3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 19:27:06 +00:00
z3/lib/bv_rewriter.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

2077 lines
64 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
bv_rewriter.cpp
Abstract:
Basic rewriting rules for bit-vectors
Author:
Leonardo (leonardo) 2011-04-14
Notes:
--*/
#include"bv_rewriter.h"
#include"poly_rewriter_def.h"
#include"ast_smt2_pp.h"
mk_extract_proc::mk_extract_proc(bv_util & u):
m_util(u),
m_high(0),
m_low(UINT_MAX),
m_domain(0),
m_f_cached(0) {
}
mk_extract_proc::~mk_extract_proc() {
if (m_f_cached) {
// m_f_cached has a reference to m_domain, so, I don't need to inc_ref m_domain
ast_manager & m = m_util.get_manager();
m.dec_ref(m_f_cached);
}
}
app * mk_extract_proc::operator()(unsigned high, unsigned low, expr * arg) {
ast_manager & m = m_util.get_manager();
sort * s = m.get_sort(arg);
if (m_low == low && m_high == high && m_domain == s)
return m.mk_app(m_f_cached, arg);
// m_f_cached has a reference to m_domain, so, I don't need to inc_ref m_domain
if (m_f_cached)
m.dec_ref(m_f_cached);
app * r = to_app(m_util.mk_extract(high, low, arg));
m_high = high;
m_low = low;
m_domain = s;
m_f_cached = r->get_decl();
m.inc_ref(m_f_cached);
return r;
}
void bv_rewriter::updt_local_params(params_ref const & p) {
m_hi_div0 = p.get_bool(":hi-div0", true);
m_elim_sign_ext = p.get_bool(":elim-sign-ext", true);
m_mul2concat = p.get_bool(":mul2concat", false);
m_bit2bool = p.get_bool(":bit2bool", true);
m_blast_eq_value = p.get_bool(":blast-eq-value", false);
m_mkbv2num = p.get_bool(":mkbv2num", false);
m_split_concat_eq = p.get_bool(":split-concat-eq", false);
m_udiv2mul = p.get_bool(":udiv2mul", false);
}
void bv_rewriter::updt_params(params_ref const & p) {
poly_rewriter<bv_rewriter_core>::updt_params(p);
updt_local_params(p);
}
void bv_rewriter::get_param_descrs(param_descrs & r) {
poly_rewriter<bv_rewriter_core>::get_param_descrs(r);
r.insert(":udiv2mul", CPK_BOOL, "(default: false) convert constant udiv to mul.");
r.insert(":split-concat-eq", CPK_BOOL, "(default: false) split equalities of the form (= (concat t1 t2) t3).");
r.insert(":bit2bool", CPK_BOOL, "(default: true) try to convert bit-vector terms of size 1 into Boolean terms.");
r.insert(":blast-eq-value", CPK_BOOL, "(default: false) blast (some) Bit-vector equalities into bits.");
r.insert(":elim-sign-ext", CPK_BOOL, "(default: true) expand sign-ext operator using concat and extract.");
r.insert(":hi-div0", CPK_BOOL, "(default: true) use the 'hardware interpretation' for division by zero (for bit-vector terms).");
r.insert(":mul2concat", CPK_BOOL, "(default: false) replace multiplication by a power of two into a concatenation.");
#ifndef _EXTERNAL_RELEASE
r.insert(":mkbv2num", CPK_BOOL, "(default: false) convert (mkbv [true/false]*) into a numeral");
#endif
}
br_status bv_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(f->get_family_id() == get_fid());
switch(f->get_decl_kind()) {
case OP_BIT0: SASSERT(num_args == 0); result = m_util.mk_numeral(0, 1); return BR_DONE;
case OP_BIT1: SASSERT(num_args == 0); result = m_util.mk_numeral(1, 1); return BR_DONE;
case OP_ULEQ:
SASSERT(num_args == 2);
return mk_ule(args[0], args[1], result);
case OP_UGEQ:
SASSERT(num_args == 2);
return mk_uge(args[0], args[1], result);
case OP_ULT:
SASSERT(num_args == 2);
return mk_ult(args[0], args[1], result);
case OP_UGT:
SASSERT(num_args == 2);
return mk_ult(args[1], args[0], result);
case OP_SLEQ:
SASSERT(num_args == 2);
return mk_sle(args[0], args[1], result);
case OP_SGEQ:
SASSERT(num_args == 2);
return mk_sge(args[0], args[1], result);
case OP_SLT:
SASSERT(num_args == 2);
return mk_slt(args[0], args[1], result);
case OP_SGT:
SASSERT(num_args == 2);
return mk_slt(args[1], args[0], result);
case OP_BADD:
SASSERT(num_args > 0);
return mk_bv_add(num_args, args, result);
case OP_BMUL:
SASSERT(num_args > 0);
return mk_bv_mul(num_args, args, result);
case OP_BSUB:
SASSERT(num_args > 0);
return mk_sub(num_args, args, result);
case OP_BNEG:
SASSERT(num_args == 1);
return mk_uminus(args[0], result);
case OP_BSHL:
SASSERT(num_args == 2);
return mk_bv_shl(args[0], args[1], result);
case OP_BLSHR:
SASSERT(num_args == 2);
return mk_bv_lshr(args[0], args[1], result);
case OP_BASHR:
SASSERT(num_args == 2);
return mk_bv_ashr(args[0], args[1], result);
case OP_BSDIV:
SASSERT(num_args == 2);
return mk_bv_sdiv(args[0], args[1], result);
case OP_BUDIV:
SASSERT(num_args == 2);
return mk_bv_udiv(args[0], args[1], result);
case OP_BSREM:
SASSERT(num_args == 2);
return mk_bv_srem(args[0], args[1], result);
case OP_BUREM:
SASSERT(num_args == 2);
return mk_bv_urem(args[0], args[1], result);
case OP_BSMOD:
SASSERT(num_args == 2);
return mk_bv_smod(args[0], args[1], result);
case OP_BSDIV_I:
SASSERT(num_args == 2);
return mk_bv_sdiv_i(args[0], args[1], result);
case OP_BUDIV_I:
SASSERT(num_args == 2);
return mk_bv_udiv_i(args[0], args[1], result);
case OP_BSREM_I:
SASSERT(num_args == 2);
return mk_bv_srem_i(args[0], args[1], result);
case OP_BUREM_I:
SASSERT(num_args == 2);
return mk_bv_urem_i(args[0], args[1], result);
case OP_BSMOD_I:
SASSERT(num_args == 2);
return mk_bv_smod_i(args[0], args[1], result);
case OP_CONCAT:
return mk_concat(num_args, args, result);
case OP_EXTRACT:
SASSERT(num_args == 1);
return mk_extract(m_util.get_extract_high(f), m_util.get_extract_low(f), args[0], result);
case OP_REPEAT:
SASSERT(num_args == 1);
return mk_repeat(f->get_parameter(0).get_int(), args[0], result);
case OP_ZERO_EXT:
SASSERT(num_args == 1);
return mk_zero_extend(f->get_parameter(0).get_int(), args[0], result);
case OP_SIGN_EXT:
SASSERT(num_args == 1);
return mk_sign_extend(f->get_parameter(0).get_int(), args[0], result);
case OP_BOR:
return mk_bv_or(num_args, args, result);
case OP_BXOR:
return mk_bv_xor(num_args, args, result);
case OP_BNOT:
SASSERT(num_args == 1);
return mk_bv_not(args[0], result);
case OP_BAND:
return mk_bv_and(num_args, args, result);
case OP_BNAND:
return mk_bv_nand(num_args, args, result);
case OP_BNOR:
return mk_bv_nor(num_args, args, result);
case OP_BXNOR:
return mk_bv_xnor(num_args, args, result);
case OP_ROTATE_LEFT:
SASSERT(num_args == 1);
return mk_bv_rotate_left(f->get_parameter(0).get_int(), args[0], result);
case OP_ROTATE_RIGHT:
SASSERT(num_args == 1);
return mk_bv_rotate_right(f->get_parameter(0).get_int(), args[0], result);
case OP_EXT_ROTATE_LEFT:
SASSERT(num_args == 2);
return mk_bv_ext_rotate_left(args[0], args[1], result);
case OP_EXT_ROTATE_RIGHT:
SASSERT(num_args == 2);
return mk_bv_ext_rotate_right(args[0], args[1], result);
case OP_BV2INT:
SASSERT(num_args == 1);
return mk_bv2int(args[0], result);
case OP_INT2BV:
SASSERT(num_args == 1);
return mk_int2bv(m_util.get_bv_size(f->get_range()), args[0], result);
case OP_BREDOR:
SASSERT(num_args == 1);
return mk_bv_redor(args[0], result);
case OP_BREDAND:
SASSERT(num_args == 1);
return mk_bv_redand(args[0], result);
case OP_BCOMP:
SASSERT(num_args == 2);
return mk_bv_comp(args[0], args[1], result);
case OP_MKBV:
return mk_mkbv(num_args, args, result);
default:
return BR_FAILED;
}
}
br_status bv_rewriter::mk_ule(expr * a, expr * b, expr_ref & result) {
return mk_leq_core(false, a, b, result);
}
br_status bv_rewriter::mk_uge(expr * a, expr * b, expr_ref & result) {
br_status st = mk_ule(b, a, result);
if (st != BR_FAILED)
return st;
result = m_util.mk_ule(b, a);
return BR_DONE;
}
br_status bv_rewriter::mk_ult(expr * a, expr * b, expr_ref & result) {
result = m().mk_not(m_util.mk_ule(b, a));
return BR_REWRITE2;
}
br_status bv_rewriter::mk_sle(expr * a, expr * b, expr_ref & result) {
return mk_leq_core(true, a, b, result);
}
br_status bv_rewriter::mk_sge(expr * a, expr * b, expr_ref & result) {
br_status st = mk_sle(b, a, result);
if (st != BR_FAILED)
return st;
result = m_util.mk_sle(b, a);
return BR_DONE;
}
br_status bv_rewriter::mk_slt(expr * a, expr * b, expr_ref & result) {
result = m().mk_not(m_util.mk_sle(b, a));
return BR_REWRITE2;
}
br_status bv_rewriter::mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref & result) {
numeral r1, r2, r3;
unsigned sz;
bool is_num1 = is_numeral(a, r1, sz);
bool is_num2 = is_numeral(b, r2, sz);
if (a == b) {
result = m().mk_true();
return BR_DONE;
}
if (is_num1)
r1 = m_util.norm(r1, sz, is_signed);
if (is_num2)
r2 = m_util.norm(r2, sz, is_signed);
if (is_num1 && is_num2) {
result = r1 <= r2 ? m().mk_true() : m().mk_false();
return BR_DONE;
}
numeral lower, upper;
if (is_num1 || is_num2) {
if (is_signed) {
lower = - m_util.power_of_two(sz - 1);
upper = m_util.power_of_two(sz - 1) - numeral(1);
}
else {
lower = numeral(0);
upper = m_util.power_of_two(sz) - numeral(1);
}
}
if (is_num2) {
if (r2 == lower) {
result = m().mk_eq(a, b);
return BR_REWRITE1;
}
if (r2 == upper) {
result = m().mk_true();
return BR_DONE;
}
}
if (is_num1) {
// 0 <= b is true
if (r1 == lower) {
result = m().mk_true();
return BR_DONE;
}
// 2^n-1 <= b is a = b
if (r1 == upper) {
result = m().mk_eq(a, b);
return BR_REWRITE1;
}
}
#if 0
if (!is_signed && m_util.is_concat(b) && to_app(b)->get_num_args() == 2 && m_util.is_zero(to_app(b)->get_arg(0))) {
//
// a <=_u (concat 0 c) ---> a[h:l] = 0 && a[l-1:0] <=_u c
//
expr * b_1 = to_app(b)->get_arg(0);
expr * b_2 = to_app(b)->get_arg(1);
unsigned sz1 = get_bv_size(b_1);
unsigned sz2 = get_bv_size(b_2);
result = m().mk_and(m().mk_eq(m_mk_extract(sz2+sz1-1, sz2, a), b_1),
m_util.mk_ule(m_mk_extract(sz2-1, 0, a), b_2));
return BR_REWRITE3;
}
#else
if (!is_signed) {
// Extended version of the rule above using is_zero_bit.
// It also catches examples atoms such as:
//
// a <=_u #x000f
//
unsigned bv_sz = m_util.get_bv_size(b);
unsigned i = bv_sz;
unsigned first_non_zero = UINT_MAX;
while (i > 0) {
--i;
if (!is_zero_bit(b, i)) {
first_non_zero = i;
break;
}
}
if (first_non_zero == UINT_MAX) {
// all bits are zero
result = m().mk_eq(a, m_util.mk_numeral(numeral(0), bv_sz));
return BR_REWRITE1;
}
else if (first_non_zero < bv_sz - 1) {
result = m().mk_and(m().mk_eq(m_mk_extract(bv_sz - 1, first_non_zero + 1, a), m_util.mk_numeral(numeral(0), bv_sz - first_non_zero - 1)),
m_util.mk_ule(m_mk_extract(first_non_zero, 0, a), m_mk_extract(first_non_zero, 0, b)));
return BR_REWRITE3;
}
}
#endif
// Investigate if we need:
//
// k <=_s (concat 0 a) <=> (k[u:l] = 0 && k[l-1:0] <=_u a) || k[u:u] = bv1
//
// (concat 0 a) <=_s k <=> k[u:u] = bv0 && (k[u:l] != 0 || a <=_u k[l-1:0])
//
// (concat 0 a) <=_u k <=> k[u:l] != 0 || a <=_u k[l-1:0]
//
return BR_FAILED;
}
br_status bv_rewriter::mk_extract(unsigned high, unsigned low, expr * arg, expr_ref & result) {
unsigned sz = get_bv_size(arg);
SASSERT(sz > 0);
if (low == 0 && high == sz - 1) {
result = arg;
return BR_DONE;
}
numeral v;
if (is_numeral(arg, v, sz)) {
sz = high - low + 1;
if (v.is_neg())
mod(v, m_util.power_of_two(sz), v);
if (v.is_uint64()) {
uint64 u = v.get_uint64();
uint64 e = shift_right(u, low) & (shift_left(1ull, sz) - 1ull);
result = mk_numeral(numeral(e, numeral::ui64()), sz);
return BR_DONE;
}
div(v, m_util.power_of_two(low), v);
result = mk_numeral(v, sz);
return BR_DONE;
}
// (extract[high:low] (extract[high2:low2] x)) == (extract[high+low2 : low+low2] x)
if (m_util.is_extract(arg)) {
unsigned low2 = m_util.get_extract_low(arg);
result = m_mk_extract(high + low2, low + low2, to_app(arg)->get_arg(0));
return BR_DONE;
}
// (extract (concat ....)) --> (concat (extract ...) ... (extract ...) )
if (m_util.is_concat(arg)) {
unsigned num = to_app(arg)->get_num_args();
unsigned idx = sz;
for (unsigned i = 0; i < num; i++) {
expr * curr = to_app(arg)->get_arg(i);
unsigned curr_sz = get_bv_size(curr);
idx -= curr_sz;
if (idx > high)
continue;
// found first argument
if (idx <= low) {
// result is a fragment of this argument
if (low == idx && high - idx == curr_sz - 1) {
result = curr;
return BR_DONE;
}
else {
result = m_mk_extract(high - idx, low - idx, curr);
return BR_REWRITE1;
}
}
else {
// look for remaining arguments
ptr_buffer<expr> new_args;
bool used_extract = false;
if (high - idx == curr_sz - 1) {
new_args.push_back(curr);
}
else {
used_extract = true;
new_args.push_back(m_mk_extract(high - idx, 0, curr));
}
for (unsigned j = i + 1; j < num; j++) {
curr = to_app(arg)->get_arg(j);
unsigned curr_sz = get_bv_size(curr);
idx -= curr_sz;
if (idx > low) {
new_args.push_back(curr);
continue;
}
if (idx == low) {
new_args.push_back(curr);
result = m_util.mk_concat(new_args.size(), new_args.c_ptr());
return used_extract ? BR_REWRITE2 : BR_DONE;
}
new_args.push_back(m_mk_extract(curr_sz - 1, low - idx, curr));
result = m_util.mk_concat(new_args.size(), new_args.c_ptr());
return BR_REWRITE2;
}
UNREACHABLE();
}
}
UNREACHABLE();
}
if (m_util.is_bv_not(arg) ||
m_util.is_bv_or(arg) ||
m_util.is_bv_xor(arg) ||
(low == 0 && (m_util.is_bv_add(arg) ||
m_util.is_bv_mul(arg)))) {
ptr_buffer<expr> new_args;
unsigned num = to_app(arg)->get_num_args();
for (unsigned i = 0; i < num; i++) {
expr * curr = to_app(arg)->get_arg(i);
new_args.push_back(m_mk_extract(high, low, curr));
}
result = m().mk_app(get_fid(), to_app(arg)->get_decl()->get_decl_kind(), new_args.size(), new_args.c_ptr());
return BR_REWRITE2;
}
if (m().is_ite(arg)) {
result = m().mk_ite(to_app(arg)->get_arg(0),
m_mk_extract(high, low, to_app(arg)->get_arg(1)),
m_mk_extract(high, low, to_app(arg)->get_arg(2)));
return BR_REWRITE2;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_shl(expr * arg1, expr * arg2, expr_ref & result) {
numeral r1, r2;
unsigned bv_size = get_bv_size(arg1);
unsigned sz;
if (is_numeral(arg2, r2, sz)) {
if (r2.is_zero()) {
// x << 0 == x
result = arg1;
return BR_DONE;
}
if (r2 >= numeral(bv_size)) {
result = mk_numeral(0, bv_size);
return BR_DONE;
}
if (is_numeral(arg1, r1, sz)) {
if (bv_size <= 64) {
SASSERT(r1.is_uint64() && r2.is_uint64());
SASSERT(r2.get_uint64() < bv_size);
uint64 r = shift_left(r1.get_uint64(), r2.get_uint64());
numeral rn(r, numeral::ui64());
rn = m_util.norm(rn, bv_size);
result = mk_numeral(rn, bv_size);
return BR_DONE;
}
SASSERT(r2 < numeral(bv_size));
SASSERT(r2.is_unsigned());
r1 = m_util.norm(r1 * m_util.power_of_two(r2.get_unsigned()), bv_size);
result = mk_numeral(r1, bv_size);
return BR_DONE;
}
SASSERT(r2.is_pos());
SASSERT(r2 < numeral(bv_size));
// (bvshl x k) -> (concat (extract [n-1-k:0] x) bv0:k)
unsigned k = r2.get_unsigned();
expr * new_args[2] = { m_mk_extract(bv_size - k - 1, 0, arg1),
mk_numeral(0, k) };
result = m_util.mk_concat(2, new_args);
return BR_REWRITE2;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_lshr(expr * arg1, expr * arg2, expr_ref & result) {
numeral r1, r2;
unsigned bv_size = get_bv_size(arg1);
unsigned sz;
if (is_numeral(arg2, r2, sz)) {
if (r2.is_zero()) {
// x >> 0 == x
result = arg1;
return BR_DONE;
}
if (r2 >= numeral(bv_size)) {
result = mk_numeral(0, bv_size);
return BR_DONE;
}
if (is_numeral(arg1, r1, sz)) {
if (bv_size <= 64) {
SASSERT(r1.is_uint64());
SASSERT(r2.is_uint64());
uint64 r = shift_right(r1.get_uint64(), r2.get_uint64());
numeral rn(r, numeral::ui64());
rn = m_util.norm(rn, bv_size);
result = mk_numeral(rn, bv_size);
return BR_DONE;
}
SASSERT(r2.is_unsigned());
unsigned sh = r2.get_unsigned();
div(r1, m_util.power_of_two(sh), r1);
result = mk_numeral(r1, bv_size);
return BR_DONE;
}
SASSERT(r2.is_pos());
SASSERT(r2 < numeral(bv_size));
// (bvlshr x k) -> (concat bv0:k (extract [n-1:k] x))
SASSERT(r2.is_unsigned());
unsigned k = r2.get_unsigned();
expr * new_args[2] = { mk_numeral(0, k),
m_mk_extract(bv_size - 1, k, arg1) };
result = m_util.mk_concat(2, new_args);
return BR_REWRITE2;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_ashr(expr * arg1, expr * arg2, expr_ref & result) {
numeral r1, r2;
unsigned bv_size = get_bv_size(arg1);
SASSERT(bv_size > 0);
bool is_num2 = is_numeral(arg2, r2, bv_size);
if (is_num2 && r2.is_zero()) {
result = arg1;
return BR_DONE;
}
bool is_num1 = is_numeral(arg1, r1, bv_size);
if (bv_size <= 64 && is_num1 && is_num2) {
uint64 n1 = r1.get_uint64();
uint64 n2_orig = r2.get_uint64();
uint64 n2 = n2_orig % bv_size;
SASSERT(n2 < bv_size);
uint64 r = shift_right(n1, n2);
bool sign = (n1 & shift_left(1ull, bv_size - 1ull)) != 0;
if (n2_orig > n2) {
if (sign) {
r = shift_left(1ull, bv_size) - 1ull;
}
else {
r = 0;
}
}
else if (sign) {
uint64 allone = shift_left(1ull, bv_size) - 1ull;
uint64 mask = ~(shift_left(1ull, bv_size - n2) - 1ull);
mask &= allone;
r |= mask;
}
result = mk_numeral(numeral(r, numeral::ui64()), bv_size);
return BR_DONE;
}
if (is_num1 && is_num2 && numeral(bv_size) <= r2) {
if (m_util.has_sign_bit(r1, bv_size))
result = mk_numeral(m_util.power_of_two(bv_size) - numeral(1), bv_size);
else
result = mk_numeral(0, bv_size);
return BR_DONE;
}
if (is_num1 && is_num2) {
SASSERT(r2 < numeral(bv_size));
bool sign = m_util.has_sign_bit(r1, bv_size);
div(r1, m_util.power_of_two(r2.get_unsigned()), r1);
if (sign) {
// pad ones.
numeral p(1);
for (unsigned i = 0; i < bv_size; ++i) {
if (r1 < p) {
r1 += p;
}
p *= numeral(2);
}
}
result = mk_numeral(r1, bv_size);
return BR_DONE;
}
// (bvashr (bvashr x r1) r2) --> (bvashr x r1+r2)
if (is_num2 && m_util.is_bv_ashr(arg1) && is_numeral(to_app(arg1)->get_arg(1), r1, bv_size)) {
r1 += r2;
if (r1 > numeral(bv_size))
r1 = numeral(bv_size);
result = m().mk_app(get_fid(), OP_BASHR,
to_app(arg1)->get_arg(0),
mk_numeral(r1, bv_size));
return BR_REWRITE1; // not really needed at this time.
}
#if 0
// (bvashr x k) --> (concat extract[sz-1:sz-1](x) ... extract[sz-1:sz-1](x) extract[sz-1:k](x))
if (is_num2) {
ptr_buffer<expr> new_args;
if (r2 > numeral(bv_size))
r2 = numeral(bv_size);
SASSERT(r2 <= numeral(bv_size));
unsigned k = r2.get_unsigned();
expr * sign = m_mk_extract(bv_size-1, bv_size-1, arg1);
for (unsigned i = 0; i < k; i++)
new_args.push_back(sign);
if (k != bv_size)
new_args.push_back(m_mk_extract(bv_size-1, k, arg1));
result = m_util.mk_concat(new_args.size(), new_args.c_ptr());
return BR_REWRITE2;
}
#endif
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_sdiv_core(expr * arg1, expr * arg2, bool hi_div0, expr_ref & result) {
numeral r1, r2;
unsigned bv_size;
if (is_numeral(arg2, r2, bv_size)) {
r2 = m_util.norm(r2, bv_size, true);
if (r2.is_zero()) {
if (!hi_div0) {
result = m().mk_app(get_fid(), OP_BSDIV0, arg1);
return BR_DONE;
}
else {
// The "hardware interpretation" for (bvsdiv x 0) is (ite (bvslt x #x0000) #x0001 #xffff)
result = m().mk_ite(m().mk_app(get_fid(), OP_SLT, arg1, mk_numeral(0, bv_size)),
mk_numeral(1, bv_size),
mk_numeral(m_util.power_of_two(bv_size) - numeral(1), bv_size));
return BR_REWRITE2;
}
}
if (r2.is_one()) {
result = arg1;
return BR_DONE;
}
if (!r2.is_zero() && is_numeral(arg1, r1, bv_size)) {
r1 = m_util.norm(r1, bv_size, true);
result = mk_numeral(machine_div(r1, r2), bv_size);
return BR_DONE;
}
result = m().mk_app(get_fid(), OP_BSDIV_I, arg1, arg2);
return BR_DONE;
}
if (hi_div0) {
result = m().mk_app(get_fid(), OP_BSDIV_I, arg1, arg2);
return BR_DONE;
}
bv_size = get_bv_size(arg2);
result = m().mk_ite(m().mk_eq(arg2, mk_numeral(0, bv_size)),
m().mk_app(get_fid(), OP_BSDIV0, arg1),
m().mk_app(get_fid(), OP_BSDIV_I, arg1, arg2));
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_udiv_core(expr * arg1, expr * arg2, bool hi_div0, expr_ref & result) {
numeral r1, r2;
unsigned bv_size;
TRACE("bv_udiv", tout << "hi_div0: " << hi_div0 << "\n";);
TRACE("udiv2mul", tout << mk_ismt2_pp(arg2, m()) << " udiv2mul: " << m_udiv2mul << "\n";);
if (is_numeral(arg2, r2, bv_size)) {
r2 = m_util.norm(r2, bv_size);
if (r2.is_zero()) {
if (!hi_div0) {
result = m().mk_app(get_fid(), OP_BUDIV0, arg1);
return BR_DONE;
}
else {
// The "hardware interpretation" for (bvudiv x 0) is #xffff
result = mk_numeral(m_util.power_of_two(bv_size) - numeral(1), bv_size);
return BR_DONE;
}
}
if (r2.is_one()) {
result = arg1;
return BR_DONE;
}
if (!r2.is_zero() && is_numeral(arg1, r1, bv_size)) {
r1 = m_util.norm(r1, bv_size);
result = mk_numeral(machine_div(r1, r2), bv_size);
return BR_DONE;
}
unsigned shift;
if (r2.is_power_of_two(shift)) {
result = m().mk_app(get_fid(), OP_BLSHR, arg1, mk_numeral(shift, bv_size));
return BR_REWRITE1;
}
if (m_udiv2mul) {
TRACE("udiv2mul", tout << "using udiv2mul\n";);
numeral inv_r2;
if (m_util.mult_inverse(r2, bv_size, inv_r2)) {
result = m().mk_app(get_fid(), OP_BMUL, mk_numeral(inv_r2, bv_size), arg1);
return BR_REWRITE1;
}
}
result = m().mk_app(get_fid(), OP_BUDIV_I, arg1, arg2);
return BR_DONE;
}
if (hi_div0) {
result = m().mk_app(get_fid(), OP_BUDIV_I, arg1, arg2);
return BR_DONE;
}
bv_size = get_bv_size(arg2);
result = m().mk_ite(m().mk_eq(arg2, mk_numeral(0, bv_size)),
m().mk_app(get_fid(), OP_BUDIV0, arg1),
m().mk_app(get_fid(), OP_BUDIV_I, arg1, arg2));
TRACE("bv_udiv", tout << mk_ismt2_pp(arg1, m()) << "\n" << mk_ismt2_pp(arg2, m()) << "\n---->\n" << mk_ismt2_pp(result, m()) << "\n";);
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_srem_core(expr * arg1, expr * arg2, bool hi_div0, expr_ref & result) {
numeral r1, r2;
unsigned bv_size;
if (is_numeral(arg2, r2, bv_size)) {
r2 = m_util.norm(r2, bv_size, true);
if (r2.is_zero()) {
if (!hi_div0) {
result = m().mk_app(get_fid(), OP_BSREM0, arg1);
return BR_DONE;
}
else {
// The "hardware interpretation" for (bvsrem x 0) is x
result = arg1;
return BR_DONE;
}
}
if (r2.is_one()) {
result = mk_numeral(0, bv_size);
return BR_DONE;
}
if (!r2.is_zero() && is_numeral(arg1, r1, bv_size)) {
r1 = m_util.norm(r1, bv_size, true);
result = mk_numeral(r1 % r2, bv_size);
return BR_DONE;
}
result = m().mk_app(get_fid(), OP_BSREM_I, arg1, arg2);
return BR_DONE;
}
if (hi_div0) {
result = m().mk_app(get_fid(), OP_BSREM_I, arg1, arg2);
return BR_DONE;
}
bv_size = get_bv_size(arg2);
result = m().mk_ite(m().mk_eq(arg2, mk_numeral(0, bv_size)),
m().mk_app(get_fid(), OP_BSREM0, arg1),
m().mk_app(get_fid(), OP_BSREM_I, arg1, arg2));
return BR_REWRITE2;
}
bool bv_rewriter::is_minus_one_core(expr * arg) const {
numeral r;
unsigned bv_size;
if (is_numeral(arg, r, bv_size)) {
return r == (m_util.power_of_two(bv_size) - numeral(1));
}
return false;
}
bool bv_rewriter::is_x_minus_one(expr * arg, expr * & x) {
if (is_add(arg) && to_app(arg)->get_num_args() == 2) {
if (is_minus_one_core(to_app(arg)->get_arg(0))) {
x = to_app(arg)->get_arg(1);
return true;
}
if (is_minus_one_core(to_app(arg)->get_arg(1))) {
x = to_app(arg)->get_arg(0);
return true;
}
}
return false;
}
br_status bv_rewriter::mk_bv_urem_core(expr * arg1, expr * arg2, bool hi_div0, expr_ref & result) {
numeral r1, r2;
unsigned bv_size;
bool is_num1 = is_numeral(arg1, r1, bv_size);
if (is_numeral(arg2, r2, bv_size)) {
r2 = m_util.norm(r2, bv_size);
if (r2.is_zero()) {
if (!hi_div0) {
result = m().mk_app(get_fid(), OP_BUREM0, arg1);
return BR_DONE;
}
else {
// The "hardware interpretation" for (bvurem x 0) is x
result = arg1;
return BR_DONE;
}
}
if (r2.is_one()) {
result = mk_numeral(0, bv_size);
return BR_DONE;
}
if (!r2.is_zero() && is_num1) {
r1 = m_util.norm(r1, bv_size);
r1 %= r2;
result = mk_numeral(r1, bv_size);
return BR_DONE;
}
unsigned shift;
if (r2.is_power_of_two(shift)) {
expr * args[2] = {
mk_numeral(0, bv_size - shift),
m_mk_extract(shift-1, 0, arg1)
};
result = m_util.mk_concat(2, args);
return BR_REWRITE2;
}
result = m().mk_app(get_fid(), OP_BUREM_I, arg1, arg2);
return BR_DONE;
}
if (!hi_div0) {
// urem(0, x) ==> ite(x = 0, urem0(x), 0)
if (is_num1 && r1.is_zero()) {
expr * zero = arg1;
result = m().mk_ite(m().mk_eq(arg2, zero),
m().mk_app(get_fid(), OP_BUREM0, zero),
zero);
return BR_REWRITE2;
}
// urem(x - 1, x) ==> ite(x = 0, urem0(x-1), x - 1) ==> ite(x = 0, urem0(-1), x - 1)
expr * x;
if (is_x_minus_one(arg1, x) && x == arg2) {
bv_size = get_bv_size(arg1);
expr * x_minus_1 = arg1;
expr * minus_one = mk_numeral(m_util.power_of_two(bv_size) - numeral(1), bv_size);
result = m().mk_ite(m().mk_eq(x, mk_numeral(0, bv_size)),
m().mk_app(get_fid(), OP_BUREM0, minus_one),
x_minus_1);
return BR_REWRITE2;
}
}
else {
// Remark: when HI_DIV0=true is used, (bvurem x 0) --> x
if (is_num1 && r1.is_zero()) {
// urem(0, x) --> 0
expr * zero = arg1;
result = zero;
return BR_DONE;
}
// urem(x - 1, x) --> x - 1
expr * x;
if (is_x_minus_one(arg1, x) && x == arg2) {
expr * x_minus_1 = arg1;
result = x_minus_1;
return BR_DONE;
}
}
if (hi_div0) {
result = m().mk_app(get_fid(), OP_BUREM_I, arg1, arg2);
return BR_DONE;
}
bv_size = get_bv_size(arg2);
result = m().mk_ite(m().mk_eq(arg2, mk_numeral(0, bv_size)),
m().mk_app(get_fid(), OP_BUREM0, arg1),
m().mk_app(get_fid(), OP_BUREM_I, arg1, arg2));
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_smod_core(expr * arg1, expr * arg2, bool hi_div0, expr_ref & result) {
numeral r1, r2;
unsigned bv_size;
bool is_num1 = is_numeral(arg1, r1, bv_size);
if (is_num1) {
r1 = m_util.norm(r1, bv_size, true);
if (r1.is_zero()) {
result = m().mk_app(get_fid(), OP_BUREM, arg1, arg2);
return BR_REWRITE1;
}
}
if (is_numeral(arg2, r2, bv_size)) {
r2 = m_util.norm(r2, bv_size, true);
if (r2.is_zero()) {
if (!hi_div0)
result = m().mk_app(get_fid(), OP_BSMOD0, arg1);
else
result = arg1;
return BR_DONE;
}
if (is_num1) {
numeral abs_r1 = m_util.norm(abs(r1), bv_size);
numeral abs_r2 = m_util.norm(abs(r2), bv_size);
numeral u = m_util.norm(abs_r1 % abs_r2, bv_size);
numeral r;
if (u.is_zero())
r = u;
else if (r1.is_pos() && r2.is_pos())
r = u;
else if (r1.is_neg() && r2.is_pos())
r = m_util.norm(-u + r2, bv_size);
else if (r1.is_pos() && r2.is_neg())
r = m_util.norm(u + r2, bv_size);
else
r = m_util.norm(-u, bv_size);
result = mk_numeral(r, bv_size);
return BR_DONE;
}
if (r2.is_one()) {
// (bvsmod x 1) --> 0
result = mk_numeral(0, bv_size);
return BR_REWRITE2;
}
}
if (hi_div0) {
result = m().mk_app(get_fid(), OP_BSMOD_I, arg1, arg2);
return BR_DONE;
}
bv_size = get_bv_size(arg2);
result = m().mk_ite(m().mk_eq(arg2, mk_numeral(0, bv_size)),
m().mk_app(get_fid(), OP_BSMOD0, arg1),
m().mk_app(get_fid(), OP_BSMOD_I, arg1, arg2));
return BR_REWRITE2;
}
br_status bv_rewriter::mk_int2bv(unsigned bv_size, expr * arg, expr_ref & result) {
numeral val;
bool is_int;
if (m_autil.is_numeral(arg, val, is_int)) {
val = m_util.norm(val, bv_size);
result = mk_numeral(val, bv_size);
return BR_DONE;
}
// (int2bv (bv2int x)) --> x
if (m_util.is_bv2int(arg) && bv_size == get_bv_size(to_app(arg)->get_arg(0))) {
result = to_app(arg)->get_arg(0);
return BR_DONE;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv2int(expr * arg, expr_ref & result) {
numeral v;
unsigned sz;
if (is_numeral(arg, v, sz)) {
result = m_autil.mk_numeral(v, true);
return BR_DONE;
}
// TODO: add other simplifications
return BR_FAILED;
}
br_status bv_rewriter::mk_concat(unsigned num_args, expr * const * args, expr_ref & result) {
expr_ref_buffer new_args(m());
numeral v1;
numeral v2;
unsigned sz1, sz2;
bool fused_numeral = false;
bool expanded = false;
bool fused_extract = false;
for (unsigned i = 0; i < num_args; i++) {
expr * arg = args[i];
expr * prev = 0;
if (i > 0)
prev = new_args.back();
if (is_numeral(arg, v1, sz1) && prev != 0 && is_numeral(prev, v2, sz2)) {
v2 *= m_util.power_of_two(sz1);
v2 += v1;
new_args.pop_back();
new_args.push_back(mk_numeral(v2, sz1+sz2));
fused_numeral = true;
}
else if (m_flat && m_util.is_concat(arg)) {
unsigned num2 = to_app(arg)->get_num_args();
for (unsigned j = 0; j < num2; j++) {
new_args.push_back(to_app(arg)->get_arg(j));
}
expanded = true;
}
else if (m_util.is_extract(arg) &&
prev != 0 &&
m_util.is_extract(prev) &&
to_app(arg)->get_arg(0) == to_app(prev)->get_arg(0) &&
m_util.get_extract_low(prev) == m_util.get_extract_high(arg) + 1) {
// (concat (extract[h1,l1] a) (extract[h2,l2] a)) --> (extract[h1,l2] a) if l1 == h2+1
expr * new_arg = m_mk_extract(m_util.get_extract_high(prev),
m_util.get_extract_low(arg),
to_app(arg)->get_arg(0));
new_args.pop_back();
new_args.push_back(new_arg);
fused_extract = true;
}
else {
new_args.push_back(arg);
}
}
if (!fused_numeral && !expanded && !fused_extract)
return BR_FAILED;
SASSERT(!new_args.empty());
if (new_args.size() == 1) {
result = new_args.back();
return fused_extract ? BR_REWRITE1 : BR_DONE;
}
result = m_util.mk_concat(new_args.size(), new_args.c_ptr());
if (fused_extract)
return BR_REWRITE2;
else if (expanded)
return BR_REWRITE1;
else
return BR_DONE;
}
br_status bv_rewriter::mk_zero_extend(unsigned n, expr * arg, expr_ref & result) {
if (n == 0) {
result = arg;
return BR_DONE;
}
else {
expr * args[2] = { mk_numeral(0, n), arg };
result = m_util.mk_concat(2, args);
return BR_REWRITE1;
}
}
br_status bv_rewriter::mk_sign_extend(unsigned n, expr * arg, expr_ref & result) {
if (n == 0) {
result = arg;
return BR_DONE;
}
numeral r;
unsigned bv_size;
if (is_numeral(arg, r, bv_size)) {
unsigned result_bv_size = bv_size + n;
r = m_util.norm(r, bv_size, true);
mod(r, m_util.power_of_two(result_bv_size), r);
result = mk_numeral(r, result_bv_size);
return BR_DONE;
}
if (m_elim_sign_ext) {
unsigned sz = get_bv_size(arg);
expr * sign = m_mk_extract(sz-1, sz-1, arg);
ptr_buffer<expr> args;
for (unsigned i = 0; i < n; i++)
args.push_back(sign);
args.push_back(arg);
result = m_util.mk_concat(args.size(), args.c_ptr());
return BR_REWRITE2;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_repeat(unsigned n, expr * arg, expr_ref & result) {
if (n == 1) {
result = arg;
return BR_DONE;
}
ptr_buffer<expr> args;
for (unsigned i = 0; i < n; i++)
args.push_back(arg);
result = m_util.mk_concat(args.size(), args.c_ptr());
return BR_REWRITE1;
}
br_status bv_rewriter::mk_bv_or(unsigned num, expr * const * args, expr_ref & result) {
SASSERT(num > 0);
if (num == 1) {
result = args[0];
return BR_DONE;
}
unsigned sz = get_bv_size(args[0]);
bool flattened = false;
ptr_buffer<expr> flat_args;
if (m_flat) {
for (unsigned i = 0; i < num; i++) {
expr * arg = args[i];
if (m_util.is_bv_or(arg)) {
unsigned num2 = to_app(arg)->get_num_args();
for (unsigned j = 0; j < num2; j++)
flat_args.push_back(to_app(arg)->get_arg(j));
}
else {
flat_args.push_back(arg);
}
}
if (flat_args.size() != num) {
flattened = true;
num = flat_args.size();
args = flat_args.c_ptr();
}
}
ptr_buffer<expr> new_args;
expr_fast_mark1 pos_args;
expr_fast_mark2 neg_args;
bool merged = false;
unsigned num_coeffs = 0;
numeral v1, v2;
for (unsigned i = 0; i < num; i++) {
expr * arg = args[i];
if (is_numeral(arg, v2, sz)) {
num_coeffs++;
v1 = bitwise_or(v1, v2);
continue;
}
if (m_util.is_bv_not(arg)) {
expr * atom = to_app(arg)->get_arg(0);
if (pos_args.is_marked(atom)) {
result = mk_numeral(m_util.power_of_two(sz) - numeral(1), sz);
return BR_DONE;
}
else if (neg_args.is_marked(atom)) {
merged = true;
continue;
}
neg_args.mark(atom, true);
new_args.push_back(arg);
}
else {
if (pos_args.is_marked(arg)) {
merged = true;
continue;
}
else if (neg_args.is_marked(arg)) {
result = mk_numeral(m_util.power_of_two(sz) - numeral(1), sz);
return BR_DONE;
}
pos_args.mark(arg, true);
new_args.push_back(arg);
}
}
if (v1 == m_util.power_of_two(sz) - numeral(1)) {
result = mk_numeral(v1, sz);
return BR_DONE;
}
// Simplifications of the form:
// (bvor (concat x #x00) (concat #x00 y)) --> (concat x y)
if (new_args.size() == 2 &&
num_coeffs == 0 &&
m_util.is_concat(new_args[0]) &&
m_util.is_concat(new_args[1])) {
app * concat1 = to_app(new_args[0]);
app * concat2 = to_app(new_args[1]);
unsigned i = 0;
for (i = 0; i < sz; i++)
if (!is_zero_bit(concat1, i) && !is_zero_bit(concat2, i))
break;
if (i == sz) {
// is target
ptr_buffer<expr> non_zero_args;
int j = sz;
j--;
while (j >= 0) {
int high = j;
while (j >= 0 && is_zero_bit(concat1, j))
--j;
if (j != high)
non_zero_args.push_back(m_mk_extract(high, j+1, concat2));
high = j;
while (j >= 0 && is_zero_bit(concat2, j))
--j;
if (j != high)
non_zero_args.push_back(m_mk_extract(high, j+1, concat1));
}
result = m_util.mk_concat(non_zero_args.size(), non_zero_args.c_ptr());
return BR_REWRITE2;
}
}
if (!v1.is_zero() && new_args.size() == 1) {
v1 = m_util.norm(v1, sz);
#ifdef _TRACE
numeral old_v1 = v1;
#endif
// OR is a mask
expr * t = new_args[0];
numeral two(2);
ptr_buffer<expr> exs;
unsigned low = 0;
unsigned i = 0;
while (i < sz) {
while (i < sz && mod(v1, two).is_one()) {
i++;
div(v1, two, v1);
}
if (i != low) {
unsigned num_sz = i - low;
exs.push_back(m_util.mk_numeral(m_util.power_of_two(num_sz) - numeral(1), num_sz));
low = i;
}
while (i < sz && mod(v1, two).is_zero()) {
i++;
div(v1, two, v1);
}
if (i != low) {
exs.push_back(m_mk_extract(i-1, low, t));
low = i;
}
}
std::reverse(exs.begin(), exs.end());
result = m_util.mk_concat(exs.size(), exs.c_ptr());
TRACE("mask_bug",
tout << "(assert (distinct (bvor (_ bv" << old_v1 << " " << sz << ")\n" << mk_ismt2_pp(t, m()) << ")\n";
tout << mk_ismt2_pp(result, m()) << "))\n";);
return BR_REWRITE2;
}
if (!flattened && !merged && (num_coeffs == 0 || (num_coeffs == 1 && !v1.is_zero()))) {
return BR_FAILED;
}
if (!v1.is_zero()) {
new_args.push_back(mk_numeral(v1, sz));
}
switch (new_args.size()) {
case 0:
result = mk_numeral(0, sz);
return BR_DONE;
case 1:
result = new_args[0];
return BR_DONE;
default:
result = m_util.mk_bv_or(new_args.size(), new_args.c_ptr());
return BR_DONE;
}
}
br_status bv_rewriter::mk_bv_xor(unsigned num, expr * const * args, expr_ref & result) {
SASSERT(num > 0);
if (num == 1) {
result = args[0];
return BR_DONE;
}
unsigned sz = get_bv_size(args[0]);
bool flattened = false;
ptr_buffer<expr> flat_args;
if (m_flat) {
for (unsigned i = 0; i < num; i++) {
expr * arg = args[i];
if (m_util.is_bv_xor(arg)) {
unsigned num2 = to_app(arg)->get_num_args();
for (unsigned j = 0; j < num2; j++)
flat_args.push_back(to_app(arg)->get_arg(j));
}
else {
flat_args.push_back(arg);
}
}
if (flat_args.size() != num) {
flattened = true;
num = flat_args.size();
args = flat_args.c_ptr();
}
}
expr_fast_mark1 pos_args;
expr_fast_mark2 neg_args;
bool merged = false;
numeral v1, v2;
unsigned num_coeffs = 0;
for (unsigned i = 0; i < num; i++) {
expr * arg = args[i];
if (is_numeral(arg, v2, sz)) {
v1 = bitwise_xor(v1, v2);
num_coeffs++;
continue;
}
if (m_util.is_bv_not(arg)) {
expr * atom = to_app(arg)->get_arg(0);
if (neg_args.is_marked(atom)) {
neg_args.mark(atom, false);
merged = true;
}
else if (pos_args.is_marked(atom)) {
pos_args.mark(atom, false);
merged = true;
v1 = bitwise_xor(v1, m_util.power_of_two(sz) - numeral(1));
}
else {
neg_args.mark(atom, true);
}
}
else {
if (pos_args.is_marked(arg)) {
pos_args.mark(arg, false);
merged = true;
}
else if (neg_args.is_marked(arg)) {
neg_args.mark(arg, false);
merged = true;
v1 = bitwise_xor(v1, m_util.power_of_two(sz) - numeral(1));
}
else {
pos_args.mark(arg, true);
}
}
}
if (!merged && !flattened && (num_coeffs == 0 || (num_coeffs == 1 && !v1.is_zero() && v1 != (m_util.power_of_two(sz) - numeral(1)))))
return BR_FAILED;
ptr_buffer<expr> new_args;
expr_ref c(m()); // may not be used
if (!v1.is_zero()) {
c = mk_numeral(v1, sz);
new_args.push_back(c);
}
for (unsigned i = 0; i < num; i++) {
expr * arg = args[i];
if (is_numeral(arg))
continue;
if (m_util.is_bv_not(arg)) {
expr * atom = to_app(arg)->get_arg(0);
if (neg_args.is_marked(atom)) {
new_args.push_back(arg);
neg_args.mark(atom, false);
}
}
else if (pos_args.is_marked(arg)) {
new_args.push_back(arg);
pos_args.mark(arg, false);
}
}
switch (new_args.size()) {
case 0:
result = mk_numeral(0, sz);
return BR_DONE;
case 1:
result = new_args[0];
return BR_DONE;
case 2:
if (m_util.is_allone(new_args[0])) {
result = m_util.mk_bv_not(new_args[1]);
return BR_DONE;
}
__fallthrough;
default:
result = m_util.mk_bv_xor(new_args.size(), new_args.c_ptr());
return BR_DONE;
}
}
br_status bv_rewriter::mk_bv_not(expr * arg, expr_ref & result) {
if (m_util.is_bv_not(arg)) {
result = to_app(arg)->get_arg(0);
return BR_DONE;
}
numeral val;
unsigned bv_size;
if (is_numeral(arg, val, bv_size)) {
val = bitwise_not(bv_size, val);
result = mk_numeral(val, bv_size);
return BR_DONE;
}
#if 1
if (m_util.is_concat(arg)) {
ptr_buffer<expr> new_args;
unsigned num = to_app(arg)->get_num_args();
for (unsigned i = 0; i < num; i++) {
new_args.push_back(m_util.mk_bv_not(to_app(arg)->get_arg(i)));
}
result = m_util.mk_concat(new_args.size(), new_args.c_ptr());
return BR_REWRITE2;
}
#endif
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_and(unsigned num, expr * const * args, expr_ref & result) {
ptr_buffer<expr> new_args;
for (unsigned i = 0; i < num; i++) {
new_args.push_back(m_util.mk_bv_not(args[i]));
}
SASSERT(num == new_args.size());
result = m_util.mk_bv_not(m_util.mk_bv_or(new_args.size(), new_args.c_ptr()));
return BR_REWRITE3;
}
br_status bv_rewriter::mk_bv_nand(unsigned num, expr * const * args, expr_ref & result) {
ptr_buffer<expr> new_args;
for (unsigned i = 0; i < num; i++) {
new_args.push_back(m_util.mk_bv_not(args[i]));
}
result = m_util.mk_bv_or(new_args.size(), new_args.c_ptr());
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_nor(unsigned num, expr * const * args, expr_ref & result) {
result = m_util.mk_bv_not(m_util.mk_bv_or(num, args));
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_xnor(unsigned num_args, expr * const * args, expr_ref & result) {
result = m_util.mk_bv_not(m_util.mk_bv_xor(num_args, args));
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_rotate_left(unsigned n, expr * arg, expr_ref & result) {
unsigned sz = get_bv_size(arg);
SASSERT(sz > 0);
n = n % sz;
if (n == 0 || sz == 1) {
result = arg;
return BR_DONE;
}
expr * args[2] = { m_mk_extract(sz - n - 1, 0, arg), m_mk_extract(sz - 1, sz - n, arg) };
result = m_util.mk_concat(2, args);
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_rotate_right(unsigned n, expr * arg, expr_ref & result) {
unsigned sz = get_bv_size(arg);
SASSERT(sz > 0);
n = n % sz;
return mk_bv_rotate_left(sz - n, arg, result);
}
br_status bv_rewriter::mk_bv_ext_rotate_left(expr * arg1, expr * arg2, expr_ref & result) {
numeral r2;
unsigned bv_size;
if (is_numeral(arg2, r2, bv_size)) {
unsigned shift = static_cast<unsigned>((r2 % numeral(bv_size)).get_uint64() % static_cast<uint64>(bv_size));
return mk_bv_rotate_left(shift, arg1, result);
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_ext_rotate_right(expr * arg1, expr * arg2, expr_ref & result) {
numeral r2;
unsigned bv_size;
if (is_numeral(arg2, r2, bv_size)) {
unsigned shift = static_cast<unsigned>((r2 % numeral(bv_size)).get_uint64() % static_cast<uint64>(bv_size));
return mk_bv_rotate_right(shift, arg1, result);
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_redor(expr * arg, expr_ref & result) {
if (is_numeral(arg)) {
result = m_util.is_zero(arg) ? mk_numeral(0, 1) : mk_numeral(1, 1);
return BR_DONE;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_redand(expr * arg, expr_ref & result) {
numeral r;
unsigned bv_size;
if (is_numeral(arg, r, bv_size)) {
result = (r == m_util.power_of_two(bv_size) - numeral(1)) ? mk_numeral(1, 1) : mk_numeral(0, 1);
return BR_DONE;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_comp(expr * arg1, expr * arg2, expr_ref & result) {
if (arg1 == arg2) {
result = mk_numeral(1,1);
return BR_DONE;
}
if (is_numeral(arg1) && is_numeral(arg2)) {
SASSERT(arg1 != arg2);
result = mk_numeral(0, 1);
return BR_DONE;
}
result = m().mk_ite(m().mk_eq(arg1, arg2),
mk_numeral(1, 1),
mk_numeral(0, 1));
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_add(unsigned num_args, expr * const * args, expr_ref & result) {
br_status st = mk_add_core(num_args, args, result);
if (st != BR_FAILED && st != BR_DONE)
return st;
#if 0
expr * x;
expr * y;
if (st == BR_FAILED && num_args == 2) {
x = args[0]; y = args[1];
}
else if (st == BR_DONE && is_add(result) && to_app(result)->get_num_args() == 2) {
x = to_app(result)->get_arg(0);
y = to_app(result)->get_arg(1);
}
else {
return st;
}
if (!m_util.is_concat(x) && !is_numeral(x))
return st;
if (!m_util.is_concat(y) && !is_numeral(y))
return st;
unsigned sz = get_bv_size(x);
for (unsigned i = 0; i < sz; i++) {
if (!is_zero_bit(x,i) && !is_zero_bit(y,i))
return st;
}
result = m().mk_app(get_fid(), OP_BOR, x, y);
return BR_REWRITE1;
#else
unsigned _num_args;
expr * const * _args;
if (st == BR_FAILED) {
_num_args = num_args;
_args = args;
}
else if (st == BR_DONE && is_add(result)) {
_num_args = to_app(result)->get_num_args();
_args = to_app(result)->get_args();
}
else {
return st;
}
if (_num_args < 2)
return st;
unsigned sz = get_bv_size(_args[0]);
for (unsigned i = 0; i < sz; i++) {
bool found_non_zero = false;
for (unsigned j = 0; j < _num_args; j++) {
if (!is_zero_bit(_args[j], i)) {
// at most one of the arguments may have a non-zero bit.
if (found_non_zero)
return st;
found_non_zero = true;
}
}
}
result = m().mk_app(get_fid(), OP_BOR, _num_args, _args);
return BR_REWRITE1;
#endif
}
bool bv_rewriter::is_zero_bit(expr * x, unsigned idx) {
numeral val;
unsigned bv_size;
loop:
if (is_numeral(x, val, bv_size)) {
if (val.is_zero())
return true;
div(val, m_util.power_of_two(idx), val);
return (val % numeral(2)).is_zero();
}
if (m_util.is_concat(x)) {
unsigned i = to_app(x)->get_num_args();
while (i > 0) {
--i;
expr * y = to_app(x)->get_arg(i);
bv_size = get_bv_size(y);
if (bv_size <= idx) {
idx -= bv_size;
}
else {
x = y;
goto loop;
}
}
UNREACHABLE();
}
return false;
}
br_status bv_rewriter::mk_bv_mul(unsigned num_args, expr * const * args, expr_ref & result) {
br_status st = mk_mul_core(num_args, args, result);
if (st != BR_FAILED && st != BR_DONE)
return st;
expr * x;
expr * y;
if (st == BR_FAILED && num_args == 2) {
x = args[0]; y = args[1];
}
else if (st == BR_DONE && is_mul(result) && to_app(result)->get_num_args() == 2) {
x = to_app(result)->get_arg(0);
y = to_app(result)->get_arg(1);
}
else {
return st;
}
if (m_mul2concat) {
numeral v;
unsigned bv_size;
unsigned shift;
if (is_numeral(x, v, bv_size) && v.is_power_of_two(shift)) {
SASSERT(shift >= 1);
expr * args[2] = {
m_mk_extract(bv_size-shift-1, 0, y),
mk_numeral(0, shift)
};
result = m_util.mk_concat(2, args);
return BR_REWRITE2;
}
}
return st;
}
br_status bv_rewriter::mk_bit2bool(expr * lhs, expr * rhs, expr_ref & result) {
unsigned sz = get_bv_size(lhs);
if (sz != 1)
return BR_FAILED;
if (is_numeral(lhs))
std::swap(lhs, rhs);
numeral v;
if (!is_numeral(rhs, v, sz))
return BR_FAILED;
if (is_numeral(lhs)) {
SASSERT(is_numeral(rhs));
result = lhs == rhs ? m().mk_true() : m().mk_false();
return BR_DONE;
}
if (m().is_ite(lhs)) {
result = m().mk_ite(to_app(lhs)->get_arg(0),
m().mk_eq(to_app(lhs)->get_arg(1), rhs),
m().mk_eq(to_app(lhs)->get_arg(2), rhs));
return BR_REWRITE2;
}
if (m_util.is_bv_not(lhs)) {
SASSERT(v.is_one() || v.is_zero());
result = m().mk_eq(to_app(lhs)->get_arg(0), mk_numeral(numeral(1) - v, 1));
return BR_REWRITE1;
}
bool is_one = v.is_one();
expr_ref bit1(m());
bit1 = is_one ? rhs : mk_numeral(numeral(1), 1);
if (m_util.is_bv_or(lhs)) {
ptr_buffer<expr> new_args;
unsigned num = to_app(lhs)->get_num_args();
for (unsigned i = 0; i < num; i++) {
new_args.push_back(m().mk_eq(to_app(lhs)->get_arg(i), bit1));
}
result = m().mk_or(new_args.size(), new_args.c_ptr());
if (is_one) {
return BR_REWRITE2;
}
else {
result = m().mk_not(result);
return BR_REWRITE3;
}
}
if (m_util.is_bv_xor(lhs)) {
ptr_buffer<expr> new_args;
unsigned num = to_app(lhs)->get_num_args();
for (unsigned i = 0; i < num; i++) {
new_args.push_back(m().mk_eq(to_app(lhs)->get_arg(i), bit1));
}
// TODO: bool xor is not flat_assoc... must fix that.
result = m().mk_xor(new_args.size(), new_args.c_ptr());
if (is_one) {
return BR_REWRITE2;
}
else {
result = m().mk_not(result);
return BR_REWRITE3;
}
}
return BR_FAILED;
}
br_status bv_rewriter::mk_blast_eq_value(expr * lhs, expr * rhs, expr_ref & result) {
unsigned sz = get_bv_size(lhs);
if (sz == 1)
return BR_FAILED;
TRACE("blast_eq_value", tout << "sz: " << sz << "\n" << mk_ismt2_pp(lhs, m()) << "\n";);
if (is_numeral(lhs))
std::swap(lhs, rhs);
numeral v;
if (!is_numeral(rhs, v, sz))
return BR_FAILED;
if (!m_util.is_bv_or(lhs) && !m_util.is_bv_xor(lhs) && !m_util.is_bv_not(lhs))
return BR_FAILED;
numeral two(2);
ptr_buffer<expr> new_args;
for (unsigned i = 0; i < sz; i++) {
bool bit0 = (v % two).is_zero();
new_args.push_back(m().mk_eq(m_mk_extract(i,i, lhs),
mk_numeral(bit0 ? 0 : 1, 1)));
div(v, two, v);
}
result = m().mk_and(new_args.size(), new_args.c_ptr());
return BR_REWRITE3;
}
br_status bv_rewriter::mk_eq_concat(expr * lhs, expr * rhs, expr_ref & result) {
SASSERT(m_util.is_concat(lhs) || m_util.is_concat(rhs));
unsigned num1, num2;
expr * const * args1, * const * args2;
if (m_util.is_concat(lhs)) {
num1 = to_app(lhs)->get_num_args();
args1 = to_app(lhs)->get_args();
}
else {
num1 = 1;
args1 = &lhs;
}
if (m_util.is_concat(rhs)) {
num2 = to_app(rhs)->get_num_args();
args2 = to_app(rhs)->get_args();
}
else {
num2 = 1;
args2 = &rhs;
}
ptr_buffer<expr> new_eqs;
unsigned low1 = 0;
unsigned low2 = 0;
unsigned i1 = num1;
unsigned i2 = num2;
while (i1 > 0 && i2 > 0) {
expr * arg1 = args1[i1-1];
expr * arg2 = args2[i2-1];
unsigned sz1 = get_bv_size(arg1);
unsigned sz2 = get_bv_size(arg2);
SASSERT(low1 < sz1 && low2 < sz2);
unsigned rsz1 = sz1 - low1;
unsigned rsz2 = sz2 - low2;
if (rsz1 == rsz2) {
new_eqs.push_back(m().mk_eq(m_mk_extract(sz1 - 1, low1, arg1),
m_mk_extract(sz2 - 1, low2, arg2)));
low1 = 0;
low2 = 0;
--i1;
--i2;
continue;
}
else if (rsz1 < rsz2) {
new_eqs.push_back(m().mk_eq(m_mk_extract(sz1 - 1, low1, arg1),
m_mk_extract(rsz1 + low2 - 1, low2, arg2)));
low1 = 0;
low2 += rsz1;
--i1;
}
else {
new_eqs.push_back(m().mk_eq(m_mk_extract(rsz2 + low1 - 1, low1, arg1),
m_mk_extract(sz2 - 1, low2, arg2)));
low1 += rsz2;
low2 = 0;
--i2;
}
}
SASSERT(i1 == 0 && i2 == 0);
SASSERT(new_eqs.size() >= 1);
result = m().mk_and(new_eqs.size(), new_eqs.c_ptr());
return BR_REWRITE3;
}
bool bv_rewriter::is_concat_split_target(expr * t) const {
return
m_split_concat_eq ||
m_util.is_concat(t) ||
m_util.is_numeral(t) ||
m_util.is_bv_or(t);
}
bool bv_rewriter::is_minus_one_times_t(expr * arg) {
expr * t1, * t2;
return (m_util.is_bv_mul(arg, t1, t2) && is_minus_one(t1));
}
void bv_rewriter::mk_t1_add_t2_eq_c(expr * t1, expr * t2, expr * c, expr_ref & result) {
SASSERT(is_numeral(c));
if (is_minus_one_times_t(t1))
result = m().mk_eq(t2, m_util.mk_bv_sub(c, t1));
else
result = m().mk_eq(t1, m_util.mk_bv_sub(c, t2));
}
br_status bv_rewriter::mk_mul_eq(expr * lhs, expr * rhs, expr_ref & result) {
expr * c, * x;
numeral c_val, c_inv_val;
unsigned sz;
if (m_util.is_bv_mul(lhs, c, x) &&
m_util.is_numeral(c, c_val, sz) &&
m_util.mult_inverse(c_val, sz, c_inv_val)) {
SASSERT(m_util.norm(c_val * c_inv_val, sz).is_one());
numeral rhs_val;
// c * x = a
if (m_util.is_numeral(rhs, rhs_val, sz)) {
// x = c_inv * a
result = m().mk_eq(x, m_util.mk_numeral(c_inv_val * rhs_val, sz));
return BR_REWRITE1;
}
expr * c2, * x2;
numeral c2_val;
// c * x = c2 * x2
if (m_util.is_bv_mul(rhs, c2, x2) && m_util.is_numeral(c2, c2_val, sz)) {
// x = c_inv * c2 * x2
numeral new_c2 = m_util.norm(c_inv_val * c2_val, sz);
if (new_c2.is_one())
result = m().mk_eq(x, x2);
else
result = m().mk_eq(x, m_util.mk_bv_mul(m_util.mk_numeral(c_inv_val * c2_val, sz), x2));
return BR_REWRITE1;
}
// c * x = t_1 + ... + t_n
// and t_i's have non-unary coefficients (this condition is used to make sure we are actually reducing the number of multipliers).
if (m_util.is_bv_add(rhs)) {
// Potential problem: this simplification may increase the number of adders by reducing the amount of sharing.
unsigned num = to_app(rhs)->get_num_args();
unsigned i;
for (i = 0; i < num; i++) {
expr * arg = to_app(rhs)->get_arg(i);
expr * c2, * x2;
if (m_util.is_numeral(arg))
continue;
if (m_util.is_bv_mul(arg, c2, x2) && m_util.is_numeral(c2))
continue;
break;
}
if (i == num) {
result = m().mk_eq(x, m_util.mk_bv_mul(m_util.mk_numeral(c_inv_val, sz), rhs));
return BR_REWRITE2;
}
}
}
return BR_FAILED;
}
br_status bv_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) {
if (lhs == rhs) {
result = m().mk_true();
return BR_DONE;
}
if (is_numeral(lhs) && is_numeral(rhs)) {
result = m().mk_false();
return BR_DONE;
}
bool swapped = false;
if (is_numeral(lhs)) {
swapped = true;
std::swap(lhs, rhs);
}
br_status st;
if (m_bit2bool) {
st = mk_bit2bool(lhs, rhs, result);
if (st != BR_FAILED)
return st;
}
st = mk_mul_eq(lhs, rhs, result);
if (st != BR_FAILED) {
TRACE("mk_mul_eq", tout << mk_ismt2_pp(lhs, m()) << "\n=\n" << mk_ismt2_pp(rhs, m()) << "\n----->\n" << mk_ismt2_pp(result,m()) << "\n";);
return st;
}
st = mk_mul_eq(rhs, lhs, result);
if (st != BR_FAILED) {
TRACE("mk_mul_eq", tout << mk_ismt2_pp(lhs, m()) << "\n=\n" << mk_ismt2_pp(rhs, m()) << "\n----->\n" << mk_ismt2_pp(result,m()) << "\n";);
return st;
}
if (m_blast_eq_value) {
st = mk_blast_eq_value(lhs, rhs, result);
if (st != BR_FAILED)
return st;
}
if (m_util.is_bv_add(lhs) || m_util.is_bv_mul(lhs) || m_util.is_bv_add(rhs) || m_util.is_bv_mul(rhs)) {
expr_ref new_lhs(m());
expr_ref new_rhs(m());
st = cancel_monomials(lhs, rhs, false, new_lhs, new_rhs);
if (st != BR_FAILED) {
if (is_numeral(new_lhs) && is_numeral(new_rhs)) {
result = new_lhs == new_rhs ? m().mk_true() : m().mk_false();
return BR_DONE;
}
}
else {
new_lhs = lhs;
new_rhs = rhs;
}
// Try to rewrite t1 + t2 = c --> t1 = c - t2
// Reason: it is much cheaper to bit-blast.
expr * t1, * t2;
if (m_util.is_bv_add(new_lhs, t1, t2) && is_numeral(new_rhs)) {
mk_t1_add_t2_eq_c(t1, t2, new_rhs, result);
return BR_REWRITE2;
}
if (m_util.is_bv_add(new_rhs, t1, t2) && is_numeral(new_lhs)) {
mk_t1_add_t2_eq_c(t1, t2, new_lhs, result);
return BR_REWRITE2;
}
if (st != BR_FAILED) {
result = m().mk_eq(new_lhs, new_rhs);
return BR_DONE;
}
}
if ((m_util.is_concat(lhs) && is_concat_split_target(rhs)) ||
(m_util.is_concat(rhs) && is_concat_split_target(lhs)))
return mk_eq_concat(lhs, rhs, result);
if (swapped) {
result = m().mk_eq(lhs, rhs);
return BR_DONE;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_mkbv(unsigned num, expr * const * args, expr_ref & result) {
if (m_mkbv2num) {
unsigned i;
for (i = 0; i < num; i++)
if (!m().is_true(args[i]) && !m().is_false(args[i]))
return BR_FAILED;
numeral val;
numeral two(2);
i = num;
while (i > 0) {
--i;
val *= two;
if (m().is_true(args[i]))
val++;
}
result = mk_numeral(val, num);
return BR_DONE;
}
return BR_FAILED;
}
template class poly_rewriter<bv_rewriter_core>;