mirror of
https://github.com/Z3Prover/z3
synced 2025-04-10 19:27:06 +00:00
180 lines
4.4 KiB
C++
180 lines
4.4 KiB
C++
/*++
|
|
Copyright (c) 2006 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
inf_rational.cpp
|
|
|
|
Abstract:
|
|
|
|
Rational numbers with infenitesimals
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2006-12-05.
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
#include"inf_rational.h"
|
|
|
|
inf_rational inf_rational::m_zero(0);
|
|
inf_rational inf_rational::m_one(1);
|
|
inf_rational inf_rational::m_minus_one(-1);
|
|
|
|
inf_rational inf_mult(inf_rational const& r1, inf_rational const& r2)
|
|
{
|
|
inf_rational result;
|
|
result.m_first = r1.m_first * r2.m_first;
|
|
result.m_second = (r1.m_first * r2.m_second) + (r1.m_second * r2.m_first);
|
|
|
|
if (r1.m_second.is_pos() && r2.m_second.is_neg()) {
|
|
--result.m_second;
|
|
}
|
|
else if (r1.m_second.is_neg() && r2.m_second.is_pos()) {
|
|
--result.m_second;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
inf_rational sup_mult(inf_rational const& r1, inf_rational const& r2)
|
|
{
|
|
inf_rational result;
|
|
result.m_first = r1.m_first * r2.m_first;
|
|
result.m_second = (r1.m_first * r2.m_second) + (r1.m_second * r2.m_first);
|
|
|
|
if (r1.m_second.is_pos() && r2.m_second.is_pos()) {
|
|
++result.m_second;
|
|
}
|
|
else if (r1.m_second.is_neg() && r2.m_second.is_neg()) {
|
|
++result.m_second;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
//
|
|
// Find rationals c, x, such that c + epsilon*x <= r1/r2
|
|
//
|
|
// let r1 = a + d_1
|
|
// let r2 = b + d_2
|
|
//
|
|
// suppose b != 0:
|
|
//
|
|
// r1/b <= r1/r2
|
|
// <=> { if b > 0, then r2 > 0, and cross multiplication does not change the sign }
|
|
// { if b < 0, then r2 < 0, and cross multiplication changes sign twice }
|
|
// r1 * r2 <= b * r1
|
|
// <=>
|
|
// r1 * (b + d_2) <= r1 * b
|
|
// <=>
|
|
// r1 * d_2 <= 0
|
|
//
|
|
// if r1 * d_2 > 0, then r1/(b + sign_of(r1)*1/2*|b|) <= r1/r2
|
|
//
|
|
// Not handled here:
|
|
// if b = 0, then d_2 != 0
|
|
// if r1 * d_2 = 0 then it's 0.
|
|
// if r1 * d_2 > 0, then result is +oo
|
|
// if r1 * d_2 < 0, then result is -oo
|
|
//
|
|
inf_rational inf_div(inf_rational const& r1, inf_rational const& r2)
|
|
{
|
|
SASSERT(!r2.m_first.is_zero());
|
|
inf_rational result;
|
|
|
|
if (r2.m_second.is_neg() && r1.is_neg()) {
|
|
result = r1 / (r2.m_first - (abs(r2.m_first)/rational(2)));
|
|
}
|
|
else if (r2.m_second.is_pos() && r1.is_pos()) {
|
|
result = r1 / (r2.m_first + (abs(r2.m_first)/rational(2)));
|
|
}
|
|
else {
|
|
result = r1 / r2.m_first;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
inf_rational sup_div(inf_rational const& r1, inf_rational const& r2)
|
|
{
|
|
SASSERT(!r2.m_first.is_zero());
|
|
inf_rational result;
|
|
|
|
if (r2.m_second.is_pos() && r1.is_neg()) {
|
|
result = r1 / (r2.m_first + (abs(r2.m_first)/rational(2)));
|
|
}
|
|
else if (r2.m_second.is_neg() && r1.is_pos()) {
|
|
result = r1 / (r2.m_first - (abs(r2.m_first)/rational(2)));
|
|
}
|
|
else {
|
|
result = r1 / r2.m_first;
|
|
}
|
|
return result;
|
|
|
|
}
|
|
|
|
inf_rational inf_power(inf_rational const& r, unsigned n)
|
|
{
|
|
bool is_even = (0 == (n & 0x1));
|
|
inf_rational result;
|
|
if (n == 1) {
|
|
result = r;
|
|
}
|
|
else if ((r.m_second.is_zero()) ||
|
|
(r.m_first.is_pos() && r.m_second.is_pos()) ||
|
|
(r.m_first.is_neg() && r.m_second.is_neg() && is_even)) {
|
|
result.m_first = r.m_first.expt(n);
|
|
}
|
|
else if (is_even) {
|
|
// 0 will work.
|
|
}
|
|
else if (r.m_first.is_zero()) {
|
|
result.m_first = rational(-1);
|
|
}
|
|
else if (r.m_first.is_pos()) {
|
|
result.m_first = rational(r.m_first - r.m_first/rational(2)).expt(n);
|
|
}
|
|
else {
|
|
result.m_first = rational(r.m_first + r.m_first/rational(2)).expt(n);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
inf_rational sup_power(inf_rational const& r, unsigned n)
|
|
{
|
|
bool is_even = (0 == (n & 0x1));
|
|
inf_rational result;
|
|
if (n == 1) {
|
|
result = r;
|
|
}
|
|
else if (r.m_second.is_zero() ||
|
|
(r.m_first.is_pos() && r.m_second.is_neg()) ||
|
|
(r.m_first.is_neg() && r.m_second.is_pos() && is_even)) {
|
|
result.m_first = r.m_first.expt(n);
|
|
}
|
|
else if (r.m_first.is_zero() || (n == 0)) {
|
|
result.m_first = rational(1);
|
|
}
|
|
else if (r.m_first.is_pos() || is_even) {
|
|
result.m_first = rational(r.m_first + r.m_first/rational(2)).expt(n);
|
|
}
|
|
else {
|
|
// r (r.m_first) is negative, n is odd.
|
|
result.m_first = rational(r.m_first - r.m_first/rational(2)).expt(n);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
inf_rational inf_root(inf_rational const& r, unsigned n)
|
|
{
|
|
SASSERT(!r.is_neg());
|
|
// use 0
|
|
return inf_rational();
|
|
}
|
|
|
|
inf_rational sup_root(inf_rational const& r, unsigned n)
|
|
{
|
|
SASSERT(!r.is_neg());
|
|
// use r.
|
|
return r;
|
|
}
|