mirror of
				https://github.com/Z3Prover/z3
				synced 2025-11-04 05:19:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			88 lines
		
	
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			88 lines
		
	
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
############################################
 | 
						|
# Copyright (c) Microsoft Corporation. All Rights Reserved. 
 | 
						|
# 
 | 
						|
# Check if the given graph has a Hamiltonian cycle.
 | 
						|
#
 | 
						|
# Author: Ganesh Gopalakrishnan ganesh@cs.utah.edu
 | 
						|
############################################
 | 
						|
from z3 import *
 | 
						|
 | 
						|
def gencon(gr):
 | 
						|
    """
 | 
						|
    Input a graph as an adjacency list, e.g. {0:[1,2], 1:[2], 2:[1,0]}.
 | 
						|
    Produces solver to check if the given graph has
 | 
						|
    a Hamiltonian cycle. Query the solver using s.check() and if sat,
 | 
						|
    then s.model() spells out the cycle. Two example graphs from
 | 
						|
    http://en.wikipedia.org/wiki/Hamiltonian_path are tested.
 | 
						|
 | 
						|
    =======================================================
 | 
						|
    
 | 
						|
    Explanation:
 | 
						|
    
 | 
						|
    Generate a list of Int vars. Constrain the first Int var ("Node 0") to be 0.
 | 
						|
    Pick a node i, and attempt to number all nodes reachable from i to have a
 | 
						|
    number one higher (mod L) than assigned to node i (use an Or constraint).
 | 
						|
    
 | 
						|
    =======================================================
 | 
						|
    """
 | 
						|
    L = len(gr)
 | 
						|
    cv = [Int('cv%s'%i) for i in range(L)]
 | 
						|
    s = Solver()
 | 
						|
    s.add(cv[0]==0)
 | 
						|
    for i in range(L):
 | 
						|
        s.add(Or([cv[j]==(cv[i]+1)%L for j in gr[i]]))
 | 
						|
    return s
 | 
						|
 | 
						|
def examples():
 | 
						|
    # Example Graphs: The Dodecahedral graph from http://en.wikipedia.org/wiki/Hamiltonian_path
 | 
						|
    grdodec = { 0: [1, 4, 5],
 | 
						|
                1: [0, 7, 2],
 | 
						|
                2: [1, 9, 3],
 | 
						|
                3: [2, 11, 4],
 | 
						|
                4: [3, 13, 0],
 | 
						|
                5: [0, 14, 6],
 | 
						|
                6: [5, 16, 7],
 | 
						|
                7: [6, 8, 1],
 | 
						|
                8: [7, 17, 9],
 | 
						|
                9: [8, 10, 2],
 | 
						|
                10: [9, 18, 11],
 | 
						|
                11: [10, 3, 12],
 | 
						|
                12: [11, 19, 13],
 | 
						|
                13: [12, 14, 4],
 | 
						|
                14: [13, 15, 5],
 | 
						|
                15: [14, 16, 19],
 | 
						|
                16: [6, 17, 15],
 | 
						|
                17: [16, 8, 18],
 | 
						|
                18: [10, 19, 17],
 | 
						|
                19: [18, 12, 15] }
 | 
						|
    import pprint
 | 
						|
    pp = pprint.PrettyPrinter(indent=4)
 | 
						|
    pp.pprint(grdodec)
 | 
						|
    
 | 
						|
    sdodec=gencon(grdodec)
 | 
						|
    print(sdodec.check())
 | 
						|
    print(sdodec.model())
 | 
						|
    # =======================================================
 | 
						|
    # See http://en.wikipedia.org/wiki/Hamiltonian_path for the Herschel graph
 | 
						|
    # being the smallest possible polyhedral graph that does not have a Hamiltonian
 | 
						|
    # cycle.
 | 
						|
    #
 | 
						|
    grherschel = { 0: [1, 9, 10, 7],
 | 
						|
                   1: [0, 8, 2],
 | 
						|
                   2: [1, 9, 3],
 | 
						|
                   3: [2, 8, 4],
 | 
						|
                   4: [3, 9, 10, 5],
 | 
						|
                   5: [4, 8, 6],
 | 
						|
                   6: [5, 10, 7],
 | 
						|
                   7: [6, 8, 0],
 | 
						|
                   8: [1, 3, 5, 7],
 | 
						|
                   9: [2, 0, 4],
 | 
						|
                   10: [6, 4, 0] }
 | 
						|
    pp.pprint(grherschel)
 | 
						|
    sherschel=gencon(grherschel)
 | 
						|
    print(sherschel.check())
 | 
						|
    # =======================================================
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    examples()
 | 
						|
 |