3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 19:27:06 +00:00
z3/lib/gaussian_elim.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

776 lines
27 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
gaussian_elim.cpp
Abstract:
(extended) Gaussian elimination for assertion sets.
It also supports other theories besides arithmetic.
Author:
Leonardo (leonardo) 2011-04-29
Notes:
--*/
#include"gaussian_elim.h"
#include"ast.h"
#include"expr_replacer.h"
#include"model_converter.h"
#include"assertion_set.h"
#include"ast_smt2_pp.h"
#include"elim_var_model_converter.h"
#include"occurs.h"
#include"cooperate.h"
#include"assertion_set_util.h"
struct gaussian_elim::imp {
ast_manager & m_manager;
expr_replacer * m_r;
bool m_r_owner;
arith_util m_a_util;
obj_map<expr, unsigned> m_num_occs;
unsigned m_num_steps;
unsigned m_num_eliminated_vars;
bool m_produce_models;
bool m_theory_solver;
bool m_ite_solver;
unsigned m_max_occs;
void updt_params(params_ref const & p) {
m_produce_models = p.get_bool(":produce-models", false);
m_ite_solver = p.get_bool(":ite-solver", true);
m_theory_solver = p.get_bool(":theory-solver", true);
m_max_occs = p.get_uint(":gaussian-max-occs", UINT_MAX);
}
typedef elim_var_model_converter gmc;
expr_substitution m_subst;
expr_substitution m_norm_subst;
expr_sparse_mark m_candidate_vars;
expr_sparse_mark m_candidate_set;
ptr_vector<expr> m_candidates;
ptr_vector<app> m_vars;
ptr_vector<app> m_ordered_vars;
volatile bool m_cancel;
imp(ast_manager & m, params_ref const & p, expr_replacer * r, bool owner):
m_manager(m),
m_r(r),
m_r_owner(r == 0 || owner),
m_a_util(m),
m_num_steps(0),
m_num_eliminated_vars(0),
m_subst(m),
m_norm_subst(m),
m_cancel(false) {
updt_params(p);
if (m_r == 0)
m_r = mk_default_expr_replacer(m);
}
~imp() {
if (m_r_owner)
dealloc(m_r);
}
ast_manager & m() const { return m_manager; }
bool check_occs(expr * t) const {
if (m_max_occs == UINT_MAX)
return true;
unsigned num = 0;
m_num_occs.find(t, num);
TRACE("gaussian_check_occs", tout << mk_ismt2_pp(t, m_manager) << " num_occs: " << num << " max: " << m_max_occs << "\n";);
return num <= m_max_occs;
}
// Use: (= x def) and (= def x)
bool trivial_solve(expr * lhs, expr * rhs, app_ref & var, expr_ref & def, proof_ref & pr) {
if (is_uninterp_const(lhs) && !m_candidate_vars.is_marked(lhs) && !occurs(lhs, rhs) && check_occs(lhs)) {
var = to_app(lhs);
def = rhs;
pr = 0;
return true;
}
else if (is_uninterp_const(rhs) && !m_candidate_vars.is_marked(rhs) && !occurs(rhs, lhs) && check_occs(rhs)) {
var = to_app(rhs);
def = lhs;
if (m_manager.proofs_enabled())
pr = m().mk_commutativity(m().mk_eq(lhs, rhs));
return true;
}
return false;
}
// (ite c (= x t1) (= x t2)) --> (= x (ite c t1 t2))
bool solve_ite_core(app * ite, expr * lhs1, expr * rhs1, expr * lhs2, expr * rhs2, app_ref & var, expr_ref & def, proof_ref & pr) {
if (lhs1 != lhs2)
return false;
if (!is_uninterp_const(lhs1) || m_candidate_vars.is_marked(lhs1))
return false;
if (occurs(lhs1, ite->get_arg(0)) || occurs(lhs1, rhs1) || occurs(lhs1, rhs2))
return false;
if (!check_occs(lhs1))
return false;
var = to_app(lhs1);
def = m().mk_ite(ite->get_arg(0), rhs1, rhs2);
if (m().proofs_enabled())
pr = m().mk_rewrite(ite, m().mk_eq(var, def));
return true;
}
// (ite c (= x t1) (= x t2)) --> (= x (ite c t1 t2))
bool solve_ite(app * ite, app_ref & var, expr_ref & def, proof_ref & pr) {
expr * t = ite->get_arg(1);
expr * e = ite->get_arg(2);
if (!m().is_eq(t) || !m().is_eq(e))
return false;
expr * lhs1 = to_app(t)->get_arg(0);
expr * rhs1 = to_app(t)->get_arg(1);
expr * lhs2 = to_app(e)->get_arg(0);
expr * rhs2 = to_app(e)->get_arg(1);
return
solve_ite_core(ite, lhs1, rhs1, lhs2, rhs2, var, def, pr) ||
solve_ite_core(ite, rhs1, lhs1, lhs2, rhs2, var, def, pr) ||
solve_ite_core(ite, lhs1, rhs1, rhs2, lhs2, var, def, pr) ||
solve_ite_core(ite, rhs1, lhs1, rhs2, lhs2, var, def, pr);
}
bool is_pos_literal(expr * n) {
return is_app(n) && to_app(n)->get_num_args() == 0 && to_app(n)->get_family_id() == null_family_id;
}
bool is_neg_literal(expr * n) {
if (m_manager.is_not(n))
return is_pos_literal(to_app(n)->get_arg(0));
return false;
}
#if 0
bool not_bool_eq(expr * f, app_ref & var, expr_ref & def, proof_ref & pr) {
if (!m().is_not(f))
return false;
expr * eq = to_app(f)->get_arg(0);
if (!m().is_eq(f))
return false;
}
#endif
/**
\brief Given t of the form (f s_0 ... s_n),
return true if x occurs in some s_j for j != i
*/
bool occurs_except(expr * x, app * t, unsigned i) {
unsigned num = t->get_num_args();
for (unsigned j = 0; j < num; j++) {
if (i != j && occurs(x, t->get_arg(j)))
return true;
}
return false;
}
bool solve_arith_core(app * lhs, expr * rhs, expr * eq, app_ref & var, expr_ref & def, proof_ref & pr) {
SASSERT(m_a_util.is_add(lhs));
bool is_int = m_a_util.is_int(lhs);
expr * a;
expr * v;
rational a_val;
unsigned num = lhs->get_num_args();
unsigned i;
for (i = 0; i < num; i++) {
expr * arg = lhs->get_arg(i);
if (is_uninterp_const(arg) && !m_candidate_vars.is_marked(arg) && check_occs(arg) && !occurs(arg, rhs) && !occurs_except(arg, lhs, i)) {
a_val = rational(1);
v = arg;
break;
}
else if (m_a_util.is_mul(arg, a, v) &&
is_uninterp_const(v) && !m_candidate_vars.is_marked(v) &&
m_a_util.is_numeral(a, a_val) &&
!a_val.is_zero() &&
(!is_int || a_val.is_minus_one()) &&
check_occs(v) &&
!occurs(v, rhs) &&
!occurs_except(v, lhs, i)) {
break;
}
}
if (i == num)
return false;
var = to_app(v);
expr_ref inv_a(m());
if (!a_val.is_one()) {
inv_a = m_a_util.mk_numeral(rational(1)/a_val, is_int);
rhs = m_a_util.mk_mul(inv_a, rhs);
}
ptr_buffer<expr> other_args;
for (unsigned j = 0; j < num; j++) {
if (i != j) {
if (inv_a)
other_args.push_back(m_a_util.mk_mul(inv_a, lhs->get_arg(j)));
else
other_args.push_back(lhs->get_arg(j));
}
}
switch (other_args.size()) {
case 0:
def = rhs;
break;
case 1:
def = m_a_util.mk_sub(rhs, other_args[0]);
break;
default:
def = m_a_util.mk_sub(rhs, m_a_util.mk_add(other_args.size(), other_args.c_ptr()));
break;
}
if (m().proofs_enabled()) {
pr = m().mk_rewrite(eq, m().mk_eq(var, def));
}
return true;
}
bool solve_arith(expr * lhs, expr * rhs, expr * eq, app_ref & var, expr_ref & def, proof_ref & pr) {
return
(m_a_util.is_add(lhs) && solve_arith_core(to_app(lhs), rhs, eq, var, def, pr)) ||
(m_a_util.is_add(rhs) && solve_arith_core(to_app(rhs), lhs, eq, var, def, pr));
}
bool solve(expr * f, app_ref & var, expr_ref & def, proof_ref & pr) {
if (m().is_eq(f)) {
if (trivial_solve(to_app(f)->get_arg(0), to_app(f)->get_arg(1), var, def, pr))
return true;
if (m_theory_solver) {
expr * lhs = to_app(f)->get_arg(0);
expr * rhs = to_app(f)->get_arg(1);
if (solve_arith(lhs, rhs, f, var, def, pr))
return true;
}
return false;
}
if (m().is_iff(f))
return trivial_solve(to_app(f)->get_arg(0), to_app(f)->get_arg(1), var, def, pr);
#if 0
if (not_bool_eq(f, var, def, pr))
return true;
#endif
if (m_ite_solver && m().is_ite(f))
return solve_ite(to_app(f), var, def, pr);
if (is_pos_literal(f)) {
if (m_candidate_vars.is_marked(f))
return false;
var = to_app(f);
def = m().mk_true();
if (m().proofs_enabled()) {
// [rewrite]: (iff (iff l true) l)
// [symmetry T1]: (iff l (iff l true))
pr = m().mk_rewrite(m().mk_eq(var, def), var);
pr = m().mk_symmetry(pr);
}
TRACE("gaussian_elim_bug2", tout << "eliminating: " << mk_ismt2_pp(f, m()) << "\n";);
return true;
}
if (is_neg_literal(f)) {
var = to_app(to_app(f)->get_arg(0));
if (m_candidate_vars.is_marked(var))
return false;
def = m().mk_false();
if (m().proofs_enabled()) {
// [rewrite]: (iff (iff l false) ~l)
// [symmetry T1]: (iff ~l (iff l false))
pr = m().mk_rewrite(m().mk_eq(var, def), f);
pr = m().mk_symmetry(pr);
}
return true;
}
return false;
}
void checkpoint() {
if (m_cancel)
throw gaussian_elim_exception(STE_CANCELED_MSG);
cooperate("gaussian elimination");
}
/**
\brief Start collecting candidates
*/
void collect(assertion_set & set) {
m_subst.reset();
m_norm_subst.reset();
m_r->set_substitution(0);
m_candidate_vars.reset();
m_candidate_set.reset();
m_candidates.reset();
m_vars.reset();
app_ref var(m());
expr_ref def(m());
proof_ref pr(m());
unsigned size = set.size();
for (unsigned idx = 0; idx < size; idx++) {
checkpoint();
expr * f = set.form(idx);
if (solve(f, var, def, pr)) {
m_vars.push_back(var);
m_candidates.push_back(f);
m_candidate_set.mark(f);
m_candidate_vars.mark(var);
if (m().proofs_enabled()) {
if (pr == 0)
pr = set.pr(idx);
else
pr = m().mk_modus_ponens(set.pr(idx), pr);
}
m_subst.insert(var, def, pr);
}
m_num_steps++;
}
TRACE("gaussian_elim",
tout << "candidate vars:\n";
ptr_vector<app>::iterator it = m_vars.begin();
ptr_vector<app>::iterator end = m_vars.end();
for (; it != end; ++it) {
tout << mk_ismt2_pp(*it, m()) << " ";
}
tout << "\n";);
}
void sort_vars() {
SASSERT(m_candidates.size() == m_vars.size());
TRACE("gaussian_elim_bug", tout << "sorting vars...\n";);
m_ordered_vars.reset();
// The variables (and its definitions) in m_subst must remain alive until the end of this procedure.
// Reason: they are scheduled for unmarking in visiting/done.
// They should remain alive while they are on the stack.
// To make sure this is the case, whenever a variable (and its definition) is removed from m_subst,
// I add them to the saved vector.
expr_ref_vector saved(m());
expr_fast_mark1 visiting;
expr_fast_mark2 done;
typedef std::pair<expr *, unsigned> frame;
svector<frame> todo;
ptr_vector<app>::const_iterator it = m_vars.begin();
ptr_vector<app>::const_iterator end = m_vars.end();
unsigned num;
for (; it != end; ++it) {
checkpoint();
app * v = *it;
if (!m_candidate_vars.is_marked(v))
continue;
todo.push_back(frame(v, 0));
while (!todo.empty()) {
start:
frame & fr = todo.back();
expr * t = fr.first;
m_num_steps++;
TRACE("gaussian_elim_bug", tout << "processing:\n" << mk_ismt2_pp(t, m()) << "\n";);
if (t->get_ref_count() > 1 && done.is_marked(t)) {
todo.pop_back();
continue;
}
switch (t->get_kind()) {
case AST_VAR:
todo.pop_back();
break;
case AST_QUANTIFIER:
num = to_quantifier(t)->get_num_children();
while (fr.second < num) {
expr * c = to_quantifier(t)->get_child(fr.second);
fr.second++;
if (c->get_ref_count() > 1 && done.is_marked(c))
continue;
todo.push_back(frame(c, 0));
goto start;
}
if (t->get_ref_count() > 1)
done.mark(t);
todo.pop_back();
break;
case AST_APP:
num = to_app(t)->get_num_args();
if (num == 0) {
if (fr.second == 0) {
if (m_candidate_vars.is_marked(t)) {
if (visiting.is_marked(t)) {
// cycle detected: remove t
visiting.reset_mark(t);
m_candidate_vars.mark(t, false);
SASSERT(!m_candidate_vars.is_marked(t));
// Must save t and its definition.
// See comment in the beginning of the function
expr * def = 0;
proof * pr;
m_subst.find(to_app(t), def, pr);
SASSERT(def != 0);
saved.push_back(t);
saved.push_back(def);
//
m_subst.erase(t);
}
else {
visiting.mark(t);
fr.second = 1;
expr * def = 0;
proof * pr;
m_subst.find(to_app(t), def, pr);
SASSERT(def != 0);
todo.push_back(frame(def, 0));
goto start;
}
}
}
else {
SASSERT(fr.second == 1);
if (m_candidate_vars.is_marked(t)) {
visiting.reset_mark(t);
m_ordered_vars.push_back(to_app(t));
}
else {
// var was removed from the list of candidate vars to elim cycle
// do nothing
}
}
}
else {
while (fr.second < num) {
expr * arg = to_app(t)->get_arg(fr.second);
fr.second++;
if (arg->get_ref_count() > 1 && done.is_marked(arg))
continue;
todo.push_back(frame(arg, 0));
goto start;
}
}
if (t->get_ref_count() > 1)
done.mark(t);
todo.pop_back();
break;
default:
UNREACHABLE();
todo.pop_back();
break;
}
}
}
// cleanup
it = m_vars.begin();
for (unsigned idx = 0; it != end; ++it, ++idx) {
if (!m_candidate_vars.is_marked(*it)) {
m_candidate_set.mark(m_candidates[idx], false);
}
}
TRACE("gaussian_elim",
tout << "ordered vars:\n";
ptr_vector<app>::iterator it = m_ordered_vars.begin();
ptr_vector<app>::iterator end = m_ordered_vars.end();
for (; it != end; ++it) {
SASSERT(m_candidate_vars.is_marked(*it));
tout << mk_ismt2_pp(*it, m()) << " ";
}
tout << "\n";);
m_candidate_vars.reset();
}
void normalize() {
m_norm_subst.reset();
m_r->set_substitution(&m_norm_subst);
expr_ref new_def(m());
proof_ref new_pr(m());
unsigned size = m_ordered_vars.size();
for (unsigned idx = 0; idx < size; idx++) {
checkpoint();
expr * v = m_ordered_vars[idx];
expr * def = 0;
proof * pr = 0;
m_subst.find(v, def, pr);
SASSERT(def != 0);
m_r->operator()(def, new_def, new_pr);
m_num_steps += m_r->get_num_steps() + 1;
if (m().proofs_enabled())
new_pr = m().mk_transitivity(pr, new_pr);
m_norm_subst.insert(v, new_def, new_pr);
// we updated the substituting, but we don't need to reset m_r
// because all cached values there do not depend on v.
}
m_subst.reset();
TRACE("gaussian_elim",
tout << "after normalizing variables\n";
for (unsigned i = 0; i < m_ordered_vars.size(); i++) {
expr * v = m_ordered_vars[i];
expr * def = 0;
proof * pr = 0;
m_norm_subst.find(v, def, pr);
tout << mk_ismt2_pp(v, m()) << "\n----->\n" << mk_ismt2_pp(def, m()) << "\n\n";
});
#if 0
DEBUG_CODE({
for (unsigned i = 0; i < m_ordered_vars.size(); i++) {
expr * v = m_ordered_vars[i];
expr * def = 0;
proof * pr = 0;
m_norm_subst.find(v, def, pr);
SASSERT(def != 0);
CASSERT("gaussian_elim_bug", !occurs(v, def));
}
});
#endif
}
void substitute(assertion_set & set) {
// force the cache of m_r to be reset.
m_r->set_substitution(&m_norm_subst);
expr_ref new_f(m());
proof_ref new_pr(m());
unsigned size = set.size();
for (unsigned idx = 0; idx < size; idx++) {
checkpoint();
expr * f = set.form(idx);
TRACE("gaussian_leak", tout << "processing:\n" << mk_ismt2_pp(f, m()) << "\n";);
if (m_candidate_set.is_marked(f)) {
// f may be deleted after the following update.
// so, we must remove remove the mark before doing the update
m_candidate_set.mark(f, false);
SASSERT(!m_candidate_set.is_marked(f));
set.update(idx, m().mk_true(), m().mk_true_proof());
m_num_steps ++;
continue;
}
else {
m_r->operator()(f, new_f, new_pr);
}
TRACE("gaussian_elim_subst", tout << mk_ismt2_pp(f, m()) << "\n--->\n" << mk_ismt2_pp(new_f, m()) << "\n";);
m_num_steps += m_r->get_num_steps() + 1;
if (m().proofs_enabled()) {
new_pr = m().mk_modus_ponens(set.pr(idx), new_pr);
}
set.update(idx, new_f, new_pr);
if (set.inconsistent())
return;
}
set.elim_true();
TRACE("gaussian_elim",
tout << "after applying substitution\n";
set.display(tout););
#if 0
DEBUG_CODE({
for (unsigned i = 0; i < m_ordered_vars.size(); i++) {
expr * v = m_ordered_vars[i];
for (unsigned j = 0; j < set.size(); j++) {
CASSERT("gaussian_elim_bug", !occurs(v, set.form(j)));
}
}});
#endif
}
void save_elim_vars(model_converter_ref & mc) {
IF_VERBOSE(100, if (!m_ordered_vars.empty()) verbose_stream() << "num. eliminated vars: " << m_ordered_vars.size() << "\n";);
m_num_eliminated_vars += m_ordered_vars.size();
if (m_produce_models) {
if (mc.get() == 0)
mc = alloc(gmc, m());
ptr_vector<app>::iterator it = m_ordered_vars.begin();
ptr_vector<app>::iterator end = m_ordered_vars.end();
for (; it != end; ++it) {
app * v = *it;
expr * def = 0;
proof * pr;
m_norm_subst.find(v, def, pr);
SASSERT(def != 0);
static_cast<gmc*>(mc.get())->insert(v->get_decl(), def);
}
}
}
void collect_num_occs(expr * t, expr_fast_mark1 & visited) {
ptr_buffer<expr, 128> stack;
#define VISIT(ARG) { \
if (is_uninterp_const(ARG)) { \
obj_map<expr, unsigned>::obj_map_entry * entry = m_num_occs.insert_if_not_there2(ARG, 0); \
entry->get_data().m_value++; \
} \
if (!visited.is_marked(ARG)) { \
visited.mark(ARG, true); \
stack.push_back(ARG); \
} \
}
VISIT(t);
while (!stack.empty()) {
expr * t = stack.back();
stack.pop_back();
if (!is_app(t))
continue;
unsigned j = to_app(t)->get_num_args();
while (j > 0) {
--j;
expr * arg = to_app(t)->get_arg(j);
VISIT(arg);
}
}
}
void collect_num_occs(assertion_set & s) {
if (m_max_occs == UINT_MAX)
return; // no need to compute num occs
m_num_occs.reset();
expr_fast_mark1 visited;
unsigned sz = s.size();
for (unsigned i = 0; i < sz; i++)
collect_num_occs(s.form(i), visited);
}
void operator()(assertion_set & s, model_converter_ref & mc) {
SASSERT(is_well_sorted(s));
as_st_report report("gaussian-elimination", s);
TRACE("gaussian_elim", tout << "starting guassian elimination\n"; s.display(tout); tout << "\n";);
m_num_steps = 0;
mc = 0;
if (s.inconsistent())
return;
while (true) {
collect_num_occs(s);
collect(s);
if (m_subst.empty())
break;
sort_vars();
if (m_ordered_vars.empty())
break;
normalize();
substitute(s);
if (s.inconsistent()) {
mc = 0;
break;
}
save_elim_vars(mc);
TRACE("gaussian_elim_round", s.display(tout); if (mc) mc->display(tout););
}
TRACE("gaussian_elim", s.display(tout););
SASSERT(is_well_sorted(s));
}
void set_cancel(bool f) {
m_cancel = f;
m_r->set_cancel(f);
}
unsigned get_num_steps() const {
return m_num_steps;
}
unsigned get_num_eliminated_vars() const {
return m_num_eliminated_vars;
}
};
gaussian_elim::gaussian_elim(ast_manager & m, params_ref const & p, expr_replacer * r, bool owner):
m_params(p) {
m_imp = alloc(imp, m, p, r, owner);
}
gaussian_elim::~gaussian_elim() {
dealloc(m_imp);
}
ast_manager & gaussian_elim::m() const {
return m_imp->m();
}
void gaussian_elim::updt_params(params_ref const & p) {
m_params = p;
m_imp->updt_params(p);
}
void gaussian_elim::get_param_descrs(param_descrs & r) {
insert_produce_models(r);
r.insert(":gaussian-max-occs", CPK_UINT, "(default: infty) maximum number of occurrences for considering a variable for gaussian eliminations.");
r.insert(":theory-solver", CPK_BOOL, "(default: true) use theory solvers.");
r.insert(":ite-solver", CPK_BOOL, "(default: true) use if-then-else solver.");
}
void gaussian_elim::operator()(assertion_set & s, model_converter_ref & mc) {
m_imp->operator()(s, mc);
report_st_progress(":num-elim-vars", get_num_eliminated_vars());
}
void gaussian_elim::set_cancel(bool f) {
if (m_imp)
m_imp->set_cancel(f);
}
void gaussian_elim::cleanup() {
unsigned num_elim_vars = m_imp->m_num_eliminated_vars;
ast_manager & m = m_imp->m();
imp * d = m_imp;
expr_replacer * r = m_imp->m_r_owner ? m_imp->m_r : 0;
if (r)
r->set_substitution(0);
bool owner = m_imp->m_r_owner;
m_imp->m_r_owner = false; // stole replacer
#pragma omp critical (as_st_cancel)
{
m_imp = 0;
}
dealloc(d);
d = alloc(imp, m, m_params, r, owner);
#pragma omp critical (as_st_cancel)
{
m_imp = d;
}
m_imp->m_num_eliminated_vars = num_elim_vars;
}
unsigned gaussian_elim::get_num_steps() const {
return m_imp->get_num_steps();
}
unsigned gaussian_elim::get_num_eliminated_vars() const {
return m_imp->get_num_eliminated_vars();
}
void gaussian_elim::collect_statistics(statistics & st) const {
st.update("eliminated vars", get_num_eliminated_vars());
}
void gaussian_elim::reset_statistics() {
m_imp->m_num_eliminated_vars = 0;
}
as_st * mk_gaussian(ast_manager & m, params_ref const & p) {
return clean(alloc(gaussian_elim, m, p, mk_expr_simp_replacer(m, p), true));
}