3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00
z3/python/z3printer.py
Leonardo de Moura e9ff9ba9fc Z3Py sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 08:00:13 -07:00

989 lines
31 KiB
Python

############################################
# Copyright (c) 2012 Microsoft Corporation
#
# Z3 Python interface
#
# Author: Leonardo de Moura (leonardo)
############################################
import sys, io, z3
from z3consts import *
from z3core import *
##############################
#
# Configuration
#
##############################
# Z3 operator names to Z3Py
_z3_op_to_str = {
Z3_OP_TRUE : 'True', Z3_OP_FALSE : 'False', Z3_OP_EQ : '==', Z3_OP_DISTINCT : 'Distinct',
Z3_OP_ITE : 'If', Z3_OP_AND : 'And', Z3_OP_OR : 'Or', Z3_OP_IFF : '==', Z3_OP_XOR : 'Xor',
Z3_OP_NOT : 'Not', Z3_OP_IMPLIES : 'Implies', Z3_OP_IDIV : '/', Z3_OP_MOD : '%',
Z3_OP_TO_REAL : 'ToReal', Z3_OP_TO_INT : 'ToInt', Z3_OP_POWER : '**', Z3_OP_IS_INT : 'IsInt',
Z3_OP_BADD : '+', Z3_OP_BSUB : '-', Z3_OP_BMUL : '*', Z3_OP_BOR : '|', Z3_OP_BAND : '&',
Z3_OP_BNOT : '~', Z3_OP_BXOR : '^', Z3_OP_BNEG : '-', Z3_OP_BUDIV : 'UDiv', Z3_OP_BSDIV : '/', Z3_OP_BSMOD : '%',
Z3_OP_BSREM : 'SRem', Z3_OP_BUREM : 'URem', Z3_OP_EXT_ROTATE_LEFT : 'RotateLeft', Z3_OP_EXT_ROTATE_RIGHT : 'RotateRight',
Z3_OP_SLEQ : '<=', Z3_OP_SLT : '<', Z3_OP_SGEQ : '>=', Z3_OP_SGT : '>',
Z3_OP_ULEQ : 'ULE', Z3_OP_ULT : 'ULT', Z3_OP_UGEQ : 'UGE', Z3_OP_UGT : 'UGT',
Z3_OP_SIGN_EXT : 'SignExt', Z3_OP_ZERO_EXT : 'ZeroExt', Z3_OP_REPEAT : 'RepeatBitVec',
Z3_OP_BASHR : '>>', Z3_OP_BSHL : '<<', Z3_OP_BLSHR : 'LShR',
Z3_OP_CONCAT : 'Concat', Z3_OP_EXTRACT : 'Extract', Z3_OP_BV2INT : 'BV2Int',
Z3_OP_ARRAY_MAP : 'Map', Z3_OP_SELECT : 'Select', Z3_OP_STORE : 'Store',
Z3_OP_CONST_ARRAY : 'K'
}
# List of infix operators
_z3_infix = [
Z3_OP_EQ, Z3_OP_IFF, Z3_OP_ADD, Z3_OP_SUB, Z3_OP_MUL, Z3_OP_DIV, Z3_OP_IDIV, Z3_OP_MOD, Z3_OP_POWER,
Z3_OP_LE, Z3_OP_LT, Z3_OP_GE, Z3_OP_GT, Z3_OP_BADD, Z3_OP_BSUB, Z3_OP_BMUL, Z3_OP_BSDIV, Z3_OP_BSMOD, Z3_OP_BOR, Z3_OP_BAND,
Z3_OP_BXOR, Z3_OP_BSDIV, Z3_OP_SLEQ, Z3_OP_SLT, Z3_OP_SGEQ, Z3_OP_SGT, Z3_OP_BASHR, Z3_OP_BSHL
]
_z3_unary = [ Z3_OP_UMINUS, Z3_OP_BNOT, Z3_OP_BNEG ]
# Precedence
_z3_precedence = {
Z3_OP_POWER : 0,
Z3_OP_UMINUS : 1, Z3_OP_BNEG : 1, Z3_OP_BNOT : 1,
Z3_OP_MUL : 2, Z3_OP_DIV : 2, Z3_OP_IDIV : 2, Z3_OP_MOD : 2, Z3_OP_BMUL : 2, Z3_OP_BSDIV : 2, Z3_OP_BSMOD : 2,
Z3_OP_ADD : 3, Z3_OP_SUB : 3, Z3_OP_BADD : 3, Z3_OP_BSUB : 3,
Z3_OP_BASHR : 4, Z3_OP_BSHL : 4,
Z3_OP_BAND : 5,
Z3_OP_BXOR : 6,
Z3_OP_BOR : 7,
Z3_OP_LE : 8, Z3_OP_LT : 8, Z3_OP_GE : 8, Z3_OP_GT : 8, Z3_OP_EQ : 8, Z3_OP_SLEQ : 8, Z3_OP_SLT : 8, Z3_OP_SGEQ : 8, Z3_OP_SGT : 8,
Z3_OP_IFF : 8
}
def _is_assoc(k):
return k == Z3_OP_BOR or k == Z3_OP_BXOR or k == Z3_OP_BAND or k == Z3_OP_ADD or k == Z3_OP_BADD or k == Z3_OP_MUL or k == Z3_OP_BMUL
def _is_left_assoc(k):
return _is_assoc(k) or k == Z3_OP_SUB or k == Z3_OP_BSUB
def _is_html_assoc(k):
return k == Z3_OP_AND or k == Z3_OP_OR or k == Z3_OP_IFF or _is_assoc(k)
def _is_html_left_assoc(k):
return _is_html_assoc(k) or k == Z3_OP_SUB or k == Z3_OP_BSUB
def _is_add(k):
return k == Z3_OP_ADD or k == Z3_OP_BADD
def _is_sub(k):
return k == Z3_OP_SUB or k == Z3_OP_BSUB
_z3_infix_compact = [ Z3_OP_MUL, Z3_OP_BMUL, Z3_OP_POWER, Z3_OP_DIV, Z3_OP_IDIV, Z3_OP_MOD, Z3_OP_BSDIV, Z3_OP_BSMOD ]
_ellipses = '...'
_html_ellipses = '&hellip;'
# Overwrite some of the operators for HTML
_z3_pre_html_op_to_str = { Z3_OP_EQ : '=', Z3_OP_IFF : '=', Z3_OP_NOT : '&not;',
Z3_OP_AND : '&and;', Z3_OP_OR : '&or;', Z3_OP_IMPLIES : '&rArr;',
Z3_OP_LT : '&lt;', Z3_OP_GT : '&gt;', Z3_OP_LE : '&le;', Z3_OP_GE : '&ge;',
Z3_OP_MUL : '&middot;',
Z3_OP_SLEQ : '&le;', Z3_OP_SLT : '&lt;', Z3_OP_SGEQ : '&ge;', Z3_OP_SGT : '&gt;',
Z3_OP_ULEQ : '&le;<sub>u</sub>', Z3_OP_ULT : '&lt;<sub>u</sub>',
Z3_OP_UGEQ : '&ge;<sub>u</sub>', Z3_OP_UGT : '&gt;<sub>u</sub>',
Z3_OP_BMUL : '&middot;',
Z3_OP_BUDIV : '/<sub>u</sub>', Z3_OP_BUREM : '%<sub>u</sub>',
Z3_OP_BASHR : '&gt;&gt;', Z3_OP_BSHL : '&lt;&lt;',
Z3_OP_BLSHR : '&gt;&gt;<sub>u</sub>'
}
# Extra operators that are infix/unary for HTML
_z3_html_infix = [ Z3_OP_AND, Z3_OP_OR, Z3_OP_IMPLIES,
Z3_OP_ULEQ, Z3_OP_ULT, Z3_OP_UGEQ, Z3_OP_UGT, Z3_OP_BUDIV, Z3_OP_BUREM, Z3_OP_BLSHR
]
_z3_html_unary = [ Z3_OP_NOT ]
# Extra Precedence for HTML
_z3_pre_html_precedence = { Z3_OP_BUDIV : 2, Z3_OP_BUREM : 2,
Z3_OP_BLSHR : 4,
Z3_OP_ULEQ : 8, Z3_OP_ULT : 8,
Z3_OP_UGEQ : 8, Z3_OP_UGT : 8,
Z3_OP_ULEQ : 8, Z3_OP_ULT : 8,
Z3_OP_UGEQ : 8, Z3_OP_UGT : 8,
Z3_OP_NOT : 1,
Z3_OP_AND : 10,
Z3_OP_OR : 11,
Z3_OP_IMPLIES : 12 }
##############################
#
# End of Configuration
#
##############################
def _support_pp(a):
return isinstance(a, z3.Z3PPObject) or isinstance(a, list) or isinstance(a, tuple)
_infix_map = {}
_unary_map = {}
_infix_compact_map = {}
for _k in _z3_infix:
_infix_map[_k] = True
for _k in _z3_unary:
_unary_map[_k] = True
for _k in _z3_infix_compact:
_infix_compact_map[_k] = True
def _is_infix(k):
global _infix_map
return _infix_map.get(k, False)
def _is_infix_compact(k):
global _infix_compact_map
return _infix_compact_map.get(k, False)
def _is_unary(k):
global _unary_map
return _unary_map.get(k, False)
def _op_name(a):
if isinstance(a, z3.FuncDeclRef):
f = a
else:
f = a.decl()
k = f.kind()
n = _z3_op_to_str.get(k, None)
if n == None:
return f.name()
else:
return n
def _get_precedence(k):
global _z3_precedence
return _z3_precedence.get(k, 100000)
_z3_html_op_to_str = {}
for _k, _v in _z3_op_to_str.iteritems():
_z3_html_op_to_str[_k] = _v
for _k, _v in _z3_pre_html_op_to_str.iteritems():
_z3_html_op_to_str[_k] = _v
_z3_html_precedence = {}
for _k, _v in _z3_precedence.iteritems():
_z3_html_precedence[_k] = _v
for _k, _v in _z3_pre_html_precedence.iteritems():
_z3_html_precedence[_k] = _v
_html_infix_map = {}
_html_unary_map = {}
for _k in _z3_infix:
_html_infix_map[_k] = True
for _k in _z3_html_infix:
_html_infix_map[_k] = True
for _k in _z3_unary:
_html_unary_map[_k] = True
for _k in _z3_html_unary:
_html_unary_map[_k] = True
def _is_html_infix(k):
global _html_infix_map
return _html_infix_map.get(k, False)
def _is_html_unary(k):
global _html_unary_map
return _html_unary_map.get(k, False)
def _html_op_name(a):
global _z3_html_op_to_str
if isinstance(a, z3.FuncDeclRef):
f = a
else:
f = a.decl()
k = f.kind()
n = _z3_html_op_to_str.get(k, None)
if n == None:
sym = Z3_get_decl_name(f.ctx_ref(), f.ast)
if Z3_get_symbol_kind(f.ctx_ref(), sym) == Z3_INT_SYMBOL:
return "&#950;<sub>%s</sub>" % Z3_get_symbol_int(f.ctx_ref(), sym)
else:
# Sanitize the string
return f.name()
else:
return n
def _get_html_precedence(k):
global _z3_html_predence
return _z3_html_precedence.get(k, 100000)
class FormatObject:
def is_compose(self):
return False
def is_choice(self):
return False
def is_indent(self):
return False
def is_string(self):
return False
def is_linebreak(self):
return False
def is_nil(self):
return True
def children(self):
return []
def as_tuple(self):
return None
def space_upto_nl(self):
return (0, False)
def flat(self):
return self
class NAryFormatObject(FormatObject):
def __init__(self, fs):
assert all(map(lambda a: isinstance(a, FormatObject), fs))
self.children = fs
def children(self):
return self.children
class ComposeFormatObject(NAryFormatObject):
def is_compose(sef):
return True
def as_tuple(self):
return ('compose', map(lambda a: a.as_tuple(), self.children))
def space_upto_nl(self):
r = 0
for child in self.children:
s, nl = child.space_upto_nl()
r = r + s
if nl:
return (r, True)
return (r, False)
def flat(self):
return compose(map(lambda a: a.flat(), self.children))
class ChoiceFormatObject(NAryFormatObject):
def is_choice(sef):
return True
def as_tuple(self):
return ('choice', map(lambda a: a.as_tuple(), self.children))
def space_upto_nl(self):
return self.children[0].space_upto_nl()
def flat(self):
return self.children[0].flat()
class IndentFormatObject(FormatObject):
def __init__(self, indent, child):
assert isinstance(child, FormatObject)
self.indent = indent
self.child = child
def children(self):
return [self.child]
def as_tuple(self):
return ('indent', self.indent, self.child.as_tuple())
def space_upto_nl(self):
return self.child.space_upto_nl()
def flat(self):
return indent(self.indent, self.child.flat())
def is_indent(self):
return True
class LineBreakFormatObject(FormatObject):
def __init__(self):
self.space = ' '
def is_linebreak(self):
return True
def as_tuple(self):
return '<line-break>'
def space_upto_nl(self):
return (0, True)
def flat(self):
return to_format(self.space)
class StringFormatObject(FormatObject):
def __init__(self, string):
assert isinstance(string, str)
self.string = string
def is_string(self):
return True
def as_tuple(self):
return self.string
def space_upto_nl(self):
return (getattr(self, 'size', len(self.string)), False)
def fits(f, space_left):
s, nl = f.space_upto_nl()
return s <= space_left
def to_format(arg, size=None):
if isinstance(arg, FormatObject):
return arg
else:
r = StringFormatObject(str(arg))
if size != None:
r.size = size
return r
def compose(*args):
if len(args) == 1 and (isinstance(args[0], list) or isinstance(args[0], tuple)):
args = args[0]
return ComposeFormatObject(args)
def indent(i, arg):
return IndentFormatObject(i, arg)
def group(arg):
return ChoiceFormatObject([arg.flat(), arg])
def line_break():
return LineBreakFormatObject()
def _len(a):
if isinstance(a, StringFormatObject):
return getattr(a, 'size', len(a.string))
else:
return len(a)
def seq(args, sep=',', space=True):
nl = line_break()
if not space:
nl.space = ''
r = []
r.append(args[0])
num = len(args)
for i in range(num - 1):
r.append(to_format(sep))
r.append(nl)
r.append(args[i+1])
return compose(r)
def seq1(header, args, lp='(', rp=')'):
return group(compose(to_format(header),
to_format(lp),
indent(len(lp) + _len(header),
seq(args)),
to_format(rp)))
def seq2(header, args, i=4, lp='(', rp=')'):
if len(args) == 0:
return compose(to_format(header), to_format(lp), to_format(rp))
else:
return group(compose(indent(len(lp), compose(to_format(lp), to_format(header))),
indent(i, compose(seq(args), to_format(rp)))))
def seq3(args, lp='(', rp=')'):
if len(args) == 0:
return compose(to_format(lp), to_format(rp))
else:
return group(indent(len(lp), compose(to_format(lp), seq(args), to_format(rp))))
class StopPPException:
def __str__(self):
return 'pp-interrupted'
class PP:
def __init__(self):
self.max_lines = 200
self.max_width = 60
self.bounded = False
self.max_indent = 40
def pp_string(self, f, indent):
if not self.bounded or self.pos <= self.max_width:
sz = _len(f)
if self.bounded and self.pos + sz > self.max_width:
self.out.write(_ellipses)
else:
self.pos = self.pos + sz
self.ribbon_pos = self.ribbon_pos + sz
self.out.write(unicode(f.string))
def pp_compose(self, f, indent):
for c in f.children:
self.pp(c, indent)
def pp_choice(self, f, indent):
space_left = self.max_width - self.pos
if space_left > 0 and fits(f.children[0], space_left):
self.pp(f.children[0], indent)
else:
self.pp(f.children[1], indent)
def pp_line_break(self, f, indent):
self.pos = indent
self.ribbon_pos = 0
self.line = self.line + 1
if self.line < self.max_lines:
self.out.write(unicode('\n'))
for i in range(indent):
self.out.write(unicode(' '))
else:
self.out.write(unicode('\n...'))
raise StopPPException()
def pp(self, f, indent):
if f.is_string():
self.pp_string(f, indent)
elif f.is_indent():
self.pp(f.child, min(indent + f.indent, self.max_indent))
elif f.is_compose():
self.pp_compose(f, indent)
elif f.is_choice():
self.pp_choice(f, indent)
elif f.is_linebreak():
self.pp_line_break(f, indent)
else:
return
def __call__(self, out, f):
try:
self.pos = 0
self.ribbon_pos = 0
self.line = 0
self.out = out
self.pp(f, 0)
except StopPPException:
return
class Formatter:
def __init__(self):
global _ellipses
self.max_depth = 20
self.max_args = 128
self.rational_to_decimal = False
self.precision = 10
self.ellipses = to_format(_ellipses)
self.max_visited = 10000
def pp_ellipses(self):
return self.ellipses
def pp_arrow(self):
return ' ->'
def pp_unknown(self):
return '<unknown>'
def pp_name(self, a):
return to_format(_op_name(a))
def is_infix(self, a):
return _is_infix(a)
def is_unary(self, a):
return _is_unary(a)
def get_precedence(self, a):
return _get_precedence(a)
def is_infix_compact(self, a):
return _is_infix_compact(a)
def is_infix_unary(self, a):
return self.is_infix(a) or self.is_unary(a)
def add_paren(self, a):
return compose(to_format('('), indent(1, a), to_format(')'))
def pp_sort(self, s):
if isinstance(s, z3.ArraySortRef):
return seq1('Array', (self.pp_sort(s.domain()), self.pp_sort(s.range())))
elif isinstance(s, z3.BitVecSortRef):
return seq1('BitVec', (to_format(s.size()), ))
else:
return to_format(s.name())
def pp_const(self, a):
return self.pp_name(a)
def pp_int(self, a):
return to_format(a.as_string())
def pp_rational(self, a):
if not self.rational_to_decimal:
return to_format(a.as_string())
else:
return to_format(a.as_decimal(self.precision))
def pp_algebraic(self, a):
return to_format(a.as_decimal(self.precision))
def pp_bv(self, a):
return to_format(a.as_string())
def pp_prefix(self, a, d, xs):
r = []
sz = 0
for child in a.children():
r.append(self.pp_expr(child, d+1, xs))
sz = sz + 1
if sz > self.max_args:
r.append(self.pp_ellipses())
break
return seq1(self.pp_name(a), r)
def is_assoc(self, k):
return _is_assoc(k)
def is_left_assoc(self, k):
return _is_left_assoc(k)
def infix_args_core(self, a, d, xs, r):
sz = len(r)
k = a.decl().kind()
p = self.get_precedence(k)
first = True
for child in a.children():
child_pp = self.pp_expr(child, d+1, xs)
child_k = None
if z3.is_app(child):
child_k = child.decl().kind()
if k == child_k and (self.is_assoc(k) or (first and self.is_left_assoc(k))):
self.infix_args_core(child, d, xs, r)
sz = len(r)
if sz > self.max_args:
return
elif self.is_infix_unary(child_k):
child_p = self.get_precedence(child_k)
if p > child_p or (_is_add(k) and _is_sub(child_k)) or (_is_sub(k) and first and _is_add(child_k)):
r.append(child_pp)
else:
r.append(self.add_paren(child_pp))
sz = sz + 1
elif z3.is_quantifier(child):
r.append(self.add_paren(child_pp))
else:
r.append(child_pp)
sz = sz + 1
if sz > self.max_args:
r.append(self.pp_ellipses())
return
first = False
def infix_args(self, a, d, xs):
r = []
self.infix_args_core(a, d, xs, r)
return r
def pp_infix(self, a, d, xs):
k = a.decl().kind()
if self.is_infix_compact(k):
op = self.pp_name(a)
return group(seq(self.infix_args(a, d, xs), op, False))
else:
op = self.pp_name(a)
sz = _len(op)
op.string = ' ' + op.string
op.size = sz + 1
return group(seq(self.infix_args(a, d, xs), op))
def pp_unary(self, a, d, xs):
k = a.decl().kind()
p = self.get_precedence(k)
child = a.children()[0]
child_k = None
if z3.is_app(child):
child_k = child.decl().kind()
child_pp = self.pp_expr(child, d+1, xs)
if k != child_k and self.is_infix_unary(child_k):
child_p = self.get_precedence(child_k)
if p <= child_p:
child_pp = self.add_paren(child_pp)
if z3.is_quantifier(child):
child_pp = self.add_paren(child_pp)
name = self.pp_name(a)
return compose(to_format(name), indent(_len(name), child_pp))
def pp_power_arg(self, arg, d, xs):
r = self.pp_expr(arg, d+1, xs)
k = None
if z3.is_app(arg):
k = arg.decl().kind()
if self.is_infix_unary(k) or (z3.is_rational_value(arg) and arg.denominator_as_long() != 1):
return self.add_paren(r)
else:
return r
def pp_power(self, a, d, xs):
arg1_pp = self.pp_power_arg(a.arg(0), d+1, xs)
arg2_pp = self.pp_power_arg(a.arg(1), d+1, xs)
return group(seq((arg1_pp, arg2_pp), '**', False))
def pp_neq(self):
return to_format("!=")
def pp_distinct(self, a, d, xs):
if a.num_args() == 2:
op = self.pp_neq()
sz = _len(op)
op.string = ' ' + op.string
op.size = sz + 1
return group(seq(self.infix_args(a, d, xs), op))
else:
return self.pp_prefix(a, d, xs)
def pp_select(self, a, d, xs):
if a.num_args() != 2:
return self.pp_prefix(a, d, xs)
else:
arg1_pp = self.pp_expr(a.arg(0), d+1, xs)
arg2_pp = self.pp_expr(a.arg(1), d+1, xs)
return compose(arg1_pp, indent(2, compose(to_format('['), arg2_pp, to_format(']'))))
def pp_unary_param(self, a, d, xs):
p = Z3_get_decl_int_parameter(a.ctx_ref(), a.decl().ast, 0)
arg = self.pp_expr(a.arg(0), d+1, xs)
return seq1(self.pp_name(a), [ to_format(p), arg ])
def pp_extract(self, a, d, xs):
h = Z3_get_decl_int_parameter(a.ctx_ref(), a.decl().ast, 0)
l = Z3_get_decl_int_parameter(a.ctx_ref(), a.decl().ast, 1)
arg = self.pp_expr(a.arg(0), d+1, xs)
return seq1(self.pp_name(a), [ to_format(h), to_format(l), arg ])
def pp_pattern(self, a, d, xs):
if a.num_args() == 1:
return self.pp_expr(a.arg(0), d, xs)
else:
return seq1('MultiPattern', [ self.pp_expr(arg, d+1, xs) for arg in a.children() ])
def pp_map(self, a, d, xs):
r = []
sz = 0
f = z3.get_map_func(a)
r.append(to_format(f.name()))
for child in a.children():
r.append(self.pp_expr(child, d+1, xs))
sz = sz + 1
if sz > self.max_args:
r.append(self.pp_ellipses())
break
return seq1(self.pp_name(a), r)
def pp_K(self, a, d, xs):
return seq1(self.pp_name(a), [ self.pp_sort(a.domain()), self.pp_expr(a.arg(0), d+1, xs) ])
def pp_app(self, a, d, xs):
if z3.is_int_value(a):
return self.pp_int(a)
elif z3.is_rational_value(a):
return self.pp_rational(a)
elif z3.is_algebraic_value(a):
return self.pp_algebraic(a)
elif z3.is_bv_value(a):
return self.pp_bv(a)
elif z3.is_const(a):
return self.pp_const(a)
else:
f = a.decl()
k = f.kind()
if k == Z3_OP_POWER:
return self.pp_power(a, d, xs)
elif k == Z3_OP_DISTINCT:
return self.pp_distinct(a, d, xs)
elif k == Z3_OP_SELECT:
return self.pp_select(a, d, xs)
elif k == Z3_OP_SIGN_EXT or k == Z3_OP_ZERO_EXT or k == Z3_OP_REPEAT:
return self.pp_unary_param(a, d, xs)
elif k == Z3_OP_EXTRACT:
return self.pp_extract(a, d, xs)
elif k == Z3_OP_ARRAY_MAP:
return self.pp_map(a, d, xs)
elif k == Z3_OP_CONST_ARRAY:
return self.pp_K(a, d, xs)
elif z3.is_pattern(a):
return self.pp_pattern(a, d, xs)
elif self.is_infix(k):
return self.pp_infix(a, d, xs)
elif self.is_unary(k):
return self.pp_unary(a, d, xs)
else:
return self.pp_prefix(a, d, xs)
def pp_var(self, a, d, xs):
idx = z3.get_var_index(a)
sz = len(xs)
if idx >= sz:
return seq1('Var', (to_format(idx),))
else:
return to_format(xs[sz - idx - 1])
def pp_quantifier(self, a, d, xs):
ys = [ to_format(a.var_name(i)) for i in range(a.num_vars()) ]
new_xs = xs + ys
body_pp = self.pp_expr(a.body(), d+1, new_xs)
if len(ys) == 1:
ys_pp = ys[0]
else:
ys_pp = seq3(ys, '[', ']')
if a.is_forall():
header = 'ForAll'
else:
header = 'Exists'
return seq1(header, (ys_pp, body_pp))
def pp_expr(self, a, d, xs):
self.visited = self.visited + 1
if d > self.max_depth or self.visited > self.max_visited:
return self.pp_ellipses()
if z3.is_app(a):
return self.pp_app(a, d, xs)
elif z3.is_quantifier(a):
return self.pp_quantifier(a, d, xs)
elif z3.is_var(a):
return self.pp_var(a, d, xs)
else:
return to_format(self.pp_unknown())
def pp_seq_core(self, f, a, d, xs):
self.visited = self.visited + 1
if d > self.max_depth or self.visited > self.max_visited:
return self.pp_ellipses()
r = []
sz = 0
for elem in a:
r.append(f(elem, d+1, xs))
sz = sz + 1
if sz > self.max_args:
r.append(self.pp_ellipses())
break
return seq3(r, '[', ']')
def pp_seq(self, a, d, xs):
return self.pp_seq_core(self.pp_expr, a, d, xs)
def pp_seq_seq(self, a, d, xs):
return self.pp_seq_core(self.pp_seq, a, d, xs)
def pp_model(self, m):
r = []
sz = 0
for d in m:
i = m[d]
if isinstance(i, z3.FuncInterp):
i_pp = self.pp_func_interp(i)
else:
i_pp = self.pp_expr(i, 0, [])
name = self.pp_name(d)
r.append(compose(name, to_format(' = '), indent(_len(name) + 3, i_pp)))
sz = sz + 1
if sz > self.max_args:
r.append(self.pp_ellipses())
break
return seq3(r, '[', ']')
def pp_func_entry(self, e):
num = e.num_args()
if num > 1:
args = []
for i in range(num):
args.append(self.pp_expr(e.arg_value(i), 0, []))
args_pp = group(seq3(args))
else:
args_pp = self.pp_expr(e.arg_value(0), 0, [])
value_pp = self.pp_expr(e.value(), 0, [])
return group(seq((args_pp, value_pp), self.pp_arrow()))
def pp_func_interp(self, f):
r = []
sz = 0
num = f.num_entries()
for i in range(num):
r.append(self.pp_func_entry(f.entry(i)))
sz = sz + 1
if sz > self.max_args:
r.append(self.pp_ellipses())
break
if sz <= self.max_args:
else_pp = self.pp_expr(f.else_value(), 0, [])
r.append(group(seq((to_format('else'), else_pp), self.pp_arrow())))
return seq3(r, '[', ']')
def pp_list(self, a):
r = []
sz = 0
for elem in a:
if _support_pp(elem):
r.append(self.main(elem))
else:
r.append(to_format(str(elem)))
sz = sz + 1
if sz > self.max_args:
r.append(self.pp_ellipses())
break
if isinstance(a, tuple):
return seq3(r)
else:
return seq3(r, '[', ']')
def main(self, a):
if z3.is_expr(a):
return self.pp_expr(a, 0, [])
elif z3.is_sort(a):
return self.pp_sort(a)
elif z3.is_func_decl(a):
return self.pp_name(a)
elif isinstance(a, z3.Goal) or isinstance(a, z3.AstVector):
return self.pp_seq(a, 0, [])
elif isinstance(a, z3.Solver):
return self.pp_seq(a.assertions(), 0, [])
elif isinstance(a, z3.Fixedpoint):
return a.sexpr()
elif isinstance(a, z3.ApplyResult):
return self.pp_seq_seq(a, 0, [])
elif isinstance(a, z3.ModelRef):
return self.pp_model(a)
elif isinstance(a, z3.FuncInterp):
return self.pp_func_interp(a)
elif isinstance(a, list) or isinstance(a, tuple):
return self.pp_list(a)
else:
return to_format(self.pp_unknown())
def __call__(self, a):
self.visited = 0
return self.main(a)
class HTMLFormatter(Formatter):
def __init__(self):
Formatter.__init__(self)
global _html_ellipses
self.ellipses = to_format(_html_ellipses)
def pp_arrow(self):
return to_format(' &rarr;', 1)
def pp_unknown(self):
return '<b>unknown</b>'
def pp_name(self, a):
r = _html_op_name(a)
if r[0] == '&' or r[0] == '/' or r[0] == '%':
return to_format(r, 1)
else:
pos = r.find('__')
if pos == -1 or pos == 0:
return to_format(r)
else:
sz = len(r)
if pos + 2 == sz:
return to_format(r)
else:
return to_format('%s<sub>%s</sub>' % (r[0:pos], r[pos+2:sz]), sz - 2)
def is_assoc(self, k):
return _is_html_assoc(k)
def is_left_assoc(self, k):
return _is_html_left_assoc(k)
def is_infix(self, a):
return _is_html_infix(a)
def is_unary(self, a):
return _is_html_unary(a)
def get_precedence(self, a):
return _get_html_precedence(a)
def pp_neq(self):
return to_format("&ne;")
def pp_power(self, a, d, xs):
arg1_pp = self.pp_power_arg(a.arg(0), d+1, xs)
arg2_pp = self.pp_expr(a.arg(1), d+1, xs)
return compose(arg1_pp, to_format('<sup>', 1), arg2_pp, to_format('</sup>', 1))
def pp_var(self, a, d, xs):
idx = z3.get_var_index(a)
sz = len(xs)
if idx >= sz:
# 957 is the greek letter nu
return to_format('&#957;<sub>%s</sub>' % idx, 1)
else:
return to_format(xs[sz - idx - 1])
def pp_quantifier(self, a, d, xs):
ys = [ to_format(a.var_name(i)) for i in range(a.num_vars()) ]
new_xs = xs + ys
body_pp = self.pp_expr(a.body(), d+1, new_xs)
ys_pp = group(seq(ys))
if a.is_forall():
header = '&forall;'
else:
header = '&exist;'
return group(compose(to_format(header, 1),
indent(1, compose(ys_pp, to_format(' :'), line_break(), body_pp))))
_PP = PP()
_Formatter = Formatter()
def set_pp_option(k, v):
if k == 'html_mode':
if v:
set_html_mode(True)
else:
set_html_mode(False)
return True
val = getattr(_PP, k, None)
if val != None:
z3._z3_assert(type(v) == type(val), "Invalid pretty print option value")
setattr(_PP, k, v)
return True
val = getattr(_Formatter, k, None)
if val != None:
z3._z3_assert(type(v) == type(val), "Invalid pretty print option value")
setattr(_Formatter, k, v)
return True
return False
def obj_to_string(a):
out = io.StringIO()
_PP(out, _Formatter(a))
return out.getvalue()
_html_out = None
def set_html_mode(flag=True):
global _Formatter
if flag:
_Formatter = HTMLFormatter()
else:
_Formatter = Formatter()
def in_html_mode():
return isinstance(_Formatter, HTMLFormatter)
def pp(a):
if _support_pp(a):
print obj_to_string(a)
else:
print a
def print_matrix(m):
z3._z3_assert(isinstance(m, list) or isinstance(m, tuple), "matrix expected")
if not in_html_mode():
print obj_to_string(m)
else:
print '<table cellpadding="2", cellspacing="0", border="1">'
for r in m:
z3._z3_assert(isinstance(r, list) or isinstance(r, tuple), "matrix expected")
print '<tr>'
for c in r:
print '<td>%s</td>' % c
print '</tr>'
print '</table>'
def insert_line_breaks(s, width):
"""Break s in lines of size width (approx)"""
sz = len(s)
if sz <= width:
return s
new_str = io.StringIO()
w = 0
for i in range(sz):
if w > width and s[i] == ' ':
new_str.write(u'<br />')
w = 0
else:
new_str.write(unicode(s[i]))
w = w + 1
return new_str.getvalue()