3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 19:27:06 +00:00
z3/lib/theory_arith_pp.h
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

517 lines
17 KiB
C++

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
theory_arith_pp.h
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2008-05-05.
Revision History:
--*/
#ifndef _THEORY_ARITH_PP_H_
#define _THEORY_ARITH_PP_H_
#include"theory_arith.h"
#include"ast_smt_pp.h"
#include"stats.h"
namespace smt {
template<typename Ext>
void theory_arith<Ext>::collect_statistics(::statistics & st) const {
st.update("arith conflicts", m_stats.m_conflicts);
st.update("add rows", m_stats.m_add_rows);
st.update("pivots", m_stats.m_pivots);
st.update("assert lower", m_stats.m_assert_lower);
st.update("assert upper", m_stats.m_assert_upper);
st.update("assert diseq", m_stats.m_assert_diseq);
st.update("bound prop", m_stats.m_bound_props);
st.update("fixed eqs", m_stats.m_fixed_eqs);
st.update("offset eqs", m_stats.m_offset_eqs);
st.update("gcd tests", m_stats.m_gcd_tests);
st.update("ineq splits", m_stats.m_branches);
st.update("gomory cuts", m_stats.m_gomory_cuts);
st.update("max-min", m_stats.m_max_min);
st.update("grobner", m_stats.m_gb_compute_basis);
st.update("pseudo nonlinear", m_stats.m_nl_linear);
st.update("nonlinear bounds", m_stats.m_nl_bounds);
st.update("nonlinear horner", m_stats.m_nl_cross_nested);
m_arith_eq_adapter.collect_statistics(st);
}
template<typename Ext>
void theory_arith<Ext>::display(std::ostream & out) const {
out << "Theory arithmetic:\n";
display_vars(out);
display_nl_monomials(out);
display_rows(out, true);
display_rows(out, false);
display_atoms(out);
display_asserted_atoms(out);
}
template<typename Ext>
void theory_arith<Ext>::display_nl_monomials(std::ostream & out) const {
if (m_nl_monomials.empty())
return;
out << "non linear monomials:\n";
svector<theory_var>::const_iterator it = m_nl_monomials.begin();
svector<theory_var>::const_iterator end = m_nl_monomials.end();
for (; it != end; ++it)
display_var(out, *it);
}
template<typename Ext>
void theory_arith<Ext>::display_row(std::ostream & out, unsigned r_id, bool compact) const {
out << r_id << " ";
display_row(out, m_rows[r_id], compact);
}
template<typename Ext>
void theory_arith<Ext>::display_row(std::ostream & out, row const & r, bool compact) const {
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
out << "(v" << r.get_base_var() << ") : ";
bool first = true;
for (; it != end; ++it) {
if (!it->is_dead()) {
if (first)
first = false;
else
out << " + ";
theory_var s = it->m_var;
numeral const & c = it->m_coeff;
if (!c.is_one())
out << c << "*";
if (compact) {
out << "v" << s;
if (is_fixed(s)) {
out << ":" << lower(s)->get_value();
}
}
else
display_var_flat_def(out, s);
}
}
out << "\n";
}
template<typename Ext>
void theory_arith<Ext>::display_rows(std::ostream & out, bool compact) const {
if (compact)
out << "rows (compact view):\n";
else
out << "rows (expanded view):\n";
unsigned num = m_rows.size();
for (unsigned r_id = 0; r_id < num; r_id++) {
if (m_rows[r_id].m_base_var != null_theory_var) {
display_row(out, r_id, compact);
}
}
}
template<typename Ext>
void theory_arith<Ext>::display_row_shape(std::ostream & out, row const & r) const {
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
for (; it != end; ++it) {
if (!it->is_dead()) {
numeral const & c = it->m_coeff;
if (c.is_one())
out << "1";
else if (c.is_minus_one())
out << "-";
else if (c.is_int() && c.to_rational().is_small())
out << "i";
else if (c.is_int() && !c.to_rational().is_small())
out << "I";
else if (c.to_rational().is_small())
out << "r";
else
out << "R";
}
}
out << "\n";
}
template<typename Ext>
bool theory_arith<Ext>::is_one_minus_one_row(row const & r) const {
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
for (; it != end; ++it) {
if (!it->is_dead()) {
numeral const & c = it->m_coeff;
if (!c.is_one() && !c.is_minus_one())
return false;
}
}
return true;
}
template<typename Ext>
void theory_arith<Ext>::display_rows_shape(std::ostream & out) const {
unsigned num = m_rows.size();
unsigned num_trivial = 0;
for (unsigned r_id = 0; r_id < num; r_id++) {
row const & r = m_rows[r_id];
if (r.m_base_var != null_theory_var) {
if (is_one_minus_one_row(r))
num_trivial++;
else
display_row_shape(out, r);
}
}
out << "num. trivial: " << num_trivial << "\n";
}
template<typename Ext>
void theory_arith<Ext>::display_rows_bignums(std::ostream & out) const {
unsigned num = m_rows.size();
for (unsigned r_id = 0; r_id < num; r_id++) {
row const & r = m_rows[r_id];
if (r.m_base_var != null_theory_var) {
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
for (; it != end; ++it) {
if (!it->is_dead()) {
numeral const & c = it->m_coeff;
if (c.to_rational().is_big()) {
std::string str = c.to_rational().to_string();
if (str.length() > 48)
out << str << "\n";
}
}
}
}
}
}
template<typename Ext>
void theory_arith<Ext>::display_rows_stats(std::ostream & out) const {
unsigned num_vars = get_num_vars();
unsigned num_rows = 0;
unsigned num_non_zeros = 0;
unsigned num_ones = 0;
unsigned num_minus_ones = 0;
unsigned num_small_ints = 0;
unsigned num_big_ints = 0;
unsigned num_small_rats = 0;
unsigned num_big_rats = 0;
for (unsigned r_id = 0; r_id < m_rows.size(); r_id++) {
row const & r = m_rows[r_id];
if (r.m_base_var != null_theory_var) {
num_rows++;
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
for (; it != end; ++it) {
if (!it->is_dead()) {
numeral const & c = it->m_coeff;
num_non_zeros++;
if (c.is_one())
num_ones++;
else if (c.is_minus_one())
num_minus_ones++;
else if (c.is_int() && c.to_rational().is_small())
num_small_ints++;
else if (c.is_int() && !c.to_rational().is_small())
num_big_ints++;
else if (c.to_rational().is_small())
num_small_rats++;
else
num_big_rats++;
}
}
}
}
out << "A: " << num_rows << " X " << num_vars << "\n";
out << "avg. row: " << num_non_zeros / num_rows << ", num. non zeros: " << num_non_zeros << "\n";
unsigned spc = 6;
out.width(spc);
out << 1 << "|";
out.width(spc);
out << -1 << "|";
out.width(spc);
out << "i";
out << "|";
out.width(spc);
out << "I";
out << "|";
out.width(spc);
out << "r";
out << "|";
out.width(spc);
out << "R";
out << "\n";
out.width(spc);
out << num_ones << "|";
out.width(spc);
out << num_minus_ones << "|";
out.width(spc);
out << num_small_ints;
out << "|";
out.width(spc);
out << num_big_ints;
out << "|";
out.width(spc);
out << num_small_rats;
out << "|";
out.width(spc);
out << num_big_rats;
out << "\n";
}
template<typename Ext>
void theory_arith<Ext>::display_row_info(std::ostream & out, unsigned r_id) const {
out << r_id << " ";
display_row_info(out, m_rows[r_id]);
}
template<typename Ext>
void theory_arith<Ext>::display_row_info(std::ostream & out, row const & r) const {
display_row(out, r, true);
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
for (; it != end; ++it)
if (!it->is_dead())
display_var(out, it->m_var);
}
/**
\brief Display row after substituting fixed variables.
*/
template<typename Ext>
void theory_arith<Ext>::display_simplified_row(std::ostream & out, row const & r) const {
bool has_rat_coeff = false;
numeral k;
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
out << "(v" << r.get_base_var() << ") : ";
bool first = true;
for (; it != end; ++it) {
if (it->is_dead())
continue;
theory_var v = it->m_var;
numeral const & c = it->m_coeff;
if (is_fixed(v)) {
k += c * lower_bound(v).get_rational();
continue;
}
if (!c.is_int())
has_rat_coeff = true;
if (first)
first = false;
else
out << " + ";
if (!c.is_one())
out << c << "*";
out << "v" << v;
}
if (!k.is_zero()) {
if (!first)
out << " + ";
out << k;
}
out << "\n";
if (has_rat_coeff) {
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
for (; it != end; ++it)
if (!it->is_dead() && (is_base(it->m_var) || (!is_fixed(it->m_var) && (lower(it->m_var) || upper(it->m_var)))))
display_var(out, it->m_var);
}
}
template<typename Ext>
void theory_arith<Ext>::display_var(std::ostream & out, theory_var v) const {
out << "v";
out.width(4);
out << std::left << v;
out << " #";
out.width(4);
out << get_enode(v)->get_owner_id();
out << std::right;
out << " lo:";
out.width(10);
if (lower(v)) {
out << lower(v)->get_value();
}
else {
out << "-oo";
}
out << ", up:";
out.width(10);
if (upper(v)) {
out << upper(v)->get_value();
}
else {
out << "oo";
}
out << ", value: ";
out.width(10);
out << get_value(v);
out << ", occs: ";
out.width(4);
out << m_columns[v].size();
out << ", atoms: ";
out.width(4);
out << m_var_occs[v].size();
out << (is_int(v) ? ", int " : ", real");
switch (get_var_kind(v)) {
case NON_BASE:
out << ", non-base ";
break;
case QUASI_BASE:
out << ", quasi-base";
break;
case BASE:
out << ", base ";
break;
}
out << ", shared: " << get_context().is_shared(get_enode(v));
out << ", unassigned: " << m_unassigned_atoms[v];
out << ", rel: " << get_context().is_relevant(get_enode(v));
out << ", def: ";
display_var_flat_def(out, v);
out << "\n";
}
template<typename Ext>
void theory_arith<Ext>::display_vars(std::ostream & out) const {
out << "vars:\n";
int n = get_num_vars();
for (theory_var v = 0; v < n; v++)
display_var(out, v);
}
template<typename Ext>
void theory_arith<Ext>::display_bound(std::ostream & out, bound * b, unsigned indent) const {
for (unsigned i = 0; i < indent; i++) out << " ";
theory_var v = b->get_var();
enode * e = get_enode(v);
out << "v" << v << " #" << e->get_owner_id() << " " << (b->get_bound_kind() == B_LOWER ? ">=" : "<=") << " " << b->get_value() << "\n";
}
template<typename Ext>
void theory_arith<Ext>::display_atoms(std::ostream & out) const {
out << "atoms:\n";
for (unsigned i = 0; i < m_atoms.size(); i++)
display_atom(out, m_atoms[i], false);
}
template<typename Ext>
void theory_arith<Ext>::display_asserted_atoms(std::ostream & out) const {
out << "asserted atoms:\n";
for (unsigned i = 0; i < m_asserted_qhead; i++) {
bound * b = m_asserted_bounds[i];
if (b->is_atom())
display_atom(out, static_cast<atom*>(b), true);
}
if (m_asserted_qhead < m_asserted_bounds.size()) {
out << "delayed atoms:\n";
for (unsigned i = m_asserted_qhead; i < m_asserted_bounds.size(); i++) {
bound * b = m_asserted_bounds[i];
if (b->is_atom())
display_atom(out, static_cast<atom*>(b), true);
}
}
}
template<typename Ext>
void theory_arith<Ext>::display_atom(std::ostream & out, atom * a, bool show_sign) const {
theory_var v = a->get_var();
numeral const & k = a->get_k();
enode * e = get_enode(v);
if (show_sign) {
if (!a->is_true())
out << "not ";
else
out << " ";
}
out << "v";
out.width(3);
out << std::left << v << " #";
out.width(3);
out << e->get_owner_id();
out << std::right;
out << " ";
if (a->get_atom_kind() == A_LOWER)
out << ">=";
else
out << "<=";
out << " ";
out.width(6);
out << k << " ";
display_var_flat_def(out, v);
out << "\n";
}
template<typename Ext>
void theory_arith<Ext>::display_bounds_in_smtlib(std::ostream & out) const {
ast_manager & m = get_manager();
ast_smt_pp pp(m);
pp.set_benchmark_name("lemma");
int n = get_num_vars();
for (theory_var v = 0; v < n; v++) {
expr * n = get_enode(v)->get_owner();
if (is_fixed(v)) {
inf_numeral k_inf = lower_bound(v);
rational k = k_inf.get_rational().to_rational();
expr_ref eq(m);
eq = m.mk_eq(n, m_util.mk_numeral(k, is_int(v)));
pp.add_assumption(eq);
}
else {
if (lower(v) != 0) {
inf_numeral k_inf = lower_bound(v);
rational k = k_inf.get_rational().to_rational();
expr_ref ineq(m);
if (k_inf.get_infinitesimal().is_zero())
ineq = m_util.mk_le(m_util.mk_numeral(k, is_int(v)), n);
else
ineq = m_util.mk_lt(m_util.mk_numeral(k, is_int(v)), n);
pp.add_assumption(ineq);
}
if (upper(v) != 0) {
inf_numeral k_inf = upper_bound(v);
rational k = k_inf.get_rational().to_rational();
expr_ref ineq(m);
if (k_inf.get_infinitesimal().is_zero())
ineq = m_util.mk_le(n, m_util.mk_numeral(k, is_int(v)));
else
ineq = m_util.mk_lt(n, m_util.mk_numeral(k, is_int(v)));
pp.add_assumption(ineq);
}
}
}
pp.display(out, m.mk_true());
}
template<typename Ext>
void theory_arith<Ext>::display_bounds_in_smtlib() const {
char buffer[128];
static int id = 0;
#ifdef _WINDOWS
sprintf_s(buffer, ARRAYSIZE(buffer), "arith_%d.smt", id);
#else
sprintf(buffer, "arith_%d.smt", id);
#endif
std::ofstream out(buffer);
display_bounds_in_smtlib(out);
out.close();
id++;
}
};
#endif /* _THEORY_ARITH_PP_H_ */