mirror of
https://github.com/Z3Prover/z3
synced 2025-04-11 03:33:35 +00:00
130 lines
2.9 KiB
C++
130 lines
2.9 KiB
C++
/*++
|
|
Copyright (c) 2011 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
prime_generator.cpp
|
|
|
|
Abstract:
|
|
|
|
Prime generator
|
|
|
|
Author:
|
|
|
|
Leonardo (leonardo) 2011-12-23
|
|
|
|
Notes:
|
|
|
|
--*/
|
|
#include"prime_generator.h"
|
|
|
|
#define PRIME_LIST_MAX_SIZE 1<<20
|
|
|
|
prime_generator::prime_generator() {
|
|
m_primes.push_back(2);
|
|
m_primes.push_back(3);
|
|
process_next_k_numbers(128);
|
|
}
|
|
|
|
void prime_generator::process_next_k_numbers(uint64 k) {
|
|
svector<uint64> todo;
|
|
uint64 begin = m_primes.back() + 2;
|
|
uint64 end = begin + k;
|
|
for (uint64 i = begin; i < end; i+=2) {
|
|
todo.push_back(i);
|
|
}
|
|
unsigned j = 1;
|
|
SASSERT(m_primes[j] == 3);
|
|
while (!todo.empty()) {
|
|
unsigned sz = m_primes.size();
|
|
for (; j < sz; j++) {
|
|
uint64 p = m_primes[j];
|
|
unsigned todo_sz = todo.size();
|
|
unsigned k1 = 0;
|
|
unsigned k2 = 0;
|
|
for (; k1 < todo_sz; k1++) {
|
|
if (todo[k1] % p == 0)
|
|
continue;
|
|
todo[k2] = todo[k1];
|
|
k2++;
|
|
}
|
|
todo.shrink(k2);
|
|
if (k2 == 0)
|
|
return;
|
|
if (p > (todo[k2-1] / p) + 1) {
|
|
// all numbers in todo are primes
|
|
for (unsigned k1 = 0; k1 < k2; k1++) {
|
|
m_primes.push_back(todo[k1]);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
uint64 p = m_primes.back();
|
|
p = p*p;
|
|
unsigned todo_sz = todo.size();
|
|
unsigned k1 = 0;
|
|
for (k1 = 0; k1 < todo_sz; k1++) {
|
|
if (todo[k1] < p) {
|
|
m_primes.push_back(todo[k1]);
|
|
}
|
|
break;
|
|
}
|
|
unsigned k2 = 0;
|
|
for (; k1 < todo_sz; k1++, k2++) {
|
|
todo[k2] = todo[k1];
|
|
}
|
|
todo.shrink(k2);
|
|
}
|
|
}
|
|
|
|
void prime_generator::finalize() {
|
|
m_primes.finalize();
|
|
}
|
|
|
|
uint64 prime_generator::operator()(unsigned idx) {
|
|
if (idx < m_primes.size())
|
|
return m_primes[idx];
|
|
if (idx > PRIME_LIST_MAX_SIZE)
|
|
throw prime_generator_exception("prime generator capacity exceeded");
|
|
process_next_k_numbers(1024);
|
|
if (idx < m_primes.size())
|
|
return m_primes[idx];
|
|
while (idx <= m_primes.size())
|
|
process_next_k_numbers(1024*16);
|
|
return m_primes[idx];
|
|
}
|
|
|
|
prime_generator g_prime_generator;
|
|
|
|
prime_iterator::prime_iterator(prime_generator * g):m_idx(0) {
|
|
if (g == 0) {
|
|
m_generator = &g_prime_generator;
|
|
m_global = true;
|
|
}
|
|
else {
|
|
m_generator = g;
|
|
m_global = false;
|
|
}
|
|
}
|
|
|
|
uint64 prime_iterator::next() {
|
|
unsigned idx = m_idx;
|
|
m_idx++;
|
|
if (!m_global) {
|
|
return (*m_generator)(idx);
|
|
}
|
|
else {
|
|
uint64 r;
|
|
#pragma omp critical (prime_iterator)
|
|
{
|
|
r = (*m_generator)(idx);
|
|
}
|
|
return r;
|
|
}
|
|
}
|
|
|
|
void prime_iterator::finalize() {
|
|
g_prime_generator.finalize();
|
|
}
|
|
|