(ast const * n) { SASSERT(is_func_decl(n)); return static_cast<func_decl const *>(n); }
inline expr const * to_expr(ast const * n) { SASSERT(is_expr(n)); return static_cast<expr const *>(n); }
inline app const * to_app(ast const * n) { SASSERT(is_app(n)); return static_cast<app const *>(n); }
inline var const * to_var(ast const * n) { SASSERT(is_var(n)); return static_cast<var const *>(n); }
inline quantifier const * to_quantifier(ast const * n) { SASSERT(is_quantifier(n)); return static_cast<quantifier const *>(n); }
// -----------------------------------
//
// AST hash-consing
//
// -----------------------------------
unsigned get_node_hash(ast const * n);
bool compare_nodes(ast const * n1, ast const * n2);
unsigned get_node_size(ast const * n);
unsigned get_asts_hash(unsigned sz, ast * const* ns, unsigned init);
unsigned get_apps_hash(unsigned sz, app * const* ns, unsigned init);
unsigned get_exprs_hash(unsigned sz, expr * const* ns, unsigned init);
unsigned get_sorts_hash(unsigned sz, sort * const* ns, unsigned init);
unsigned get_decl_hash(unsigned sz, func_decl* const* ns, unsigned init);
// This is the internal comparison functor for hash-consing AST nodes.
struct ast_eq_proc {
bool operator()(ast const * n1, ast const * n2) const {
return n1->hash() == n2->hash() && compare_nodes(n1, n2);
}
};
class ast_table : public chashtable<ast*, obj_ptr_hash<ast>, ast_eq_proc> {
public:
void erase(ast * n);
};
// -----------------------------------
//
// decl_plugin
//
// -----------------------------------
/**
\brief Auxiliary data-structure used to initialize the parser symbol tables.
*/
struct builtin_name {
decl_kind m_kind;
symbol m_name;
builtin_name(char const * name, decl_kind k) : m_kind(k), m_name(name) {}
};
/**
\brief Each family of intepreted function declarations and sorts must provide a plugin
to build sorts and decls of the family.
*/
class decl_plugin {
protected:
ast_manager * m_manager;
family_id m_family_id;
virtual void set_manager(ast_manager * m, family_id id) {
SASSERT(m_manager == 0);
m_manager = m;
m_family_id = id;
}
friend class ast_manager;
public:
decl_plugin():m_manager(0), m_family_id(null_family_id) {}
virtual ~decl_plugin() {}
virtual void finalize() {}
virtual decl_plugin * mk_fresh() = 0;
family_id get_family_id() const { return m_family_id; }
virtual sort * mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) = 0;
virtual func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range) = 0;
virtual func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const* parameters,
unsigned num_args, expr * const * args, sort * range);
/**
\brief Return true if the plugin can decide whether two
interpreted constants are equal or not.
For all a, b:
If is_value(a) and is_value(b)
Then,
are_equal(a, b) != are_distinct(a, b)
The may be much more expensive than checking a pointer.
We need this because some plugin values are too expensive too canonize.
*/
virtual bool is_value(app * a) const { return false; }
/**
\brief Return true if \c a is a unique plugin value.
The following property should hold for unique theory values:
For all a, b:
If is_unique_value(a) and is_unique_value(b)
Then,
a == b (pointer equality)
IFF
the interpretations of these theory terms are equal.
\remark This is a stronger version of is_value.
*/
virtual bool is_unique_value(app * a) const { return false; }
virtual bool are_equal(app * a, app * b) const { return a == b; }
virtual bool are_distinct(app * a, app * b) const { return a != b && is_unique_value(a) && is_unique_value(b); }
virtual void get_op_names(svector<builtin_name> & op_names, symbol const & logic = symbol()) {}
virtual void get_sort_names(svector<builtin_name> & sort_names, symbol const & logic = symbol()) {}
virtual expr * get_some_value(sort * s) { return 0; }
// Return true if the interpreted sort s does not depend on uninterpreted sorts.
// This may be the case, for example, for array and datatype sorts.
virtual bool is_fully_interp(sort const * s) const { return true; }
// Event handlers for deleting/translating PARAM_EXTERNAL
virtual void del(parameter const & p) {}
virtual parameter translate(parameter const & p, decl_plugin & target) { UNREACHABLE(); return p; }
virtual bool is_considered_uninterpreted(func_decl * f) { return false; }
};
// -----------------------------------
//
// basic_decl_plugin (i.e., builtin plugin)
//
// -----------------------------------
enum basic_sort_kind {
BOOL_SORT,
PROOF_SORT
};
enum basic_op_kind {
OP_TRUE, OP_FALSE, OP_EQ, OP_DISTINCT, OP_ITE, OP_AND, OP_OR, OP_IFF, OP_XOR, OP_NOT, OP_IMPLIES, OP_OEQ, OP_INTERP, LAST_BASIC_OP,
PR_UNDEF, PR_TRUE, PR_ASSERTED, PR_GOAL, PR_MODUS_PONENS, PR_REFLEXIVITY, PR_SYMMETRY, PR_TRANSITIVITY, PR_TRANSITIVITY_STAR, PR_MONOTONICITY, PR_QUANT_INTRO,
PR_DISTRIBUTIVITY, PR_AND_ELIM, PR_NOT_OR_ELIM, PR_REWRITE, PR_REWRITE_STAR, PR_PULL_QUANT,
PR_PULL_QUANT_STAR, PR_PUSH_QUANT, PR_ELIM_UNUSED_VARS, PR_DER, PR_QUANT_INST,
PR_HYPOTHESIS, PR_LEMMA, PR_UNIT_RESOLUTION, PR_IFF_TRUE, PR_IFF_FALSE, PR_COMMUTATIVITY, PR_DEF_AXIOM,
PR_DEF_INTRO, PR_APPLY_DEF, PR_IFF_OEQ, PR_NNF_POS, PR_NNF_NEG, PR_NNF_STAR, PR_SKOLEMIZE, PR_CNF_STAR,
PR_MODUS_PONENS_OEQ, PR_TH_LEMMA, PR_HYPER_RESOLVE, LAST_BASIC_PR
};
class basic_decl_plugin : public decl_plugin {
protected:
sort * m_bool_sort;
func_decl * m_true_decl;
func_decl * m_false_decl;
func_decl * m_and_decl;
func_decl * m_or_decl;
func_decl * m_iff_decl;
func_decl * m_xor_decl;
func_decl * m_not_decl;
func_decl * m_interp_decl;
func_decl * m_implies_decl;
ptr_vector<func_decl> m_eq_decls; // cached eqs
ptr_vector<func_decl> m_ite_decls; // cached ites
ptr_vector<func_decl> m_oeq_decls; // cached obsevational eqs
sort * m_proof_sort;
func_decl * m_undef_decl;
func_decl * m_true_pr_decl;
func_decl * m_asserted_decl;
func_decl * m_goal_decl;
func_decl * m_modus_ponens_decl;
func_decl * m_reflexivity_decl;
func_decl * m_symmetry_decl;
func_decl * m_transitivity_decl;
func_decl * m_quant_intro_decl;
func_decl * m_and_elim_decl;
func_decl * m_not_or_elim_decl;
func_decl * m_rewrite_decl;
func_decl * m_pull_quant_decl;
func_decl * m_pull_quant_star_decl;
func_decl * m_push_quant_decl;
func_decl * m_elim_unused_vars_decl;
func_decl * m_der_decl;
func_decl * m_quant_inst_decl;
ptr_vector<func_decl> m_monotonicity_decls;
ptr_vector<func_decl> m_transitivity_star_decls;
ptr_vector<func_decl> m_distributivity_decls;
ptr_vector<func_decl> m_assoc_flat_decls;
ptr_vector<func_decl> m_rewrite_star_decls;
func_decl * m_hypothesis_decl;
func_decl * m_iff_true_decl;
func_decl * m_iff_false_decl;
func_decl * m_commutativity_decl;
func_decl * m_def_axiom_decl;
func_decl * m_lemma_decl;
ptr_vector<func_decl> m_unit_resolution_decls;
func_decl * m_def_intro_decl;
func_decl * m_iff_oeq_decl;
func_decl * m_skolemize_decl;
func_decl * m_mp_oeq_decl;
ptr_vector<func_decl> m_apply_def_decls;
ptr_vector<func_decl> m_nnf_pos_decls;
ptr_vector<func_decl> m_nnf_neg_decls;
ptr_vector<func_decl> m_nnf_star_decls;
ptr_vector<func_decl> m_cnf_star_decls;
ptr_vector<func_decl> m_th_lemma_decls;
func_decl * m_hyper_res_decl0;
static bool is_proof(decl_kind k) { return k > LAST_BASIC_OP; }
bool check_proof_sorts(basic_op_kind k, unsigned arity, sort * const * domain) const;
bool check_proof_args(basic_op_kind k, unsigned num_args, expr * const * args) const;
func_decl * mk_bool_op_decl(char const * name, basic_op_kind k, unsigned num_args = 0,
bool asooc = false, bool comm = false, bool idempotent = false, bool flat_associative = false, bool chainable = false);
func_decl * mk_implies_decl();
func_decl * mk_proof_decl(char const * name, basic_op_kind k, unsigned num_parents);
func_decl * mk_proof_decl(char const * name, basic_op_kind k, unsigned num_parents, func_decl*& fn);
func_decl * mk_proof_decl(char const * name, basic_op_kind k, unsigned num_parents, ptr_vector<func_decl> & cache);
func_decl * mk_compressed_proof_decl(char const * name, basic_op_kind k, unsigned num_parents);
func_decl * mk_proof_decl(basic_op_kind k, unsigned num_parents);
func_decl * mk_proof_decl(basic_op_kind k, unsigned num_parameters, parameter const* params, unsigned num_parents);
func_decl * mk_proof_decl(
char const * name, basic_op_kind k,
unsigned num_parameters, parameter const* params, unsigned num_parents);
virtual void set_manager(ast_manager * m, family_id id);
func_decl * mk_eq_decl_core(char const * name, decl_kind k, sort * s, ptr_vector<func_decl> & cache);
func_decl * mk_ite_decl(sort * s);
sort* join(sort* s1, sort* s2);
sort* join(unsigned n, sort*const* srts);
sort* join(unsigned n, expr*const* es);
public:
basic_decl_plugin();
virtual ~basic_decl_plugin() {}
virtual void finalize();
virtual decl_plugin * mk_fresh() {
return alloc(basic_decl_plugin);
}
virtual sort * mk_sort(decl_kind k, unsigned num_parameters, parameter const* parameters);
virtual func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range);
virtual func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned num_args, expr * const * args, sort * range);
virtual void get_op_names(svector<builtin_name> & op_names, symbol const & logic);
virtual void get_sort_names(svector<builtin_name> & sort_names, symbol const & logic);
virtual bool is_value(app* a) const;
virtual bool is_unique_value(app* a) const;
sort * mk_bool_sort() const { return m_bool_sort; }
sort * mk_proof_sort() const { return m_proof_sort; }
virtual expr * get_some_value(sort * s);
};
typedef app proof; /* a proof is just an applicaton */
// -----------------------------------
//
// label_decl_plugin
//
// -----------------------------------
enum label_op_kind {
OP_LABEL,
OP_LABEL_LIT
};
/**
\brief Labels are identity functions used to mark sub-expressions.
*/
class label_decl_plugin : public decl_plugin {
symbol m_lblpos;
symbol m_lblneg;
symbol m_lbllit;
virtual void set_manager(ast_manager * m, family_id id);
public:
label_decl_plugin();
virtual ~label_decl_plugin();
virtual decl_plugin * mk_fresh() { return alloc(label_decl_plugin); }
virtual sort * mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters);
/**
contract: when label
parameter[0] (int): 0 - if the label is negative, 1 - if positive.
parameter[1] (symbol): label's tag.
...
parameter[n-1] (symbol): label's tag.
contract: when label literal (they are always positive)
parameter[0] (symbol): label's tag
...
parameter[n-1] (symbol): label's tag.
*/
virtual func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range);
};
// -----------------------------------
//
// pattern_decl_plugin
//
// -----------------------------------
enum pattern_op_kind {
OP_PATTERN
};
/**
\brief Patterns are used to group expressions. These expressions are using during E-matching for
heurisitic quantifier instantiation.
*/
class pattern_decl_plugin : public decl_plugin {
public:
virtual decl_plugin * mk_fresh() { return alloc(pattern_decl_plugin); }
virtual sort * mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters);
virtual func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range);
};
// -----------------------------------
//
// model_value_plugin
//
// -----------------------------------
enum model_value_op_kind {
OP_MODEL_VALUE
};
/**
\brief Values are used during model construction. All values are
assumed to be different. Users should not use them, since they may
introduce unsoundess if the sort of a value is finite.
Moreover, values should never be internalized in a logical context.
However, values can be used during evaluation (i.e., simplification).
\remark Model values can be viewed as the partion ids in Z3 1.x.
*/
class model_value_decl_plugin : public decl_plugin {
public:
model_value_decl_plugin() {}
virtual decl_plugin * mk_fresh() { return alloc(model_value_decl_plugin); }
virtual sort * mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters);
/**
contract:
parameter[0]: (integer) value idx
parameter[1]: (ast) sort of the value.
*/
virtual func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range);
virtual bool is_value(app* n) const;
virtual bool is_unique_value(app* a) const;
};
// -----------------------------------
//
// user_sort_plugin for supporting user declared sorts in SMT2
//
// -----------------------------------
class user_sort_plugin : public decl_plugin {
svector<symbol> m_sort_names;
dictionary<int> m_name2decl_kind;
public:
user_sort_plugin() {}
virtual sort * mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters);
virtual func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range);
decl_kind register_name(symbol s);
virtual decl_plugin * mk_fresh();
};
// -----------------------------------
//
// Auxiliary functions
//
// -----------------------------------
// Return true if n is an application of d.
inline bool is_app_of(expr const * n, func_decl const * d) { return n->get_kind() == AST_APP && to_app(n)->get_decl() == d; }
inline bool is_app_of(expr const * n, family_id fid, decl_kind k) { return n->get_kind() == AST_APP && to_app(n)->is_app_of(fid, k); }
inline bool is_sort_of(sort const * s, family_id fid, decl_kind k) { return s->is_sort_of(fid, k); }
inline bool is_uninterp_const(expr const * n) { return n->get_kind() == AST_APP && to_app(n)->get_num_args() == 0 && to_app(n)->get_family_id() == null_family_id; }
inline bool is_uninterp(expr const * n) { return n->get_kind() == AST_APP && to_app(n)->get_family_id() == null_family_id; }
inline bool is_decl_of(func_decl const * d, family_id fid, decl_kind k) { return d->get_family_id() == fid && d->get_decl_kind() == k; }
inline bool is_ground(expr const * n) { return is_app(n) && to_app(n)->is_ground(); }
inline bool is_non_ground(expr const * n) { return ( ! is_ground(n)); }
inline unsigned get_depth(expr const * n) {
if (is_app(n)) return to_app(n)->get_depth();
else if (is_quantifier(n)) return to_quantifier(n)->get_depth();
else return 1;
}
inline bool has_quantifiers(expr const * n) {
return is_app(n) ? to_app(n)->has_quantifiers() : is_quantifier(n);
}
inline bool has_labels(expr const * n) {
if (is_app(n)) return to_app(n)->has_labels();
else if (is_quantifier(n)) return to_quantifier(n)->has_labels();
else return false;
}
sort * get_sort(expr const * n);
class basic_recognizers {
family_id m_fid;
public:
basic_recognizers(family_id fid):m_fid(fid) {}
bool is_bool(sort const * s) const { return is_sort_of(s, m_fid, BOOL_SORT); }
bool is_bool(expr const * n) const { return is_bool(get_sort(n)); }
bool is_or(expr const * n) const { return is_app_of(n, m_fid, OP_OR); }
bool is_implies(expr const * n) const { return is_app_of(n, m_fid, OP_IMPLIES); }
bool is_and(expr const * n) const { return is_app_of(n, m_fid, OP_AND); }
bool is_not(expr const * n) const { return is_app_of(n, m_fid, OP_NOT); }
bool is_eq(expr const * n) const { return is_app_of(n, m_fid, OP_EQ); }
bool is_oeq(expr const * n) const { return is_app_of(n, m_fid, OP_OEQ); }
bool is_distinct(expr const * n) const { return is_app_of(n, m_fid, OP_DISTINCT); }
bool is_iff(expr const * n) const { return is_app_of(n, m_fid, OP_IFF); }
bool is_xor(expr const * n) const { return is_app_of(n, m_fid, OP_XOR); }
bool is_ite(expr const * n) const { return is_app_of(n, m_fid, OP_ITE); }
bool is_term_ite(expr const * n) const { return is_ite(n) && !is_bool(n); }
bool is_true(expr const * n) const { return is_app_of(n, m_fid, OP_TRUE); }
bool is_false(expr const * n) const { return is_app_of(n, m_fid, OP_FALSE); }
bool is_complement_core(expr const * n1, expr const * n2) const {
return (is_true(n1) && is_false(n2)) || (is_not(n1) && to_app(n1)->get_arg(0) == n2);
}
bool is_complement(expr const * n1, expr const * n2) const { return is_complement_core(n1, n2) || is_complement_core(n2, n1); }
bool is_or(func_decl const * d) const { return is_decl_of(d, m_fid, OP_OR); }
bool is_implies(func_decl const * d) const { return is_decl_of(d, m_fid, OP_IMPLIES); }
bool is_and(func_decl const * d) const { return is_decl_of(d, m_fid, OP_AND); }
bool is_not(func_decl const * d) const { return is_decl_of(d, m_fid, OP_NOT); }
bool is_eq(func_decl const * d) const { return is_decl_of(d, m_fid, OP_EQ); }
bool is_iff(func_decl const * d) const { return is_decl_of(d, m_fid, OP_IFF); }
bool is_xor(func_decl const * d) const { return is_decl_of(d, m_fid, OP_XOR); }
bool is_ite(func_decl const * d) const { return is_decl_of(d, m_fid, OP_ITE); }
bool is_term_ite(func_decl const * d) const { return is_ite(d) && !is_bool(d->get_range()); }
bool is_distinct(func_decl const * d) const { return is_decl_of(d, m_fid, OP_DISTINCT); }
MATCH_UNARY(is_not);
MATCH_BINARY(is_eq);
MATCH_BINARY(is_iff);
MATCH_BINARY(is_implies);
MATCH_BINARY(is_and);
MATCH_BINARY(is_or);
MATCH_BINARY(is_xor);
MATCH_TERNARY(is_and);
MATCH_TERNARY(is_or);
bool is_ite(expr const * n, expr * & t1, expr * & t2, expr * & t3) const;
};
// -----------------------------------
//
// Get Some Value functor
//
// Functor for returning some value
// of the given sort.
//
// -----------------------------------
class some_value_proc {
public:
virtual expr * operator()(sort * s) = 0;
};
// -----------------------------------
//
// Proof generation mode
//
// -----------------------------------
enum proof_gen_mode {
PGM_DISABLED,
PGM_COARSE,
PGM_FINE
};
// -----------------------------------
//
// ast_manager
//
// -----------------------------------
class ast_manager {
friend class basic_decl_plugin;
protected:
struct config {
typedef ast_manager value_manager;
typedef small_object_allocator allocator;
static const bool ref_count = true;
};
struct array_config : public config {
static const bool preserve_roots = true;
static const unsigned max_trail_sz = 16;
static const unsigned factor = 2;
};
struct expr_array_config : public array_config {
typedef expr * value;
};
typedef parray_manager<expr_array_config> expr_array_manager;
struct expr_dependency_config : public config {
typedef expr * value;
};
typedef dependency_manager<expr_dependency_config> expr_dependency_manager;
public:
typedef expr_array_manager::ref expr_array;
typedef expr_dependency_manager::dependency expr_dependency;
protected:
struct expr_dependency_array_config : public array_config {
typedef expr_dependency * value;
};
typedef parray_manager<expr_dependency_array_config> expr_dependency_array_manager;
public:
typedef expr_dependency_array_manager::ref expr_dependency_array;
void show_id_gen();
protected:
reslimit m_limit;
small_object_allocator m_alloc;
family_manager m_family_manager;
expr_array_manager m_expr_array_manager;
expr_dependency_manager m_expr_dependency_manager;
expr_dependency_array_manager m_expr_dependency_array_manager;
ptr_vector<decl_plugin> m_plugins;
proof_gen_mode m_proof_mode;
bool m_int_real_coercions; // If true, use hack that automatically introduces to_int/to_real when needed.
family_id m_basic_family_id;
family_id m_label_family_id;
family_id m_pattern_family_id;
family_id m_model_value_family_id;
family_id m_user_sort_family_id;
family_id m_arith_family_id;
ast_table m_ast_table;
id_gen m_expr_id_gen;
id_gen m_decl_id_gen;
sort * m_bool_sort;
sort * m_proof_sort;
app * m_true;
app * m_false;
proof * m_undef_proof;
unsigned m_fresh_id;
bool m_debug_ref_count;
u_map<unsigned> m_debug_free_indices;
std::fstream* m_trace_stream;
bool m_trace_stream_owner;
#ifdef Z3DEBUG
bool slow_not_contains(ast const * n);
#endif
ast_manager * m_format_manager; // hack for isolating format objects in a different manager.
symbol m_rec_fun;
void init();
bool coercion_needed(func_decl * decl, unsigned num_args, expr * const * args);
void check_args(func_decl* f, unsigned n, expr* const* es);
public:
ast_manager(proof_gen_mode = PGM_DISABLED, char const * trace_file = 0, bool is_format_manager = false);
ast_manager(proof_gen_mode, std::fstream * trace_stream, bool is_format_manager = false);
ast_manager(ast_manager const & src, bool disable_proofs = false);
~ast_manager();
// propagate cancellation signal to decl_plugins
bool has_trace_stream() const { return m_trace_stream != 0; }
std::ostream & trace_stream() { SASSERT(has_trace_stream()); return *m_trace_stream; }
void enable_int_real_coercions(bool f) { m_int_real_coercions = f; }
bool int_real_coercions() const { return m_int_real_coercions; }
// Return true if s1 and s2 are equal, or coercions are enabled, and s1 and s2 are compatible.
bool compatible_sorts(sort * s1, sort * s2) const;
// For debugging purposes
void display_free_ids(std::ostream & out) { m_expr_id_gen.display_free_ids(out); out << "\n"; m_decl_id_gen.display_free_ids(out); }
void compact_memory();
void compress_ids();
// Equivalent to throw ast_exception(msg)
void raise_exception(char const * msg);
bool is_format_manager() const { return m_format_manager == 0; }
ast_manager & get_format_manager() { return is_format_manager() ? *this : *m_format_manager; }
void copy_families_plugins(ast_manager const & from);
small_object_allocator & get_allocator() { return m_alloc; }
family_id mk_family_id(symbol const & s) { return m_family_manager.mk_family_id(s); }
family_id mk_family_id(char const * s) { return mk_family_id(symbol(s)); }
family_id get_family_id(symbol const & s) const { return m_family_manager.get_family_id(s); }
family_id get_family_id(char const * s) const { return get_family_id(symbol(s)); }
symbol const & get_family_name(family_id fid) const { return m_family_manager.get_name(fid); }
bool is_builtin_family_id(family_id fid) const {
return
fid == null_family_id ||
fid == m_basic_family_id ||
fid == m_label_family_id ||
fid == m_pattern_family_id ||
fid == m_model_value_family_id ||
fid == m_user_sort_family_id;
}
reslimit& limit() { return m_limit; }
bool canceled() { return !limit().inc(); }
void register_plugin(symbol const & s, decl_plugin * plugin);
void register_plugin(family_id id, decl_plugin * plugin);
decl_plugin * get_plugin(family_id fid) const;
bool has_plugin(family_id fid) const { return get_plugin(fid) != 0; }
bool has_plugin(symbol const & s) const { return m_family_manager.has_family(s) && has_plugin(m_family_manager.get_family_id(s)); }
void get_dom(svector<symbol> & dom) const { m_family_manager.get_dom(dom); }
void get_range(svector<family_id> & range) const { m_family_manager.get_range(range); }
family_id get_basic_family_id() const { return m_basic_family_id; }
basic_decl_plugin * get_basic_decl_plugin() const { return static_cast<basic_decl_plugin*>(get_plugin(m_basic_family_id)); }
family_id get_user_sort_family_id() const { return m_user_sort_family_id; }
user_sort_plugin * get_user_sort_plugin() const { return static_cast<user_sort_plugin*>(get_plugin(m_user_sort_family_id)); }
/**
\brief Debugging support method: set the next expression identifier to be the least value id' s.t.
- id' >= id
- id' is not used by any AST in m_table
- id' is not in the expression m_free_ids
This method should be only used to create small repros that exposes bugs in Z3.
*/
void set_next_expr_id(unsigned id);
bool is_value(expr * e) const;
bool is_unique_value(expr * e) const;
bool are_equal(expr * a, expr * b) const;
bool are_distinct(expr * a, expr * b) const;
bool contains(ast * a) const { return m_ast_table.contains(a); }
bool is_rec_fun_def(quantifier* q) const { return q->get_qid() == m_rec_fun; }
symbol const& rec_fun_qid() const { return m_rec_fun; }
unsigned get_num_asts() const { return m_ast_table.size(); }
void debug_ref_count() { m_debug_ref_count = true; }
void inc_ref(ast * n) {
if (n) {
n->inc_ref();
}
}
void dec_ref(ast* n) {
if (n) {
n->dec_ref();
if (n->get_ref_count() == 0)
delete_node(n);
}
}
template<typename T>
void inc_array_ref(unsigned sz, T * const * a) {
for(unsigned i = 0; i < sz; i++) {
inc_ref(a[i]);
}
}
template<typename T>
void dec_array_ref(unsigned sz, T * const * a) {
for(unsigned i = 0; i < sz; i++) {
dec_ref(a[i]);
}
}
static unsigned get_node_size(ast const * n);
size_t get_allocation_size() const {
return m_alloc.get_allocation_size();
}
protected:
ast * register_node_core(ast * n);
template<typename T>
T * register_node(T * n) {
return static_cast<T *>(register_node_core(n));
}
void delete_node(ast * n);
void * allocate_node(unsigned size) {
return m_alloc.allocate(size);
}
void deallocate_node(ast * n, unsigned sz) {
m_alloc.deallocate(sz, n);
}
public:
sort * get_sort(expr const * n) const { return ::get_sort(n); }
void check_sort(func_decl const * decl, unsigned num_args, expr * const * args) const;
void check_sorts_core(ast const * n) const;
bool check_sorts(ast const * n) const;
bool is_bool(expr const * n) const;
bool is_bool(sort const * s) const { return s == m_bool_sort; }
decl_kind get_eq_op(expr const * n) const { return is_bool(n) ? OP_IFF : OP_EQ; }
private:
sort * mk_sort(symbol const & name, sort_info * info);
public:
sort * mk_uninterpreted_sort(symbol const & name, unsigned num_parameters, parameter const * parameters);
sort * mk_uninterpreted_sort(symbol const & name) { return mk_uninterpreted_sort(name, 0, 0); }
sort * mk_sort(symbol const & name, sort_info const & info) {
if (info.get_family_id() == null_family_id) {
return mk_uninterpreted_sort(name);
}
else {
return mk_sort(name, &const_cast<sort_info &>(info));
}
}
sort * mk_sort(family_id fid, decl_kind k, unsigned num_parameters = 0, parameter const * parameters = 0);
sort * mk_bool_sort() const { return m_bool_sort; }
sort * mk_proof_sort() const { return m_proof_sort; }
sort * mk_fresh_sort(char const * prefix = "");
bool is_uninterp(sort const * s) const { return s->get_family_id() == null_family_id || s->get_family_id() == m_user_sort_family_id; }
/**
\brief A sort is "fully" interpreted if it is interpreted,
and doesn't depend on other uninterpreted sorts.
*/
bool is_fully_interp(sort const * s) const;
func_decl * mk_func_decl(family_id fid, decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range = 0);
func_decl * mk_func_decl(family_id fid, decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned num_args, expr * const * args, sort * range = 0);
app * mk_app(family_id fid, decl_kind k, unsigned num_parameters = 0, parameter const * parameters = 0,
unsigned num_args = 0, expr * const * args = 0, sort * range = 0);
app * mk_app(family_id fid, decl_kind k, unsigned num_args, expr * const * args);
app * mk_app(family_id fid, decl_kind k, expr * arg);
app * mk_app(family_id fid, decl_kind k, expr * arg1, expr * arg2);
app * mk_app(family_id fid, decl_kind k, expr * arg1, expr * arg2, expr * arg3);
app * mk_const(family_id fid, decl_kind k) { return mk_app(fid, k, 0, static_cast<expr * const *>(0)); }
private:
func_decl * mk_func_decl(symbol const & name, unsigned arity, sort * const * domain, sort * range,
func_decl_info * info);
app * mk_app_core(func_decl * decl, expr * arg1, expr * arg2);
app * mk_app_core(func_decl * decl, unsigned num_args, expr * const * args);
public:
func_decl * mk_func_decl(symbol const & name, unsigned arity, sort * const * domain, sort * range) {
return mk_func_decl(name, arity, domain, range, static_cast<func_decl_info *>(0));
}
func_decl * mk_func_decl(symbol const & name, unsigned arity, sort * const * domain, sort * range,
func_decl_info const & info) {
if (info.is_null()) {
return mk_func_decl(name, arity, domain, range, static_cast<func_decl_info *>(0));
}
else {
return mk_func_decl(name, arity, domain, range, & const_cast<func_decl_info&>(info));
}
}
func_decl * mk_func_decl(unsigned arity, sort * const * domain, func_decl_info const & info) {
return mk_func_decl(info.get_family_id(), info.get_decl_kind(), info.get_num_parameters(), info.get_parameters(),
arity, domain);
}
func_decl * mk_const_decl(symbol const & name, sort * s) {
return mk_func_decl(name, static_cast<unsigned>(0), 0, s);
}
func_decl * mk_const_decl(symbol const & name, sort * s, func_decl_info const & info) {
return mk_func_decl(name, static_cast<unsigned>(0), 0, s, info);
}
func_decl * mk_func_decl(symbol const & name, sort * domain, sort * range, func_decl_info const & info) {
return mk_func_decl(name, 1, &domain, range, info);
}
func_decl * mk_func_decl(symbol const & name, sort * domain, sort * range) {
return mk_func_decl(name, 1, &domain, range);
}
func_decl * mk_func_decl(symbol const & name, sort * domain1, sort * domain2, sort * range, func_decl_info const & info) {
sort * d[2] = { domain1, domain2 };
return mk_func_decl(name, 2, d, range, info);
}
func_decl * mk_func_decl(symbol const & name, sort * domain1, sort * domain2, sort * range) {
sort * d[2] = { domain1, domain2 };
return mk_func_decl(name, 2, d, range);
}
func_decl * mk_func_decl(symbol const & name, unsigned arity, sort * const * domain, sort * range,
bool assoc, bool comm = false, bool inj = false);
func_decl * mk_func_decl(symbol const & name, sort * domain1, sort * domain2, sort * range, bool assoc, bool comm = false) {
sort * d[2] = { domain1, domain2 };
return mk_func_decl(name, 2, d, range, assoc, comm, false);
}
app * mk_app(func_decl * decl, unsigned num_args, expr * const * args);
app * mk_app(func_decl * decl, expr * const * args) {
return mk_app(decl, decl->get_arity(), args);
}
app * mk_app(func_decl * decl, expr * arg) {
SASSERT(decl->get_arity() == 1);
return mk_app(decl, 1, &arg);
}
app * mk_app(func_decl * decl, expr * arg1, expr * arg2) {
SASSERT(decl->get_arity() == 2);
expr * args[2] = { arg1, arg2 };
return mk_app(decl, 2, args);
}
app * mk_app(func_decl * decl, expr * arg1, expr * arg2, expr * arg3) {
SASSERT(decl->get_arity() == 3);
expr * args[3] = { arg1, arg2, arg3 };
return mk_app(decl, 3, args);
}
app * mk_const(func_decl * decl) {
SASSERT(decl->get_arity() == 0);
return mk_app(decl, static_cast<unsigned>(0), static_cast<expr**>(0));
}
app * mk_const(symbol const & name, sort * s) {
return mk_const(mk_const_decl(name, s));
}
func_decl * mk_fresh_func_decl(symbol const & prefix, symbol const & suffix, unsigned arity,
sort * const * domain, sort * range);
func_decl * mk_fresh_func_decl(unsigned arity, sort * const * domain, sort * range) { return mk_fresh_func_decl(symbol::null, symbol::null, arity, domain, range); }
func_decl * mk_fresh_func_decl(char const * prefix, char const * suffix, unsigned arity,
sort * const * domain, sort * range) {
return mk_fresh_func_decl(symbol(prefix), symbol(suffix), arity, domain, range);
}
func_decl * mk_fresh_func_decl(char const * prefix, unsigned arity, sort * const * domain, sort * range) {
return mk_fresh_func_decl(symbol(prefix), symbol::null, arity, domain, range);
}
app * mk_fresh_const(char const * prefix, sort * s) { return mk_const(mk_fresh_func_decl(prefix, 0, 0, s)); }
symbol mk_fresh_var_name(char const * prefix = 0);
var * mk_var(unsigned idx, sort * ty);
app * mk_label(bool pos, unsigned num_names, symbol const * names, expr * n);
app * mk_label(bool pos, symbol const & name, expr * n);
bool is_label(expr const * n, bool & pos, buffer<symbol> & names) const;
bool is_label(expr const * n, bool & pos, buffer<symbol> & names, expr*& l) const {
return is_label(n, pos, names)?(l = to_app(n)->get_arg(0), true):false;
}
bool is_label(expr const * n) const { return is_app_of(n, m_label_family_id, OP_LABEL); }
bool is_label(expr const * n, expr*& l) const {
return is_label(n)?(l = to_app(n)->get_arg(0), true):false;
}
bool is_label(expr const * n, bool& pos) const {
if (is_app_of(n, m_label_family_id, OP_LABEL)) {
pos = to_app(n)->get_decl()->get_parameter(0).get_int() != 0;
return true;
}
else {
return false;
}
}
app * mk_label_lit(unsigned num_names, symbol const * names);
app * mk_label_lit(symbol const & name);
bool is_label_lit(expr const * n, buffer<symbol> & names) const;
bool is_label_lit(expr const * n) const { return is_app_of(n, m_label_family_id, OP_LABEL_LIT); }
family_id get_label_family_id() const { return m_label_family_id; }
app * mk_pattern(unsigned num_exprs, app * const * exprs);
app * mk_pattern(app * expr) { return mk_pattern(1, &expr); }
bool is_pattern(expr const * n) const;
bool is_pattern(expr const *n, ptr_vector<expr> &args);
public:
quantifier * mk_quantifier(bool forall, unsigned num_decls, sort * const * decl_sorts, symbol const * decl_names, expr * body,
int weight = 0, symbol const & qid = symbol::null, symbol const & skid = symbol::null,
unsigned num_patterns = 0, expr * const * patterns = 0,
unsigned num_no_patterns = 0, expr * const * no_patterns = 0);
quantifier * mk_forall(unsigned num_decls, sort * const * decl_sorts, symbol const * decl_names, expr * body,
int weight = 0, symbol const & qid = symbol::null, symbol const & skid = symbol::null,
unsigned num_patterns = 0, expr * const * patterns = 0,
unsigned num_no_patterns = 0, expr * const * no_patterns = 0) {
return mk_quantifier(true, num_decls, decl_sorts, decl_names, body, weight, qid, skid, num_patterns, patterns,
num_no_patterns, no_patterns);
}
quantifier * mk_exists(unsigned num_decls, sort * const * decl_sorts, symbol const * decl_names, expr * body,
int weight = 0, symbol const & qid = symbol::null, symbol const & skid = symbol::null,
unsigned num_patterns = 0, expr * const * patterns = 0,
unsigned num_no_patterns = 0, expr * const * no_patterns = 0) {
return mk_quantifier(false, num_decls, decl_sorts, decl_names, body, weight, qid, skid, num_patterns, patterns,
num_no_patterns, no_patterns);
}
quantifier * update_quantifier(quantifier * q, unsigned new_num_patterns, expr * const * new_patterns, expr * new_body);
quantifier * update_quantifier(quantifier * q, unsigned new_num_patterns, expr * const * new_patterns, unsigned new_num_no_patterns, expr * const * new_no_patterns, expr * new_body);
quantifier * update_quantifier(quantifier * q, expr * new_body);
quantifier * update_quantifier_weight(quantifier * q, int new_weight);
quantifier * update_quantifier(quantifier * q, bool new_is_forall, expr * new_body);
quantifier * update_quantifier(quantifier * q, bool new_is_forall, unsigned new_num_patterns, expr * const * new_patterns, expr * new_body);
// -----------------------------------
//
// expr_array
//
// -----------------------------------
public:
void mk(expr_array & r) { m_expr_array_manager.mk(r); }
void del(expr_array & r) { m_expr_array_manager.del(r); }
void copy(expr_array const & s, expr_array & r) { m_expr_array_manager.copy(s, r); }
unsigned size(expr_array const & r) const { return m_expr_array_manager.size(r); }
bool empty(expr_array const & r) const { return m_expr_array_manager.empty(r); }
expr * get(expr_array const & r, unsigned i) const { return m_expr_array_manager.get(r, i); }
void set(expr_array & r, unsigned i, expr * v) { m_expr_array_manager.set(r, i, v); }
void set(expr_array const & s, unsigned i, expr * v, expr_array & r) { m_expr_array_manager.set(s, i, v, r); }
void push_back(expr_array & r, expr * v) { m_expr_array_manager.push_back(r, v); }
void push_back(expr_array const & s, expr * v, expr_array & r) { m_expr_array_manager.push_back(s, v, r); }
void pop_back(expr_array & r) { m_expr_array_manager.pop_back(r); }
void pop_back(expr_array const & s, expr_array & r) { m_expr_array_manager.pop_back(s, r); }
void unshare(expr_array & r) { m_expr_array_manager.unshare(r); }
void unfold(expr_array & r) { m_expr_array_manager.unfold(r); }
void reroot(expr_array & r) { m_expr_array_manager.reroot(r); }
// -----------------------------------
//
// expr_dependency
//
// -----------------------------------
public:
expr_dependency * mk_empty_dependencies() { return m_expr_dependency_manager.mk_empty(); }
expr_dependency * mk_leaf(expr * t);
expr_dependency * mk_join(unsigned n, expr * const * ts);
expr_dependency * mk_join(expr_dependency * d1, expr_dependency * d2) { return m_expr_dependency_manager.mk_join(d1, d2); }
void inc_ref(expr_dependency * d) { if (d) m_expr_dependency_manager.inc_ref(d); }
void dec_ref(expr_dependency * d) { if (d) m_expr_dependency_manager.dec_ref(d); }
void linearize(expr_dependency * d, ptr_vector<expr> & ts);
bool contains(expr_dependency * d, expr * t) { return m_expr_dependency_manager.contains(d, t); }
// -----------------------------------
//
// expr_dependency_array
//
// -----------------------------------
public:
void mk(expr_dependency_array & r) { m_expr_dependency_array_manager.mk(r); }
void del(expr_dependency_array & r) { m_expr_dependency_array_manager.del(r); }
void copy(expr_dependency_array const & s, expr_dependency_array & r) { m_expr_dependency_array_manager.copy(s, r); }
unsigned size(expr_dependency_array const & r) const { return m_expr_dependency_array_manager.size(r); }
bool empty(expr_dependency_array const & r) const { return m_expr_dependency_array_manager.empty(r); }
expr_dependency * get(expr_dependency_array const & r, unsigned i) const { return m_expr_dependency_array_manager.get(r, i); }
void set(expr_dependency_array & r, unsigned i, expr_dependency * v) { m_expr_dependency_array_manager.set(r, i, v); }
void set(expr_dependency_array const & s, unsigned i, expr_dependency * v, expr_dependency_array & r) {
m_expr_dependency_array_manager.set(s, i, v, r);
}
void push_back(expr_dependency_array & r, expr_dependency * v) { m_expr_dependency_array_manager.push_back(r, v); }
void push_back(expr_dependency_array const & s, expr_dependency * v, expr_dependency_array & r) {
m_expr_dependency_array_manager.push_back(s, v, r);
}
void pop_back(expr_dependency_array & r) { m_expr_dependency_array_manager.pop_back(r); }
void pop_back(expr_dependency_array const & s, expr_dependency_array & r) { m_expr_dependency_array_manager.pop_back(s, r); }
void unshare(expr_dependency_array & r) { m_expr_dependency_array_manager.unshare(r); }
void unfold(expr_dependency_array & r) { m_expr_dependency_array_manager.unfold(r); }
void reroot(expr_dependency_array & r) { m_expr_dependency_array_manager.reroot(r); }
// -----------------------------------
//
// Builtin operators
//
// -----------------------------------
public:
bool is_or(expr const * n) const { return is_app_of(n, m_basic_family_id, OP_OR); }
bool is_implies(expr const * n) const { return is_app_of(n, m_basic_family_id, OP_IMPLIES); }
bool is_and(expr const * n) const { return is_app_of(n, m_basic_family_id, OP_AND); }
bool is_not(expr const * n) const { return is_app_of(n, m_basic_family_id, OP_NOT); }
bool is_eq(expr const * n) const { return is_app_of(n, m_basic_family_id, OP_EQ); }
bool is_oeq(expr const * n) const { return is_app_of(n, m_basic_family_id, OP_OEQ); }
bool is_distinct(expr const * n) const { return is_app_of(n, m_basic_family_id, OP_DISTINCT); }
bool is_iff(expr const * n) const { return is_app_of(n, m_basic_family_id, OP_IFF); }
bool is_xor(expr const * n) const { return is_app_of(n, m_basic_family_id, OP_XOR); }
bool is_ite(expr const * n) const { return is_app_of(n, m_basic_family_id, OP_ITE); }
bool is_term_ite(expr const * n) const { return is_ite(n) && !is_bool(n); }
bool is_true(expr const * n) const { return n == m_true; }
bool is_false(expr const * n) const { return n == m_false; }
bool is_complement_core(expr const * n1, expr const * n2) const {
return (is_true(n1) && is_false(n2)) || (is_not(n1) && to_app(n1)->get_arg(0) == n2);
}
bool is_complement(expr const * n1, expr const * n2) const { return is_complement_core(n1, n2) || is_complement_core(n2, n1); }
bool is_or(func_decl const * d) const { return is_decl_of(d, m_basic_family_id, OP_OR); }
bool is_implies(func_decl const * d) const { return is_decl_of(d, m_basic_family_id, OP_IMPLIES); }
bool is_and(func_decl const * d) const { return is_decl_of(d, m_basic_family_id, OP_AND); }
bool is_not(func_decl const * d) const { return is_decl_of(d, m_basic_family_id, OP_NOT); }
bool is_eq(func_decl const * d) const { return is_decl_of(d, m_basic_family_id, OP_EQ); }
bool is_iff(func_decl const * d) const { return is_decl_of(d, m_basic_family_id, OP_IFF); }
bool is_xor(func_decl const * d) const { return is_decl_of(d, m_basic_family_id, OP_XOR); }
bool is_ite(func_decl const * d) const { return is_decl_of(d, m_basic_family_id, OP_ITE); }
bool is_term_ite(func_decl const * d) const { return is_ite(d) && !is_bool(d->get_range()); }
bool is_distinct(func_decl const * d) const { return is_decl_of(d, m_basic_family_id, OP_DISTINCT); }
public:
MATCH_UNARY(is_not);
MATCH_BINARY(is_eq);
MATCH_BINARY(is_iff);
MATCH_BINARY(is_implies);
MATCH_BINARY(is_and);
MATCH_BINARY(is_or);
MATCH_BINARY(is_xor);
MATCH_TERNARY(is_and);
MATCH_TERNARY(is_or);
bool is_ite(expr const* n, expr*& t1, expr*& t2, expr*& t3) const {
if (is_ite(n)) {
t1 = to_app(n)->get_arg(0);
t2 = to_app(n)->get_arg(1);
t3 = to_app(n)->get_arg(2);
return true;
}
return false;
}
public:
app * mk_eq(expr * lhs, expr * rhs) { return mk_app(m_basic_family_id, get_eq_op(lhs), lhs, rhs); }
app * mk_iff(expr * lhs, expr * rhs) { return mk_app(m_basic_family_id, OP_IFF, lhs, rhs); }
app * mk_oeq(expr * lhs, expr * rhs) { return mk_app(m_basic_family_id, OP_OEQ, lhs, rhs); }
app * mk_xor(expr * lhs, expr * rhs) { return mk_app(m_basic_family_id, OP_XOR, lhs, rhs); }
app * mk_ite(expr * c, expr * t, expr * e) { return mk_app(m_basic_family_id, OP_ITE, c, t, e); }
app * mk_xor(unsigned num_args, expr * const * args) { return mk_app(m_basic_family_id, OP_XOR, num_args, args); }
app * mk_or(unsigned num_args, expr * const * args) { return mk_app(m_basic_family_id, OP_OR, num_args, args); }
app * mk_and(unsigned num_args, expr * const * args) { return mk_app(m_basic_family_id, OP_AND, num_args, args); }
app * mk_or(expr * arg1, expr * arg2) { return mk_app(m_basic_family_id, OP_OR, arg1, arg2); }
app * mk_and(expr * arg1, expr * arg2) { return mk_app(m_basic_family_id, OP_AND, arg1, arg2); }
app * mk_or(expr * arg1, expr * arg2, expr * arg3) { return mk_app(m_basic_family_id, OP_OR, arg1, arg2, arg3); }
app * mk_and(expr * arg1, expr * arg2, expr * arg3) { return mk_app(m_basic_family_id, OP_AND, arg1, arg2, arg3); }
app * mk_implies(expr * arg1, expr * arg2) { return mk_app(m_basic_family_id, OP_IMPLIES, arg1, arg2); }
app * mk_not(expr * n) { return mk_app(m_basic_family_id, OP_NOT, n); }
app * mk_distinct(unsigned num_args, expr * const * args);
app * mk_distinct_expanded(unsigned num_args, expr * const * args);
app * mk_true() const { return m_true; }
app * mk_false() const { return m_false; }
app * mk_bool_val(bool b) { return b?m_true:m_false; }
app * mk_interp(expr * arg) { return mk_app(m_basic_family_id, OP_INTERP, arg); }
func_decl* mk_and_decl() {
sort* domain[2] = { m_bool_sort, m_bool_sort };
return mk_func_decl(m_basic_family_id, OP_AND, 0, 0, 2, domain);
}
func_decl* mk_not_decl() { return mk_func_decl(m_basic_family_id, OP_NOT, 0, 0, 1, &m_bool_sort); }
func_decl* mk_or_decl() {
sort* domain[2] = { m_bool_sort, m_bool_sort };
return mk_func_decl(m_basic_family_id, OP_OR, 0, 0, 2, domain);
}
// -----------------------------------
//
// Values
//
// -----------------------------------
protected:
some_value_proc * m_some_value_proc;
public:
app * mk_model_value(unsigned idx, sort * s);
bool is_model_value(expr const * n) const { return is_app_of(n, m_model_value_family_id, OP_MODEL_VALUE); }
bool is_model_value(func_decl const * d) const { return is_decl_of(d, m_model_value_family_id, OP_MODEL_VALUE); }
expr * get_some_value(sort * s, some_value_proc * p);
expr * get_some_value(sort * s);
// -----------------------------------
//
// Proof generation
//
// -----------------------------------
protected:
proof * mk_proof(family_id fid, decl_kind k, unsigned num_args, expr * const * args);
proof * mk_proof(family_id fid, decl_kind k, expr * arg);
proof * mk_proof(family_id fid, decl_kind k, expr * arg1, expr * arg2);
proof * mk_proof(family_id fid, decl_kind k, expr * arg1, expr * arg2, expr * arg3);
public:
bool proofs_enabled() const { return m_proof_mode != PGM_DISABLED; }
bool proofs_disabled() const { return m_proof_mode == PGM_DISABLED; }
bool coarse_grain_proofs() const { return m_proof_mode == PGM_COARSE; }
bool fine_grain_proofs() const { return m_proof_mode == PGM_FINE; }
proof_gen_mode proof_mode() const { return m_proof_mode; }
void toggle_proof_mode(proof_gen_mode m) { m_proof_mode = m; } // APIs for creating proof objects return [undef]
proof * mk_undef_proof() const { return m_undef_proof; }
bool is_proof(expr const * n) const { return is_app(n) && to_app(n)->get_decl()->get_range() == m_proof_sort; }
proof* mk_hyper_resolve(unsigned num_premises, proof* const* premises, expr* concl,
svector<std::pair<unsigned, unsigned> > const& positions,
vector<ref_vector<expr, ast_manager> > const& substs);
bool is_undef_proof(expr const * e) const { return e == m_undef_proof; }
bool is_asserted(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_ASSERTED); }
bool is_hypothesis (expr const *e) const {return is_app_of (e, m_basic_family_id, PR_HYPOTHESIS);}
bool is_goal(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_GOAL); }
bool is_modus_ponens(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_MODUS_PONENS); }
bool is_reflexivity(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_REFLEXIVITY); }
bool is_symmetry(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_SYMMETRY); }
bool is_transitivity(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_TRANSITIVITY); }
bool is_monotonicity(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_MONOTONICITY); }
bool is_quant_intro(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_QUANT_INTRO); }
bool is_quant_inst(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_QUANT_INST); }
bool is_distributivity(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_DISTRIBUTIVITY); }
bool is_and_elim(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_AND_ELIM); }
bool is_not_or_elim(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_NOT_OR_ELIM); }
bool is_rewrite(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_REWRITE); }
bool is_rewrite_star(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_REWRITE_STAR); }
bool is_unit_resolution(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_UNIT_RESOLUTION); }
bool is_lemma(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_LEMMA); }
bool is_quant_inst(expr const* e, expr*& not_q_or_i, ptr_vector<expr>& binding) const;
bool is_rewrite(expr const* e, expr*& r1, expr*& r2) const;
bool is_hyper_resolve(proof* p) const { return is_app_of(p, m_basic_family_id, PR_HYPER_RESOLVE); }
bool is_hyper_resolve(proof* p,
ref_vector<proof, ast_manager>& premises,
obj_ref<expr, ast_manager>& conclusion,
svector<std::pair<unsigned, unsigned> > & positions,
vector<ref_vector<expr, ast_manager> >& substs);
bool is_def_intro(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_DEF_INTRO); }
bool is_apply_def(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_APPLY_DEF); }
bool is_skolemize(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_SKOLEMIZE); }
MATCH_UNARY(is_asserted);
MATCH_UNARY(is_hypothesis);
MATCH_UNARY(is_lemma);
bool has_fact(proof const * p) const {
SASSERT(is_proof(p));
unsigned n = p->get_num_args();
return n > 0 && get_sort(p->get_arg(n - 1)) != m_proof_sort;
}
expr * get_fact(proof const * p) const { SASSERT(is_proof(p)); SASSERT(has_fact(p)); return p->get_arg(p->get_num_args() - 1); }
unsigned get_num_parents(proof const * p) const {
SASSERT(is_proof(p));
unsigned n = p->get_num_args();
return !has_fact(p) ? n : n - 1;
}
proof * get_parent(proof const * p, unsigned idx) const { SASSERT(is_proof(p)); return to_app(p->get_arg(idx)); }
proof * mk_true_proof();
proof * mk_asserted(expr * f);
proof * mk_goal(expr * f);
proof * mk_modus_ponens(proof * p1, proof * p2);
proof * mk_reflexivity(expr * e);
proof * mk_oeq_reflexivity(expr * e);
proof * mk_symmetry(proof * p);
proof * mk_transitivity(proof * p1, proof * p2);
proof * mk_transitivity(proof * p1, proof * p2, proof * p3);
proof * mk_transitivity(proof * p1, proof * p2, proof * p3, proof * p4);
proof * mk_transitivity(unsigned num_proofs, proof * const * proofs);
proof * mk_transitivity(unsigned num_proofs, proof * const * proofs, expr * n1, expr * n2);
proof * mk_monotonicity(func_decl * R, app * f1, app * f2, unsigned num_proofs, proof * const * proofs);
proof * mk_congruence(app * f1, app * f2, unsigned num_proofs, proof * const * proofs);
proof * mk_oeq_congruence(app * f1, app * f2, unsigned num_proofs, proof * const * proofs);
proof * mk_commutativity(app * f);
proof * mk_iff_true(proof * pr);
proof * mk_iff_false(proof * pr);
proof * mk_quant_intro(quantifier * q1, quantifier * q2, proof * p);
proof * mk_oeq_quant_intro(quantifier * q1, quantifier * q2, proof * p);
proof * mk_distributivity(expr * s, expr * r);
proof * mk_rewrite(expr * s, expr * t);
proof * mk_oeq_rewrite(expr * s, expr * t);
proof * mk_rewrite_star(expr * s, expr * t, unsigned num_proofs, proof * const * proofs);
proof * mk_pull_quant(expr * e, quantifier * q);
proof * mk_pull_quant_star(expr * e, quantifier * q);
proof * mk_push_quant(quantifier * q, expr * e);
proof * mk_elim_unused_vars(quantifier * q, expr * r);
proof * mk_der(quantifier * q, expr * r);
proof * mk_quant_inst(expr * not_q_or_i, unsigned num_bind, expr* const* binding);
proof * mk_def_axiom(expr * ax);
proof * mk_unit_resolution(unsigned num_proofs, proof * const * proofs);
proof * mk_unit_resolution(unsigned num_proofs, proof * const * proofs, expr * new_fact);
proof * mk_hypothesis(expr * h);
proof * mk_lemma(proof * p, expr * lemma);
proof * mk_def_intro(expr * new_def);
proof * mk_apply_defs(expr * n, expr * def, unsigned num_proofs, proof * const * proofs);
proof * mk_apply_def(expr * n, expr * def, proof * p) { return mk_apply_defs(n, def, 1, &p); }
proof * mk_iff_oeq(proof * parent);
proof * mk_nnf_pos(expr * s, expr * t, unsigned num_proofs, proof * const * proofs);
proof * mk_nnf_neg(expr * s, expr * t, unsigned num_proofs, proof * const * proofs);
proof * mk_nnf_star(expr * s, expr * t, unsigned num_proofs, proof * const * proofs);
proof * mk_skolemization(expr * q, expr * e);
proof * mk_cnf_star(expr * s, expr * t, unsigned num_proofs, proof * const * proofs);
proof * mk_and_elim(proof * p, unsigned i);
proof * mk_not_or_elim(proof * p, unsigned i);
proof * mk_th_lemma(family_id tid,
expr * fact, unsigned num_proofs, proof * const * proofs,
unsigned num_params = 0, parameter const* params = 0);
protected:
bool check_nnf_proof_parents(unsigned num_proofs, proof * const * proofs) const;
private:
void dec_ref(ptr_buffer<ast> & worklist, ast * n) {
n->dec_ref();
if (n->get_ref_count() == 0) {
worklist.push_back(n);
}
}
template<typename T>
void dec_array_ref(ptr_buffer<ast> & worklist, unsigned sz, T * const * a) {
for(unsigned i = 0; i < sz; i++) {
dec_ref(worklist, a[i]);
}
}
};
typedef ast_manager::expr_array expr_array;
typedef ast_manager::expr_dependency expr_dependency;
typedef ast_manager::expr_dependency_array expr_dependency_array;
typedef obj_ref<expr_dependency, ast_manager> expr_dependency_ref;
typedef ref_vector<expr_dependency, ast_manager> expr_dependency_ref_vector;
typedef ref_buffer<expr_dependency, ast_manager> expr_dependency_ref_buffer;
// -----------------------------------
//
// More Auxiliary Functions
//
// -----------------------------------
inline bool is_predicate(ast_manager const & m, func_decl const * d) {
return m.is_bool(d->get_range());
}
struct ast_lt_proc {
bool operator()(ast const * n1, ast const * n2) const {
return n1->get_id() < n2->get_id();
}
};
// -----------------------------------
//
// ast_ref (smart pointer)
//
// -----------------------------------
typedef obj_ref<ast, ast_manager> ast_ref;
typedef obj_ref<expr, ast_manager> expr_ref;
typedef obj_ref<sort, ast_manager> sort_ref;
typedef obj_ref<func_decl, ast_manager> func_decl_ref;
typedef obj_ref<quantifier, ast_manager> quantifier_ref;
typedef obj_ref<app, ast_manager> app_ref;
typedef obj_ref<var,ast_manager> var_ref;
typedef app_ref proof_ref;
// -----------------------------------
//
// ast_vector (smart pointer vector)
//
// -----------------------------------
typedef ref_vector<ast, ast_manager> ast_ref_vector;
typedef ref_vector<decl, ast_manager> decl_ref_vector;
typedef ref_vector<sort, ast_manager> sort_ref_vector;
typedef ref_vector<func_decl, ast_manager> func_decl_ref_vector;
typedef ref_vector<expr, ast_manager> expr_ref_vector;
typedef ref_vector<app, ast_manager> app_ref_vector;
typedef ref_vector<var, ast_manager> var_ref_vector;
typedef ref_vector<quantifier, ast_manager> quantifier_ref_vector;
typedef app_ref_vector proof_ref_vector;
// -----------------------------------
//
// ast_buffer
//
// -----------------------------------
typedef ref_buffer<ast, ast_manager> ast_ref_buffer;
typedef ref_buffer<expr, ast_manager> expr_ref_buffer;
typedef ref_buffer<sort, ast_manager> sort_ref_buffer;
typedef ref_buffer<app, ast_manager> app_ref_buffer;
typedef app_ref_buffer proof_ref_buffer;
// -----------------------------------
//
// expr_mark
//
// -----------------------------------
typedef obj_mark<expr> expr_mark;
class expr_sparse_mark {
obj_hashtable<expr> m_marked;
public:
expr_sparse_mark() {}
bool is_marked(expr * n) const { return m_marked.contains(n); }
void mark(expr * n) { m_marked.insert(n); }
void mark(expr * n, bool flag) { if (flag) m_marked.insert(n); else m_marked.erase(n); }
void reset() { m_marked.reset(); }
};
template<unsigned IDX>
class ast_fast_mark {
ptr_buffer<ast> m_to_unmark;
public:
ast_fast_mark() {}
~ast_fast_mark() {
reset();
}
bool is_marked(ast * n) { return IDX == 1 ? AST_IS_MARKED1(n, this) : AST_IS_MARKED2(n, this); }
void reset_mark(ast * n) {
if (IDX == 1) {
AST_RESET_MARK1(n, this);
}
else {
AST_RESET_MARK2(n, this);
}
}
void mark(ast * n) {
if (IDX == 1) {
if (AST_IS_MARKED1(n, this))
return;
AST_MARK1(n, true, this);
}
else {
if (AST_IS_MARKED2(n, this))
return;
AST_MARK2(n, true, this);
}
m_to_unmark.push_back(n);
}
void reset() {
ptr_buffer<ast>::iterator it = m_to_unmark.begin();
ptr_buffer<ast>::iterator end = m_to_unmark.end();
for (; it != end; ++it) {
reset_mark(*it);
}
m_to_unmark.reset();
}
void mark(ast * n, bool flag) { if (flag) mark(n); else reset_mark(n); }
unsigned get_level() {
return m_to_unmark.size();
}
void set_level(unsigned new_size) {
SASSERT(new_size <= m_to_unmark.size());
while (new_size < m_to_unmark.size()) {
reset_mark(m_to_unmark.back());
m_to_unmark.pop_back();
}
}
};
typedef ast_fast_mark<1> ast_fast_mark1;
typedef ast_fast_mark<2> ast_fast_mark2;
typedef ast_fast_mark1 expr_fast_mark1;
typedef ast_fast_mark2 expr_fast_mark2;
/**
Similar to ast_fast_mark, but increases reference counter.
*/
template<unsigned IDX>
class ast_ref_fast_mark {
ast_ref_buffer m_to_unmark;
public:
ast_ref_fast_mark(ast_manager & m):m_to_unmark(m) {}
~ast_ref_fast_mark() {
reset();
}
bool is_marked(ast * n) { return IDX == 1 ? AST_IS_MARKED1(n, this) : AST_IS_MARKED2(n, this); }
// It will not decrease the reference counter
void reset_mark(ast * n) {
if (IDX == 1) {
AST_RESET_MARK1(n, this);
}
else {
AST_RESET_MARK2(n, this);
}
}
void mark(ast * n) {
if (IDX == 1) {
if (AST_IS_MARKED1(n, this))
return;
AST_MARK1(n, true, this);
}
else {
if (AST_IS_MARKED2(n, this))
return;
AST_MARK2(n, true, this);
}
m_to_unmark.push_back(n);
}
void reset() {
ast * const * it = m_to_unmark.c_ptr();
ast * const * end = it + m_to_unmark.size();
for (; it != end; ++it) {
reset_mark(*it);
}
m_to_unmark.reset();
}
void mark(ast * n, bool flag) { if (flag) mark(n); else reset_mark(n); }
};
typedef ast_ref_fast_mark<1> ast_ref_fast_mark1;
typedef ast_ref_fast_mark<2> ast_ref_fast_mark2;
typedef ast_ref_fast_mark1 expr_ref_fast_mark1;
typedef ast_ref_fast_mark2 expr_ref_fast_mark2;
// -----------------------------------
//
// ast_mark
//
// -----------------------------------
/**
\brief A mapping from AST to Boolean
\warning This map does not cleanup the entry associated with a node N,
when N is deleted.
*/
class ast_mark {
struct decl2uint { unsigned operator()(decl const & d) const { return d.get_decl_id(); } };
obj_mark<expr> m_expr_marks;
obj_mark<decl, bit_vector, decl2uint> m_decl_marks;
public:
virtual ~ast_mark() {}
bool is_marked(ast * n) const;
virtual void mark(ast * n, bool flag);
virtual void reset();
};
// -----------------------------------
//
// scoped_mark
//
// -----------------------------------
/**
\brief Class for scoped-based marking of asts.
This class is safe with respect to life-times of asts.
*/
class scoped_mark : public ast_mark {
ast_ref_vector m_stack;
unsigned_vector m_lim;
public:
scoped_mark(ast_manager& m): m_stack(m) {}
virtual ~scoped_mark() {}
virtual void mark(ast * n, bool flag);
virtual void reset();
void mark(ast * n);
void push_scope();
void pop_scope();
void pop_scope(unsigned num_scopes);
};
// -------------------------------------
//
// inc_ref & dec_ref functors
//
// -------------------------------------
template<typename AST>
class dec_ref_proc {
ast_manager & m_manager;
public:
dec_ref_proc(ast_manager & m):m_manager(m) {}
void operator()(AST * n) { m_manager.dec_ref(n); }
};
template<typename AST>
class inc_ref_proc {
ast_manager & m_manager;
public:
inc_ref_proc(ast_manager & m):m_manager(m) {}
void operator()(AST * n) { m_manager.inc_ref(n); }
};
class justified_expr {
ast_manager& m;
expr* m_fml;
proof* m_proof;
public:
justified_expr(ast_manager& m, expr* fml, proof* p):
m(m),
m_fml(fml),
m_proof(p) {
m.inc_ref(fml);
m.inc_ref(p);
}
justified_expr& operator=(justified_expr& other) {
SASSERT(&m == &other.m);
if (this != &other) {
m.dec_ref(m_fml);
m.dec_ref(m_proof);
m_fml = other.get_fml();
m_proof = other.get_proof();
m.inc_ref(m_fml);
m.inc_ref(m_proof);
}
return *this;
}
~justified_expr() {
m.dec_ref(m_fml);
m.dec_ref(m_proof);
}
expr* get_fml() const { return m_fml; }
proof* get_proof() const { return m_proof; }
};
#endif /* AST_H_ */