3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 03:33:35 +00:00
z3/lib/poly_rewriter_def.h
Leonardo de Moura ea5039031e Fixed pointer arith. bug
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-05 15:15:28 -07:00

934 lines
32 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
poly_rewriter_def.h
Abstract:
Basic rewriting rules for Polynomials.
Author:
Leonardo (leonardo) 2011-04-08
Notes:
--*/
#include"poly_rewriter.h"
#include"ast_lt.h"
#include"ast_ll_pp.h"
#include"ast_smt2_pp.h"
template<typename Config>
char const * poly_rewriter<Config>::g_ste_blowup_msg = "sum of monomials blowup";
template<typename Config>
void poly_rewriter<Config>::updt_params(params_ref const & p) {
m_flat = p.get_bool(":flat", true);
m_som = p.get_bool(":som", false);
m_hoist_mul = p.get_bool(":hoist-mul", false);
m_hoist_cmul = p.get_bool(":hoist-cmul", false);
m_som_blowup = p.get_uint(":som-blowup", UINT_MAX);
}
template<typename Config>
void poly_rewriter<Config>::get_param_descrs(param_descrs & r) {
r.insert(":som", CPK_BOOL, "(default: false) put polynomials in som-of-monomials form.");
r.insert(":som-blowup", CPK_UINT, "(default: infty) maximum number of monomials generated when putting a polynomial in sum-of-monomials normal form");
r.insert(":hoist-mul", CPK_BOOL, "(default: false) hoist multiplication over summation to minimize number of multiplications");
r.insert(":hoist-cmul", CPK_BOOL, "(default: false) hoist constant multiplication over summation to minimize number of multiplications");
}
template<typename Config>
expr * poly_rewriter<Config>::mk_add_app(unsigned num_args, expr * const * args) {
switch (num_args) {
case 0: return mk_numeral(numeral(0));
case 1: return args[0];
default: return m().mk_app(get_fid(), add_decl_kind(), num_args, args);
}
}
// t = (^ x y) --> return x, and set k = y if k is an integer >= 1
// Otherwise return t and set k = 1
template<typename Config>
expr * poly_rewriter<Config>::get_power_body(expr * t, rational & k) {
if (!is_power(t)) {
k = rational(1);
return t;
}
if (is_numeral(to_app(t)->get_arg(1), k) && k.is_int() && k > rational(1)) {
return to_app(t)->get_arg(0);
}
k = rational(1);
return t;
}
template<typename Config>
expr * poly_rewriter<Config>::mk_mul_app(unsigned num_args, expr * const * args) {
switch (num_args) {
case 0:
return mk_numeral(numeral(1));
case 1:
return args[0];
default:
if (use_power()) {
rational k_prev;
expr * prev = get_power_body(args[0], k_prev);
rational k;
ptr_buffer<expr> new_args;
#define PUSH_POWER() { \
if (k_prev.is_one()) { \
new_args.push_back(prev); \
} \
else { \
expr * pargs[2] = { prev, mk_numeral(k_prev) }; \
new_args.push_back(m().mk_app(get_fid(), power_decl_kind(), 2, pargs)); \
} \
}
for (unsigned i = 1; i < num_args; i++) {
expr * arg = get_power_body(args[i], k);
if (arg == prev) {
k_prev += k;
}
else {
PUSH_POWER();
prev = arg;
k_prev = k;
}
}
PUSH_POWER();
SASSERT(new_args.size() > 0);
if (new_args.size() == 1) {
return new_args[0];
}
else {
return m().mk_app(get_fid(), mul_decl_kind(), new_args.size(), new_args.c_ptr());
}
}
else {
return m().mk_app(get_fid(), mul_decl_kind(), num_args, args);
}
}
}
template<typename Config>
expr * poly_rewriter<Config>::mk_mul_app(numeral const & c, expr * arg) {
if (c.is_one()) {
return arg;
}
else {
expr * new_args[2] = { mk_numeral(c), arg };
return mk_mul_app(2, new_args);
}
}
template<typename Config>
br_status poly_rewriter<Config>::mk_flat_mul_core(unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(num_args >= 2);
// only try to apply flattening if it is not already in one of the flat monomial forms
// - (* c x)
// - (* c (* x_1 ... x_n))
if (num_args != 2 || !is_numeral(args[0]) || (is_mul(args[1]) && is_numeral(to_app(args[1])->get_arg(0)))) {
unsigned i;
for (i = 0; i < num_args; i++) {
if (is_mul(args[i]))
break;
}
if (i < num_args) {
// input has nested monomials.
ptr_buffer<expr> flat_args;
// we need the todo buffer to handle: (* (* c (* x_1 ... x_n)) (* d (* y_1 ... y_n)))
ptr_buffer<expr> todo;
flat_args.append(i, args);
for (unsigned j = i; j < num_args; j++) {
if (is_mul(args[j])) {
todo.push_back(args[j]);
while (!todo.empty()) {
expr * curr = todo.back();
todo.pop_back();
if (is_mul(curr)) {
unsigned k = to_app(curr)->get_num_args();
while (k > 0) {
--k;
todo.push_back(to_app(curr)->get_arg(k));
}
}
else {
flat_args.push_back(curr);
}
}
}
else {
flat_args.push_back(args[j]);
}
}
TRACE("poly_rewriter",
tout << "flat mul:\n";
for (unsigned i = 0; i < num_args; i++) tout << mk_bounded_pp(args[i], m()) << "\n";
tout << "---->\n";
for (unsigned i = 0; i < flat_args.size(); i++) tout << mk_bounded_pp(flat_args[i], m()) << "\n";);
br_status st = mk_nflat_mul_core(flat_args.size(), flat_args.c_ptr(), result);
if (st == BR_FAILED) {
result = mk_mul_app(flat_args.size(), flat_args.c_ptr());
return BR_DONE;
}
return st;
}
}
return mk_nflat_mul_core(num_args, args, result);
}
template<typename Config>
struct poly_rewriter<Config>::mon_pw_lt {
poly_rewriter<Config> & m_owner;
mon_pw_lt(poly_rewriter<Config> & o):m_owner(o) {}
bool operator()(expr * n1, expr * n2) const {
rational k;
return lt(m_owner.get_power_body(n1, k),
m_owner.get_power_body(n2, k));
}
};
template<typename Config>
br_status poly_rewriter<Config>::mk_nflat_mul_core(unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(num_args >= 2);
// cheap case
numeral a;
if (num_args == 2 && is_numeral(args[0], a) && !a.is_one() && !a.is_zero() &&
(is_var(args[1]) || to_app(args[1])->get_decl()->get_family_id() != get_fid()))
return BR_FAILED;
numeral c(1);
unsigned num_coeffs = 0;
unsigned num_add = 0;
expr * var = 0;
for (unsigned i = 0; i < num_args; i++) {
expr * arg = args[i];
if (is_numeral(arg, a)) {
num_coeffs++;
c *= a;
}
else {
var = arg;
if (is_add(arg))
num_add++;
}
}
normalize(c);
// (* c_1 ... c_n) --> c_1*...*c_n
if (num_coeffs == num_args) {
result = mk_numeral(c);
return BR_DONE;
}
// (* s ... 0 ... r) --> 0
if (c.is_zero()) {
result = mk_numeral(c);
return BR_DONE;
}
if (num_coeffs == num_args - 1) {
SASSERT(var != 0);
// (* c_1 ... c_n x) --> x if c_1*...*c_n == 1
if (c.is_one()) {
result = var;
return BR_DONE;
}
numeral c_prime;
if (is_mul(var)) {
// apply basic simplification even when flattening is not enabled.
// (* c1 (* c2 x)) --> (* c1*c2 x)
if (to_app(var)->get_num_args() == 2 && is_numeral(to_app(var)->get_arg(0), c_prime)) {
c *= c_prime;
normalize(c);
result = mk_mul_app(c, to_app(var)->get_arg(1));
return BR_REWRITE1;
}
else {
// var is a power-product
return BR_FAILED;
}
}
if (num_add == 0 || m_hoist_cmul) {
SASSERT(!is_add(var) || m_hoist_cmul);
if (num_args == 2 && args[1] == var) {
DEBUG_CODE({
numeral c_prime;
SASSERT(is_numeral(args[0], c_prime) && c == c_prime);
});
// it is already simplified
return BR_FAILED;
}
// (* c_1 ... c_n x) --> (* c_1*...*c_n x)
result = mk_mul_app(c, var);
return BR_DONE;
}
else {
SASSERT(is_add(var));
// (* c_1 ... c_n (+ t_1 ... t_m)) --> (+ (* c_1*...*c_n t_1) ... (* c_1*...*c_n t_m))
ptr_buffer<expr> new_add_args;
unsigned num = to_app(var)->get_num_args();
for (unsigned i = 0; i < num; i++) {
new_add_args.push_back(mk_mul_app(c, to_app(var)->get_arg(i)));
}
result = mk_add_app(new_add_args.size(), new_add_args.c_ptr());
TRACE("mul_bug", tout << "result: " << mk_bounded_pp(result, m(),5) << "\n";);
return BR_REWRITE2;
}
}
SASSERT(num_coeffs <= num_args - 2);
if (!m_som || num_add == 0) {
ptr_buffer<expr> new_args;
expr * prev = 0;
bool ordered = true;
for (unsigned i = 0; i < num_args; i++) {
expr * curr = args[i];
if (is_numeral(curr))
continue;
if (prev != 0 && lt(curr, prev))
ordered = false;
new_args.push_back(curr);
prev = curr;
}
TRACE("poly_rewriter",
for (unsigned i = 0; i < new_args.size(); i++) {
if (i > 0)
tout << (lt(new_args[i-1], new_args[i]) ? " < " : " !< ");
tout << mk_ismt2_pp(new_args[i], m());
}
tout << "\nordered: " << ordered << "\n";);
if (ordered && num_coeffs == 0 && !use_power())
return BR_FAILED;
if (!ordered) {
if (use_power())
std::sort(new_args.begin(), new_args.end(), mon_pw_lt(*this));
else
std::sort(new_args.begin(), new_args.end(), ast_to_lt());
TRACE("poly_rewriter",
tout << "after sorting:\n";
for (unsigned i = 0; i < new_args.size(); i++) {
if (i > 0)
tout << (lt(new_args[i-1], new_args[i]) ? " < " : " !< ");
tout << mk_ismt2_pp(new_args[i], m());
}
tout << "\n";);
}
SASSERT(new_args.size() >= 2);
result = mk_mul_app(new_args.size(), new_args.c_ptr());
result = mk_mul_app(c, result);
TRACE("poly_rewriter", tout << "mk_nflat_mul_core result:\n" << mk_ismt2_pp(result, m()) << "\n";);
return BR_DONE;
}
SASSERT(m_som && num_add > 0);
sbuffer<unsigned> szs;
sbuffer<unsigned> it;
sbuffer<expr **> sums;
for (unsigned i = 0; i < num_args; i ++) {
it.push_back(0);
expr * arg = args[i];
if (is_add(arg)) {
sums.push_back(const_cast<expr**>(to_app(arg)->get_args()));
szs.push_back(to_app(arg)->get_num_args());
}
else {
sums.push_back(const_cast<expr**>(args + i));
szs.push_back(1);
SASSERT(sums.back()[0] == arg);
}
}
expr_ref_buffer sum(m()); // must be ref_buffer because we may throw an exception
ptr_buffer<expr> m_args;
TRACE("som", tout << "starting som...\n";);
do {
TRACE("som", for (unsigned i = 0; i < it.size(); i++) tout << it[i] << " ";
tout << "\n";);
if (sum.size() > m_som_blowup)
throw rewriter_exception(g_ste_blowup_msg);
m_args.reset();
for (unsigned i = 0; i < num_args; i++) {
expr * const * v = sums[i];
expr * arg = v[it[i]];
m_args.push_back(arg);
}
sum.push_back(mk_mul_app(m_args.size(), m_args.c_ptr()));
}
while (product_iterator_next(szs.size(), szs.c_ptr(), it.c_ptr()));
result = mk_add_app(sum.size(), sum.c_ptr());
return BR_REWRITE2;
}
template<typename Config>
br_status poly_rewriter<Config>::mk_flat_add_core(unsigned num_args, expr * const * args, expr_ref & result) {
unsigned i;
for (i = 0; i < num_args; i++) {
if (is_add(args[i]))
break;
}
if (i < num_args) {
// has nested ADDs
ptr_buffer<expr> flat_args;
flat_args.append(i, args);
for (; i < num_args; i++) {
expr * arg = args[i];
// Remark: all rewrites are depth 1.
if (is_add(arg)) {
unsigned num = to_app(arg)->get_num_args();
for (unsigned j = 0; j < num; j++)
flat_args.push_back(to_app(arg)->get_arg(j));
}
else {
flat_args.push_back(arg);
}
}
br_status st = mk_nflat_add_core(flat_args.size(), flat_args.c_ptr(), result);
if (st == BR_FAILED) {
result = mk_add_app(flat_args.size(), flat_args.c_ptr());
return BR_DONE;
}
return st;
}
return mk_nflat_add_core(num_args, args, result);
}
template<typename Config>
inline expr * poly_rewriter<Config>::get_power_product(expr * t) {
if (is_mul(t) && to_app(t)->get_num_args() == 2 && is_numeral(to_app(t)->get_arg(0)))
return to_app(t)->get_arg(1);
return t;
}
template<typename Config>
inline expr * poly_rewriter<Config>::get_power_product(expr * t, numeral & a) {
if (is_mul(t) && to_app(t)->get_num_args() == 2 && is_numeral(to_app(t)->get_arg(0), a))
return to_app(t)->get_arg(1);
a = numeral(1);
return t;
}
template<typename Config>
bool poly_rewriter<Config>::is_mul(expr * t, numeral & c, expr * & pp) {
if (!is_mul(t) || to_app(t)->get_num_args() != 2)
return false;
if (!is_numeral(to_app(t)->get_arg(0), c))
return false;
pp = to_app(t)->get_arg(1);
return true;
}
template<typename Config>
struct poly_rewriter<Config>::hoist_cmul_lt {
poly_rewriter<Config> & m_r;
hoist_cmul_lt(poly_rewriter<Config> & r):m_r(r) {}
bool operator()(expr * t1, expr * t2) const {
expr * pp1, * pp2;
numeral c1, c2;
bool is_mul1 = m_r.is_mul(t1, c1, pp1);
bool is_mul2 = m_r.is_mul(t2, c2, pp2);
if (!is_mul1 && is_mul2)
return true;
if (is_mul1 && !is_mul2)
return false;
if (!is_mul1 && !is_mul2)
return t1->get_id() < t2->get_id();
if (c1 < c2)
return true;
if (c1 > c2)
return false;
return pp1->get_id() < pp2->get_id();
}
};
template<typename Config>
void poly_rewriter<Config>::hoist_cmul(expr_ref_buffer & args) {
unsigned sz = args.size();
std::sort(args.c_ptr(), args.c_ptr() + sz, hoist_cmul_lt(*this));
numeral c, c_prime;
ptr_buffer<expr> pps;
expr * pp, * pp_prime;
unsigned j = 0;
unsigned i = 0;
while (i < sz) {
expr * mon = args[i];
if (is_mul(mon, c, pp) && i < sz - 1) {
expr * mon_prime = args[i+1];
if (is_mul(mon_prime, c_prime, pp_prime) && c == c_prime) {
// found target
pps.reset();
pps.push_back(pp);
pps.push_back(pp_prime);
i += 2;
while (i < sz && is_mul(args[i], c_prime, pp_prime) && c == c_prime) {
pps.push_back(pp_prime);
i++;
}
SASSERT(is_numeral(to_app(mon)->get_arg(0), c_prime) && c == c_prime);
expr * mul_args[2] = { to_app(mon)->get_arg(0), mk_add_app(pps.size(), pps.c_ptr()) };
args.set(j, mk_mul_app(2, mul_args));
j++;
continue;
}
}
args.set(j, mon);
j++;
i++;
}
args.resize(j);
}
template<typename Config>
br_status poly_rewriter<Config>::mk_nflat_add_core(unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(num_args >= 2);
numeral c;
unsigned num_coeffs = 0;
numeral a;
expr_fast_mark1 visited; // visited.is_marked(power_product) if the power_product occurs in args
expr_fast_mark2 multiple; // multiple.is_marked(power_product) if power_product occurs more than once
bool has_multiple = false;
expr * prev = 0;
bool ordered = true;
for (unsigned i = 0; i < num_args; i++) {
expr * arg = args[i];
if (is_numeral(arg, a)) {
num_coeffs++;
c += a;
}
else {
// arg is not a numeral
if (m_sort_sums && ordered) {
if (prev != 0 && lt(arg, prev))
ordered = false;
prev = arg;
}
}
arg = get_power_product(arg);
if (visited.is_marked(arg)) {
multiple.mark(arg);
has_multiple = true;
}
else {
visited.mark(arg);
}
}
normalize(c);
SASSERT(m_sort_sums || ordered);
TRACE("sort_sums",
tout << "ordered: " << ordered << "\n";
for (unsigned i = 0; i < num_args; i++) tout << mk_ismt2_pp(args[i], m()) << "\n";);
if (has_multiple) {
// expensive case
buffer<numeral> coeffs;
m_expr2pos.reset();
// compute the coefficient of power products that occur multiple times.
for (unsigned i = 0; i < num_args; i++) {
expr * arg = args[i];
if (is_numeral(arg))
continue;
expr * pp = get_power_product(arg, a);
if (!multiple.is_marked(pp))
continue;
unsigned pos;
if (m_expr2pos.find(pp, pos)) {
coeffs[pos] += a;
}
else {
m_expr2pos.insert(pp, coeffs.size());
coeffs.push_back(a);
}
}
expr_ref_buffer new_args(m());
if (!c.is_zero()) {
new_args.push_back(mk_numeral(c));
}
// copy power products with non zero coefficients to new_args
visited.reset();
for (unsigned i = 0; i < num_args; i++) {
expr * arg = args[i];
if (is_numeral(arg))
continue;
expr * pp = get_power_product(arg);
if (!multiple.is_marked(pp)) {
new_args.push_back(arg);
}
else if (!visited.is_marked(pp)) {
visited.mark(pp);
unsigned pos = UINT_MAX;
m_expr2pos.find(pp, pos);
SASSERT(pos != UINT_MAX);
a = coeffs[pos];
normalize(a);
if (!a.is_zero())
new_args.push_back(mk_mul_app(a, pp));
}
}
if (m_hoist_cmul) {
hoist_cmul(new_args);
}
else if (m_sort_sums) {
TRACE("sort_sums_bug", tout << "new_args.size(): " << new_args.size() << "\n";);
if (c.is_zero())
std::sort(new_args.c_ptr(), new_args.c_ptr() + new_args.size(), ast_to_lt());
else
std::sort(new_args.c_ptr() + 1, new_args.c_ptr() + new_args.size(), ast_to_lt());
}
result = mk_add_app(new_args.size(), new_args.c_ptr());
if (hoist_multiplication(result)) {
return BR_REWRITE_FULL;
}
return BR_DONE;
}
else {
SASSERT(!has_multiple);
if (ordered && !m_hoist_mul && !m_hoist_cmul) {
if (num_coeffs == 0)
return BR_FAILED;
if (num_coeffs == 1 && is_numeral(args[0], a) && !a.is_zero())
return BR_FAILED;
}
expr_ref_buffer new_args(m());
if (!c.is_zero())
new_args.push_back(mk_numeral(c));
for (unsigned i = 0; i < num_args; i++) {
expr * arg = args[i];
if (is_numeral(arg))
continue;
new_args.push_back(arg);
}
if (m_hoist_cmul) {
hoist_cmul(new_args);
}
else if (!ordered) {
if (c.is_zero())
std::sort(new_args.c_ptr(), new_args.c_ptr() + new_args.size(), ast_to_lt());
else
std::sort(new_args.c_ptr() + 1, new_args.c_ptr() + new_args.size(), ast_to_lt());
}
result = mk_add_app(new_args.size(), new_args.c_ptr());
if (hoist_multiplication(result)) {
return BR_REWRITE_FULL;
}
return BR_DONE;
}
}
template<typename Config>
br_status poly_rewriter<Config>::mk_uminus(expr * arg, expr_ref & result) {
numeral a;
set_curr_sort(m().get_sort(arg));
if (is_numeral(arg, a)) {
a.neg();
normalize(a);
result = mk_numeral(a);
return BR_DONE;
}
else {
result = mk_mul_app(numeral(-1), arg);
return BR_REWRITE1;
}
}
template<typename Config>
br_status poly_rewriter<Config>::mk_sub(unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(num_args > 0);
if (num_args == 1) {
result = args[0];
return BR_DONE;
}
set_curr_sort(m().get_sort(args[0]));
expr * minus_one = mk_numeral(numeral(-1));
ptr_buffer<expr> new_args;
new_args.push_back(args[0]);
for (unsigned i = 1; i < num_args; i++) {
expr * aux_args[2] = { minus_one, args[i] };
new_args.push_back(mk_mul_app(2, aux_args));
}
result = mk_add_app(new_args.size(), new_args.c_ptr());
return BR_REWRITE2;
}
/**
\brief Cancel/Combine monomials that occur is the left and right hand sides.
\remark If move = true, then all non-constant monomials are moved to the left-hand-side.
*/
template<typename Config>
br_status poly_rewriter<Config>::cancel_monomials(expr * lhs, expr * rhs, bool move, expr_ref & lhs_result, expr_ref & rhs_result) {
set_curr_sort(m().get_sort(lhs));
unsigned lhs_sz;
expr * const * lhs_monomials = get_monomials(lhs, lhs_sz);
unsigned rhs_sz;
expr * const * rhs_monomials = get_monomials(rhs, rhs_sz);
expr_fast_mark1 visited; // visited.is_marked(power_product) if the power_product occurs in lhs or rhs
expr_fast_mark2 multiple; // multiple.is_marked(power_product) if power_product occurs more than once
bool has_multiple = false;
numeral c(0);
numeral a;
unsigned num_coeffs = 0;
for (unsigned i = 0; i < lhs_sz; i++) {
expr * arg = lhs_monomials[i];
if (is_numeral(arg, a)) {
c += a;
num_coeffs++;
}
else {
visited.mark(get_power_product(arg));
}
}
if (move && num_coeffs == 0 && is_numeral(rhs))
return BR_FAILED;
for (unsigned i = 0; i < rhs_sz; i++) {
expr * arg = rhs_monomials[i];
if (is_numeral(arg, a)) {
c -= a;
num_coeffs++;
}
else {
expr * pp = get_power_product(arg);
if (visited.is_marked(pp)) {
multiple.mark(pp);
has_multiple = true;
}
}
}
normalize(c);
if (!has_multiple && num_coeffs <= 1) {
if (move) {
if (is_numeral(rhs))
return BR_FAILED;
}
else {
if (num_coeffs == 0 || is_numeral(rhs))
return BR_FAILED;
}
}
buffer<numeral> coeffs;
m_expr2pos.reset();
for (unsigned i = 0; i < lhs_sz; i++) {
expr * arg = lhs_monomials[i];
if (is_numeral(arg))
continue;
expr * pp = get_power_product(arg, a);
if (!multiple.is_marked(pp))
continue;
unsigned pos;
if (m_expr2pos.find(pp, pos)) {
coeffs[pos] += a;
}
else {
m_expr2pos.insert(pp, coeffs.size());
coeffs.push_back(a);
}
}
for (unsigned i = 0; i < rhs_sz; i++) {
expr * arg = rhs_monomials[i];
if (is_numeral(arg))
continue;
expr * pp = get_power_product(arg, a);
if (!multiple.is_marked(pp))
continue;
unsigned pos = UINT_MAX;
m_expr2pos.find(pp, pos);
SASSERT(pos != UINT_MAX);
coeffs[pos] -= a;
}
ptr_buffer<expr> new_lhs_monomials;
new_lhs_monomials.push_back(0); // save space for coefficient if needed
// copy power products with non zero coefficients to new_lhs_monomials
visited.reset();
for (unsigned i = 0; i < lhs_sz; i++) {
expr * arg = lhs_monomials[i];
if (is_numeral(arg))
continue;
expr * pp = get_power_product(arg);
if (!multiple.is_marked(pp)) {
new_lhs_monomials.push_back(arg);
}
else if (!visited.is_marked(pp)) {
visited.mark(pp);
unsigned pos = UINT_MAX;
m_expr2pos.find(pp, pos);
SASSERT(pos != UINT_MAX);
a = coeffs[pos];
if (!a.is_zero())
new_lhs_monomials.push_back(mk_mul_app(a, pp));
}
}
ptr_buffer<expr> new_rhs_monomials;
new_rhs_monomials.push_back(0); // save space for coefficient if needed
for (unsigned i = 0; i < rhs_sz; i++) {
expr * arg = rhs_monomials[i];
if (is_numeral(arg))
continue;
expr * pp = get_power_product(arg, a);
if (!multiple.is_marked(pp)) {
if (move) {
if (!a.is_zero()) {
if (a.is_minus_one()) {
new_lhs_monomials.push_back(pp);
}
else {
a.neg();
SASSERT(!a.is_one());
expr * args[2] = { mk_numeral(a), pp };
new_lhs_monomials.push_back(mk_mul_app(2, args));
}
}
}
else {
new_rhs_monomials.push_back(arg);
}
}
}
bool c_at_rhs = false;
if (move) {
if (m_sort_sums) {
// + 1 to skip coefficient
std::sort(new_lhs_monomials.begin() + 1, new_lhs_monomials.end(), ast_to_lt());
}
c_at_rhs = true;
}
else if (new_rhs_monomials.size() == 1) { // rhs is empty
c_at_rhs = true;
}
else if (new_lhs_monomials.size() > 1) {
c_at_rhs = true;
}
if (c_at_rhs) {
c.neg();
normalize(c);
new_rhs_monomials[0] = mk_numeral(c);
lhs_result = mk_add_app(new_lhs_monomials.size() - 1, new_lhs_monomials.c_ptr() + 1);
rhs_result = mk_add_app(new_rhs_monomials.size(), new_rhs_monomials.c_ptr());
}
else {
new_lhs_monomials[0] = mk_numeral(c);
lhs_result = mk_add_app(new_lhs_monomials.size(), new_lhs_monomials.c_ptr());
rhs_result = mk_add_app(new_rhs_monomials.size() - 1, new_rhs_monomials.c_ptr() + 1);
}
return BR_DONE;
}
#define TO_BUFFER(_tester_, _buffer_, _e_) \
_buffer_.push_back(_e_); \
for (unsigned _i = 0; _i < _buffer_.size(); ) { \
expr* _e = _buffer_[_i]; \
if (_tester_(_e)) { \
app* a = to_app(_e); \
_buffer_[_i] = a->get_arg(0); \
for (unsigned _j = 1; _j < a->get_num_args(); ++_j) { \
_buffer_.push_back(a->get_arg(_j)); \
} \
} \
else { \
++_i; \
} \
} \
template<typename Config>
bool poly_rewriter<Config>::hoist_multiplication(expr_ref& som) {
if (!m_hoist_mul) {
return false;
}
ptr_buffer<expr> adds, muls;
TO_BUFFER(is_add, adds, som);
buffer<bool> valid(adds.size(), true);
obj_map<expr, unsigned> mul_map;
unsigned j;
bool change = false;
for (unsigned k = 0; k < adds.size(); ++k) {
expr* e = adds[k];
muls.reset();
TO_BUFFER(is_mul, muls, e);
for (unsigned i = 0; i < muls.size(); ++i) {
e = muls[i];
if (is_numeral(e)) {
continue;
}
if (mul_map.find(e, j) && valid[j] && j != k) {
m_curr_sort = m().get_sort(adds[k]);
adds[j] = merge_muls(adds[j], adds[k]);
adds[k] = mk_numeral(rational(0));
valid[j] = false;
valid[k] = false;
change = true;
break;
}
else {
mul_map.insert(e, k);
}
}
}
if (!change) {
return false;
}
som = mk_add_app(adds.size(), adds.c_ptr());
return true;
}
template<typename Config>
expr* poly_rewriter<Config>::merge_muls(expr* x, expr* y) {
ptr_buffer<expr> m1, m2;
TO_BUFFER(is_mul, m1, x);
TO_BUFFER(is_mul, m2, y);
unsigned k = 0;
for (unsigned i = 0; i < m1.size(); ++i) {
x = m1[i];
bool found = false;
unsigned j;
for (j = k; j < m2.size(); ++j) {
found = m2[j] == x;
if (found) break;
}
if (found) {
std::swap(m1[i],m1[k]);
std::swap(m2[j],m2[k]);
++k;
}
}
m_curr_sort = m().get_sort(x);
SASSERT(k > 0);
SASSERT(m1.size() >= k);
SASSERT(m2.size() >= k);
expr* args[2] = { mk_mul_app(m1.size()-k, m1.c_ptr()+k),
mk_mul_app(m2.size()-k, m2.c_ptr()+k) };
if (k == m1.size()) {
m1.push_back(0);
}
m1[k] = mk_add_app(2, args);
return mk_mul_app(k+1, m1.c_ptr());
}