3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 03:33:35 +00:00
z3/lib/polynomial_cmds.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

242 lines
7.5 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
polynomial_cmds.cpp
Abstract:
Commands for debugging polynomial module.
Author:
Leonardo (leonardo) 2011-12-23
Notes:
--*/
#include<sstream>
#include"cmd_context.h"
#include"cmd_util.h"
#include"scoped_timer.h"
#include"scoped_ctrl_c.h"
#include"cancel_eh.h"
#include"ast_smt2_pp.h"
#include"expr2polynomial.h"
#include"parametric_cmd.h"
#include"mpq.h"
#include"algebraic_numbers.h"
#include"pp.h"
#include"pp_params.h"
#include"polynomial_var2value.h"
#include"expr2var.h"
static void to_poly(cmd_context & ctx, expr * t) {
polynomial::numeral_manager nm;
polynomial::manager pm(nm);
default_expr2polynomial expr2poly(ctx.m(), pm);
polynomial::polynomial_ref p(pm);
polynomial::scoped_numeral d(nm);
if (!expr2poly.to_polynomial(t, p, d)) {
throw cmd_exception("expression is not a polynomial");
}
expr_ref r(ctx.m());
expr2poly.to_expr(p, true, r);
if (!nm.is_one(d))
ctx.regular_stream() << "(* " << nm.to_string(d) << " ";
ctx.display(ctx.regular_stream(), r);
if (!nm.is_one(d))
ctx.regular_stream() << ")";
ctx.regular_stream() << std::endl;
}
static void factor(cmd_context & ctx, expr * t, polynomial::factor_params const & ps) {
polynomial::numeral_manager nm;
polynomial::manager pm(nm);
default_expr2polynomial expr2poly(ctx.m(), pm);
polynomial::polynomial_ref p(pm);
polynomial::scoped_numeral d(nm);
if (!expr2poly.to_polynomial(t, p, d)) {
throw cmd_exception("expression is not a polynomial");
}
polynomial::factors fs(pm);
factor(p, fs, ps);
ctx.regular_stream() << "(factors";
rational f0(fs.get_constant());
f0 = f0 / rational(d);
ctx.regular_stream() << std::endl << f0;
unsigned num_factors = fs.distinct_factors();
expr_ref f(ctx.m());
for (unsigned i = 0; i < num_factors; i++) {
ctx.regular_stream() << std::endl;
if (fs.get_degree(i) > 1)
ctx.regular_stream() << "(^ ";
expr2poly.to_expr(fs[i], true, f);
ctx.display(ctx.regular_stream(), f);
if (fs.get_degree(i) > 1)
ctx.regular_stream() << " " << fs.get_degree(i) << ")";
}
ctx.regular_stream() << ")" << std::endl;
}
class poly_isolate_roots_cmd : public cmd {
struct context {
arith_util m_util;
unsynch_mpq_manager m_qm;
polynomial::manager m_pm;
algebraic_numbers::manager m_am;
polynomial_ref m_p;
default_expr2polynomial m_expr2poly;
polynomial::var m_var;
typedef polynomial::simple_var2value<algebraic_numbers::manager> x2v;
x2v m_x2v;
context(ast_manager & m):
m_util(m),
m_pm(m_qm),
m_am(m_qm),
m_p(m_pm),
m_expr2poly(m, m_pm),
m_var(polynomial::null_var),
m_x2v(m_am) {
}
void set_next_arg(cmd_context & ctx, expr * arg) {
if (m_p.get() == 0) {
scoped_mpz d(m_qm);
if (!m_expr2poly.to_polynomial(arg, m_p, d))
throw cmd_exception("expression is not a polynomial");
}
else if (m_var == polynomial::null_var) {
if (!m_expr2poly.is_var(arg))
throw cmd_exception("invalid assignment, argument is not a variable in the given polynomial");
m_var = m_expr2poly.get_mapping().to_var(arg);
}
else {
rational k;
scoped_anum v(m_am);
if (m_util.is_numeral(arg, k)) {
m_am.set(v, k.to_mpq());
}
else if (m_util.is_irrational_algebraic_numeral(arg)) {
m_am.set(v, m_util.to_irrational_algebraic_numeral(arg));
}
else {
throw cmd_exception("invalid assignment, argument is not a value");
}
m_x2v.push_back(m_var, v);
m_var = polynomial::null_var;
}
}
void execute(cmd_context & ctx) {
if (m_p.get() == 0)
throw cmd_exception("polynomial expected");
polynomial::var_vector xs;
m_pm.vars(m_p, xs);
unsigned num_assigned = 0;
for (unsigned i = 0; i < xs.size(); i++) {
if (m_x2v.contains(xs[i]))
num_assigned++;
}
if (num_assigned != xs.size() && num_assigned + 1 != xs.size())
throw cmd_exception("given assignment is not sufficient to make the given polynomial univariate");
scoped_anum_vector rs(m_am);
m_am.isolate_roots(m_p, m_x2v, rs);
ctx.regular_stream() << "(roots";
for (unsigned i = 0; i < rs.size(); i++) {
ctx.regular_stream() << std::endl;
if (!get_pp_default_params().m_pp_decimal)
m_am.display_root_smt2(ctx.regular_stream(), rs[i]);
else
m_am.display_decimal(ctx.regular_stream(), rs[i]);
}
ctx.regular_stream() << ")" << std::endl;
}
};
scoped_ptr<context> m_ctx;
public:
poly_isolate_roots_cmd(char const * name = "poly/isolate-roots"):cmd(name), m_ctx(0) {}
virtual char const * get_usage() const { return "<term> (<term> <value>)*"; }
virtual char const * get_descr(cmd_context & ctx) const { return "isolate the roots a multivariate polynomial modulo an assignment"; }
virtual unsigned get_arity() const { return VAR_ARITY; }
virtual void prepare(cmd_context & ctx) {
m_ctx = alloc(context, ctx.m());
}
virtual void finalize(cmd_context & ctx) {
m_ctx = 0;
}
virtual void failure_cleanup(cmd_context & ctx) {
m_ctx = 0;
}
virtual cmd_arg_kind next_arg_kind(cmd_context & ctx) const {
return CPK_EXPR;
}
virtual void set_next_arg(cmd_context & ctx, expr * arg) {
m_ctx->set_next_arg(ctx, arg);
}
virtual void execute(cmd_context & ctx) {
m_ctx->execute(ctx);
m_ctx = 0;
}
};
UNARY_CMD(to_poly_cmd, "to-poly", "<term>", "convert expression into sum-of-monomials form", CPK_EXPR, expr *, to_poly(ctx, arg););
class poly_factor_cmd : public parametric_cmd {
expr * m_target;
public:
poly_factor_cmd(char const * name = "poly/factor"):parametric_cmd(name) {}
virtual char const * get_usage() const { return "<term> (<keyword> <value>)*"; }
virtual char const * get_main_descr() const {
return "factor a polynomial";
}
virtual void init_pdescrs(cmd_context & ctx, param_descrs & p) {
polynomial::factor_params::get_param_descrs(p);
}
virtual void prepare(cmd_context & ctx) {
parametric_cmd::prepare(ctx);
m_target = 0;
}
virtual cmd_arg_kind next_arg_kind(cmd_context & ctx) const {
if (m_target == 0) return CPK_EXPR;
return parametric_cmd::next_arg_kind(ctx);
}
virtual void set_next_arg(cmd_context & ctx, expr * arg) {
m_target = arg;
}
virtual void execute(cmd_context & ctx) {
polynomial::factor_params ps;
ps.updt_params(m_params);
factor(ctx, m_target, ps);
}
};
void install_polynomial_cmds(cmd_context & ctx) {
#ifndef _EXTERNAL_RELEASE
ctx.insert(alloc(to_poly_cmd));
ctx.insert(alloc(poly_factor_cmd));
ctx.insert(alloc(poly_isolate_roots_cmd));
#endif
}