3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 19:27:06 +00:00
z3/lib/macro_manager.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

320 lines
10 KiB
C++

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
macro_manager.cpp
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2010-04-05.
Revision History:
Christoph Wintersteiger (t-cwinte), 2010-04-13: Added cycle detection for macro definitions
Leonardo de Moura (leonardo) 2010-12-15: Moved dependency management to func_decl_dependencies.h
--*/
#include"macro_manager.h"
#include"for_each_expr.h"
#include"var_subst.h"
#include"ast_pp.h"
#include"recurse_expr_def.h"
macro_manager::macro_manager(ast_manager & m, simplifier & s):
m_manager(m),
m_simplifier(s),
m_util(m, s),
m_decls(m),
m_macros(m),
m_macro_prs(m),
m_forbidden(m),
m_deps(m) {
m_util.set_forbidden_set(&m_forbidden_set);
}
macro_manager::~macro_manager() {
}
void macro_manager::push_scope() {
m_scopes.push_back(scope());
scope & s = m_scopes.back();
s.m_decls_lim = m_decls.size();
s.m_forbidden_lim = m_forbidden.size();
}
void macro_manager::pop_scope(unsigned num_scopes) {
unsigned new_lvl = m_scopes.size() - num_scopes;
scope & s = m_scopes[new_lvl];
restore_decls(s.m_decls_lim);
restore_forbidden(s.m_forbidden_lim);
m_scopes.shrink(new_lvl);
}
void macro_manager::restore_decls(unsigned old_sz) {
unsigned sz = m_decls.size();
for (unsigned i = old_sz; i < sz; i++) {
m_decl2macro.erase(m_decls.get(i));
m_deps.erase(m_decls.get(i));
if (m_manager.proofs_enabled())
m_decl2macro_pr.erase(m_decls.get(i));
}
m_decls.shrink(old_sz);
m_macros.shrink(old_sz);
if (m_manager.proofs_enabled())
m_macro_prs.shrink(old_sz);
}
void macro_manager::restore_forbidden(unsigned old_sz) {
unsigned sz = m_forbidden.size();
for (unsigned i = old_sz; i < sz; i++)
m_forbidden_set.erase(m_forbidden.get(i));
m_forbidden.shrink(old_sz);
}
void macro_manager::reset() {
m_decl2macro.reset();
m_decl2macro_pr.reset();
m_decls.reset();
m_macros.reset();
m_macro_prs.reset();
m_scopes.reset();
m_forbidden_set.reset();
m_forbidden.reset();
m_deps.reset();
}
bool macro_manager::insert(func_decl * f, quantifier * m, proof * pr) {
TRACE("macro_insert", tout << "trying to create macro: " << f->get_name() << "\n" << mk_pp(m, m_manager) << "\n";);
// if we already have a macro for f then return false;
if (m_decls.contains(f)) {
TRACE("macro_insert", tout << "we already have a macro for: " << f->get_name() << "\n";);
return false;
}
app * head;
expr * definition;
get_head_def(m, f, head, definition);
func_decl_set * s = m_deps.mk_func_decl_set();
m_deps.collect_func_decls(definition, s);
if (!m_deps.insert(f, s)) {
return false;
}
// add macro
m_decl2macro.insert(f, m);
m_decls.push_back(f);
m_macros.push_back(m);
if (m_manager.proofs_enabled()) {
m_macro_prs.push_back(pr);
m_decl2macro_pr.insert(f, pr);
}
TRACE("macro_insert", tout << "A macro was successfully created for: " << f->get_name() << "\n";);
// Nothing's forbidden anymore; if something's bad, we detected it earlier.
// mark_forbidden(m->get_expr());
return true;
}
namespace macro_manager_ns {
struct proc {
obj_hashtable<func_decl> & m_forbidden_set;
func_decl_ref_vector & m_forbidden;
proc(obj_hashtable<func_decl> & s, func_decl_ref_vector & v):m_forbidden_set(s), m_forbidden(v) {}
void operator()(var * n) {}
void operator()(quantifier * n) {}
void operator()(app * n) {
func_decl * d = n->get_decl();
if (n->get_num_args() > 0 && n->get_family_id() == null_family_id && !m_forbidden_set.contains(d)) {
m_forbidden_set.insert(d);
m_forbidden.push_back(d);
}
}
};
};
/**
\brief Mark all func_decls used in exprs as forbidden.
*/
void macro_manager::mark_forbidden(unsigned n, expr * const * exprs) {
expr_mark visited;
macro_manager_ns::proc p(m_forbidden_set, m_forbidden);
for (unsigned i = 0; i < n; i++)
for_each_expr(p, visited, exprs[i]);
}
void macro_manager::get_head_def(quantifier * q, func_decl * d, app * & head, expr * & def) const {
app * body = to_app(q->get_expr());
SASSERT(m_manager.is_eq(body) || m_manager.is_iff(body));
expr * lhs = to_app(body)->get_arg(0);
expr * rhs = to_app(body)->get_arg(1);
SASSERT(is_app_of(lhs, d) || is_app_of(rhs, d));
SASSERT(!is_app_of(lhs, d) || !is_app_of(rhs, d));
if (is_app_of(lhs, d)) {
head = to_app(lhs);
def = rhs;
}
else {
head = to_app(rhs);
def = lhs;
}
}
void macro_manager::display(std::ostream & out) {
unsigned sz = m_decls.size();
for (unsigned i = 0; i < sz; i++) {
func_decl * f = m_decls.get(i);
quantifier * q = 0;
m_decl2macro.find(f, q);
app * head;
expr * def;
get_head_def(q, f, head, def);
SASSERT(q);
out << mk_pp(head, m_manager) << " ->\n" << mk_pp(def, m_manager) << "\n";
}
}
func_decl * macro_manager::get_macro_interpretation(unsigned i, expr_ref & interp) const {
func_decl * f = m_decls.get(i);
quantifier * q = m_macros.get(i);
app * head;
expr * def;
get_head_def(q, f, head, def);
TRACE("macro_bug",
tout << f->get_name() << "\n" << mk_pp(head, m_manager) << "\n" << mk_pp(q, m_manager) << "\n";);
m_util.mk_macro_interpretation(head, def, interp);
return f;
}
macro_manager::macro_expander::macro_expander(ast_manager & m, macro_manager & mm, simplifier & s):
simplifier(m),
m_macro_manager(mm) {
// REMARK: theory simplifier should not be used by macro_expander...
// is_arith_macro rewrites a quantifer such as:
// forall (x Int) (= (+ x (+ (f x) 1)) 2)
// into
// forall (x Int) (= (f x) (+ 1 (* -1 x)))
// The goal is to make simple macro detection detect the arith macro.
// The arith simplifier will undo this transformation.
// borrow_plugins(s);
enable_ac_support(false);
}
macro_manager::macro_expander::~macro_expander() {
// release_plugins();
}
void macro_manager::macro_expander::reduce1_quantifier(quantifier * q) {
simplifier::reduce1_quantifier(q);
// If a macro was expanded in a pattern, we must erase it since it may not be a valid pattern anymore.
// The MAM assumes valid patterns, and it crashes if invalid patterns are provided.
// For example, it will crash if the pattern does not contain all variables.
//
// Alternative solution: use pattern_validation to check if the pattern is still valid.
// I'm not sure if this is a good solution, since the pattern may be meaningless after the macro expansion.
// So, I'm just erasing them.
expr * new_q_expr = 0;
proof * new_q_pr = 0;
get_cached(q, new_q_expr, new_q_pr);
if (!is_quantifier(new_q_expr))
return;
quantifier * new_q = to_quantifier(new_q_expr);
bool erase_patterns = false;
if (q->get_num_patterns() != new_q->get_num_patterns() ||
q->get_num_no_patterns() != new_q->get_num_no_patterns()) {
erase_patterns = true;
}
else {
for (unsigned i = 0; !erase_patterns && i < q->get_num_patterns(); i++) {
if (q->get_pattern(i) != new_q->get_pattern(i))
erase_patterns = true;
}
for (unsigned i = 0; !erase_patterns && i < q->get_num_no_patterns(); i++) {
if (q->get_no_pattern(i) != new_q->get_no_pattern(i))
erase_patterns = true;
}
}
if (erase_patterns) {
ast_manager & m = get_manager();
expr * new_new_q = m.update_quantifier(new_q, 0, 0, 0, 0, new_q->get_expr());
// we can use the same proof since new_new_q and new_q are identical modulo patterns/annotations
cache_result(q, new_new_q, new_q_pr);
}
}
bool macro_manager::macro_expander::get_subst(expr * _n, expr_ref & r, proof_ref & p) {
if (!is_app(_n))
return false;
app * n = to_app(_n);
quantifier * q = 0;
func_decl * d = n->get_decl();
TRACE("macro_manager_bug", tout << "trying to expand:\n" << mk_pp(n, m_manager) << "\nd:\n" << d->get_name() << "\n";);
if (m_macro_manager.m_decl2macro.find(d, q)) {
TRACE("macro_manager", tout << "expanding: " << mk_pp(n, m_manager) << "\n";);
app * head = 0;
expr * def = 0;
m_macro_manager.get_head_def(q, d, head, def);
unsigned num = n->get_num_args();
SASSERT(head && def);
ptr_buffer<expr> subst_args;
subst_args.resize(num, 0);
for (unsigned i = 0; i < num; i++) {
var * v = to_var(head->get_arg(i));
SASSERT(v->get_idx() < num);
unsigned nidx = num - v->get_idx() - 1;
SASSERT(subst_args[nidx] == 0);
subst_args[nidx] = n->get_arg(i);
}
var_subst s(m_manager);
s(def, num, subst_args.c_ptr(), r);
if (m_manager.proofs_enabled()) {
expr_ref instance(m_manager);
s(q->get_expr(), num, subst_args.c_ptr(), instance);
proof * qi_pr = m_manager.mk_quant_inst(m_manager.mk_or(m_manager.mk_not(q), instance), num, subst_args.c_ptr());
proof * q_pr = 0;
m_macro_manager.m_decl2macro_pr.find(d, q_pr);
SASSERT(q_pr != 0);
proof * prs[2] = { qi_pr, q_pr };
p = m_manager.mk_unit_resolution(2, prs);
}
else {
p = 0;
}
return true;
}
return false;
}
void macro_manager::expand_macros(expr * n, proof * pr, expr_ref & r, proof_ref & new_pr) {
if (has_macros()) {
// Expand macros with "real" proof production support (NO rewrite*)
expr_ref old_n(m_manager);
proof_ref old_pr(m_manager);
old_n = n;
old_pr = pr;
for (;;) {
macro_expander proc(m_manager, *this, m_simplifier);
proof_ref n_eq_r_pr(m_manager);
TRACE("macro_manager_bug", tout << "expand_macros:\n" << mk_pp(n, m_manager) << "\n";);
proc(old_n, r, n_eq_r_pr);
new_pr = m_manager.mk_modus_ponens(old_pr, n_eq_r_pr);
if (r.get() == old_n.get())
return;
old_n = r;
old_pr = new_pr;
}
}
else {
r = n;
new_pr = pr;
}
}