mirror of
https://github.com/Z3Prover/z3
synced 2025-04-08 10:25:18 +00:00
422 lines
13 KiB
C++
422 lines
13 KiB
C++
/*++
|
|
Copyright (c) 2009 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
bit2cpp.cpp
|
|
|
|
Abstract:
|
|
|
|
Routines for simplifying bit2int expressions.
|
|
This propagates bv2int over arithmetical symbols as much as possible,
|
|
converting arithmetic operations into bit-vector operations.
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2009-08-28
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
|
|
#include "bit2int.h"
|
|
#include "ast_pp.h"
|
|
#include "ast_ll_pp.h"
|
|
#include "for_each_ast.h"
|
|
|
|
#define CHECK(_x_) if (!(_x_)) { UNREACHABLE(); }
|
|
|
|
bit2int::bit2int(ast_manager & m) :
|
|
m_manager(m), m_bv_util(m), m_arith_util(m), m_cache(m), m_bit0(m) {
|
|
m_bit0 = m_bv_util.mk_numeral(0,1);
|
|
}
|
|
|
|
void bit2int::operator()(expr * m, expr_ref & result, proof_ref& p) {
|
|
flush_cache();
|
|
expr_reduce emap(*this);
|
|
for_each_ast(emap, m);
|
|
result = get_cached(m);
|
|
if (m_manager.proofs_enabled() && m != result.get()) {
|
|
// TBD: rough
|
|
p = m_manager.mk_rewrite(m, result);
|
|
}
|
|
TRACE("bit2int",
|
|
tout << mk_pp(m, m_manager) << "======>\n"
|
|
<< mk_pp(result, m_manager) << "\n";);
|
|
|
|
}
|
|
|
|
|
|
unsigned bit2int::get_b2i_size(expr* n) {
|
|
SASSERT(m_bv_util.is_bv2int(n));
|
|
return m_bv_util.get_bv_size(to_app(n)->get_arg(0));
|
|
}
|
|
|
|
unsigned bit2int::get_numeral_bits(numeral const& k) {
|
|
numeral two(2);
|
|
numeral n(abs(k));
|
|
unsigned num_bits = 1;
|
|
n = div(n, two);
|
|
while (n.is_pos()) {
|
|
++num_bits;
|
|
n = div(n, two);
|
|
}
|
|
return num_bits;
|
|
}
|
|
|
|
void bit2int::align_size(expr* e, unsigned sz, expr_ref& result) {
|
|
unsigned sz1 = m_bv_util.get_bv_size(e);
|
|
SASSERT(sz1 <= sz);
|
|
m_bv_simplifier->mk_zeroext(sz-sz1, e, result);
|
|
}
|
|
|
|
void bit2int::align_sizes(expr_ref& a, expr_ref& b) {
|
|
unsigned sz1 = m_bv_util.get_bv_size(a);
|
|
unsigned sz2 = m_bv_util.get_bv_size(b);
|
|
expr_ref tmp(m_manager);
|
|
if (sz1 > sz2) {
|
|
m_bv_simplifier->mk_zeroext(sz1-sz2, b, tmp);
|
|
b = tmp;
|
|
}
|
|
else if (sz2 > sz1) {
|
|
m_bv_simplifier->mk_zeroext(sz2-sz1, a, tmp);
|
|
a = tmp;
|
|
}
|
|
}
|
|
|
|
bool bit2int::extract_bv(expr* n, unsigned& sz, bool& sign, expr_ref& bv) {
|
|
numeral k;
|
|
bool is_int;
|
|
if (m_bv_util.is_bv2int(n)) {
|
|
bv = to_app(n)->get_arg(0);
|
|
sz = m_bv_util.get_bv_size(bv);
|
|
sign = false;
|
|
return true;
|
|
}
|
|
else if (m_arith_util.is_numeral(n, k, is_int) && is_int) {
|
|
sz = get_numeral_bits(k);
|
|
bv = m_bv_util.mk_numeral(k, m_bv_util.mk_sort(sz));
|
|
sign = k.is_neg();
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
bool bit2int::mk_add(expr* e1, expr* e2, expr_ref& result) {
|
|
unsigned sz1, sz2;
|
|
bool sign1, sign2;
|
|
expr_ref tmp1(m_manager), tmp2(m_manager), tmp3(m_manager);
|
|
|
|
if (extract_bv(e1, sz1, sign1, tmp1) && !sign1 &&
|
|
extract_bv(e2, sz2, sign2, tmp2) && !sign2) {
|
|
unsigned sz;
|
|
numeral k;
|
|
if (m_bv_util.is_numeral(tmp1, k, sz) && k.is_zero()) {
|
|
result = e2;
|
|
return true;
|
|
}
|
|
if (m_bv_util.is_numeral(tmp2, k, sz) && k.is_zero()) {
|
|
result = e1;
|
|
return true;
|
|
}
|
|
align_sizes(tmp1, tmp2);
|
|
m_bv_simplifier->mk_zeroext(1, tmp1, tmp1);
|
|
m_bv_simplifier->mk_zeroext(1, tmp2, tmp2);
|
|
SASSERT(m_bv_util.get_bv_size(tmp1) == m_bv_util.get_bv_size(tmp2));
|
|
m_bv_simplifier->mk_add(tmp1, tmp2, tmp3);
|
|
m_bv_simplifier->mk_bv2int(tmp3, m_arith_util.mk_int(), result);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool bit2int::mk_comp(eq_type ty, expr* e1, expr* e2, expr_ref& result) {
|
|
unsigned sz1, sz2;
|
|
bool sign1, sign2;
|
|
expr_ref tmp1(m_manager), tmp2(m_manager), tmp3(m_manager);
|
|
if (extract_bv(e1, sz1, sign1, tmp1) && !sign1 &&
|
|
extract_bv(e2, sz2, sign2, tmp2) && !sign2) {
|
|
align_sizes(tmp1, tmp2);
|
|
SASSERT(m_bv_util.get_bv_size(tmp1) == m_bv_util.get_bv_size(tmp2));
|
|
switch(ty) {
|
|
case lt:
|
|
m_bv_simplifier->mk_leq_core(false, tmp2, tmp1, tmp3);
|
|
result = m_manager.mk_not(tmp3);
|
|
break;
|
|
case le:
|
|
m_bv_simplifier->mk_leq_core(false,tmp1, tmp2, result);
|
|
break;
|
|
case eq:
|
|
result = m_manager.mk_eq(tmp1,tmp2);
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool bit2int::mk_mul(expr* e1, expr* e2, expr_ref& result) {
|
|
unsigned sz1, sz2;
|
|
bool sign1, sign2;
|
|
expr_ref tmp1(m_manager), tmp2(m_manager);
|
|
expr_ref tmp3(m_manager);
|
|
|
|
if (extract_bv(e1, sz1, sign1, tmp1) &&
|
|
extract_bv(e2, sz2, sign2, tmp2)) {
|
|
align_sizes(tmp1, tmp2);
|
|
m_bv_simplifier->mk_zeroext(m_bv_util.get_bv_size(tmp1), tmp1, tmp1);
|
|
m_bv_simplifier->mk_zeroext(m_bv_util.get_bv_size(tmp2), tmp2, tmp2);
|
|
|
|
SASSERT(m_bv_util.get_bv_size(tmp1) == m_bv_util.get_bv_size(tmp2));
|
|
m_bv_simplifier->mk_mul(tmp1, tmp2, tmp3);
|
|
m_bv_simplifier->mk_bv2int(tmp3, m_arith_util.mk_int(), result);
|
|
if (sign1 != sign2) {
|
|
result = m_arith_util.mk_uminus(result);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool bit2int::is_bv_poly(expr* n, expr_ref& pos, expr_ref& neg) {
|
|
ptr_vector<expr> todo;
|
|
expr_ref tmp(m_manager);
|
|
numeral k;
|
|
bool is_int;
|
|
todo.push_back(n);
|
|
m_bv_simplifier->mk_bv2int(m_bit0, m_arith_util.mk_int(), pos);
|
|
m_bv_simplifier->mk_bv2int(m_bit0, m_arith_util.mk_int(), neg);
|
|
|
|
while (!todo.empty()) {
|
|
n = todo.back();
|
|
todo.pop_back();
|
|
if (m_bv_util.is_bv2int(n)) {
|
|
CHECK(mk_add(n, pos, pos));
|
|
}
|
|
else if (m_arith_util.is_numeral(n, k, is_int) && is_int) {
|
|
if (k.is_nonneg()) {
|
|
CHECK(mk_add(n, pos, pos));
|
|
}
|
|
else {
|
|
tmp = m_arith_util.mk_numeral(-k, true);
|
|
CHECK(mk_add(tmp, neg, neg));
|
|
}
|
|
}
|
|
else if (m_arith_util.is_add(n)) {
|
|
for (unsigned i = 0; i < to_app(n)->get_num_args(); ++i) {
|
|
todo.push_back(to_app(n)->get_arg(i));
|
|
}
|
|
}
|
|
else if (m_arith_util.is_mul(n) &&
|
|
to_app(n)->get_num_args() == 2 &&
|
|
m_arith_util.is_numeral(to_app(n)->get_arg(0), k, is_int) && is_int && k.is_minus_one() &&
|
|
m_bv_util.is_bv2int(to_app(n)->get_arg(1))) {
|
|
CHECK(mk_add(to_app(n)->get_arg(1), neg, neg));
|
|
}
|
|
else if (m_arith_util.is_mul(n) &&
|
|
to_app(n)->get_num_args() == 2 &&
|
|
m_arith_util.is_numeral(to_app(n)->get_arg(1), k, is_int) && is_int && k.is_minus_one() &&
|
|
m_bv_util.is_bv2int(to_app(n)->get_arg(0))) {
|
|
CHECK(mk_add(to_app(n)->get_arg(0), neg, neg));
|
|
}
|
|
else if (m_arith_util.is_uminus(n) &&
|
|
m_bv_util.is_bv2int(to_app(n)->get_arg(0))) {
|
|
CHECK(mk_add(to_app(n)->get_arg(0), neg, neg));
|
|
}
|
|
else {
|
|
TRACE("bit2int", tout << "Not a poly: " << mk_pp(n, m_manager) << "\n";);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void bit2int::visit(quantifier* q) {
|
|
expr_ref result(m_manager);
|
|
result = get_cached(q->get_expr());
|
|
result = m_manager.update_quantifier(q, result);
|
|
cache_result(q, result);
|
|
}
|
|
|
|
void bit2int::visit(app* n) {
|
|
func_decl* f = n->get_decl();
|
|
unsigned num_args = n->get_num_args();
|
|
|
|
m_args.reset();
|
|
for (unsigned i = 0; i < num_args; ++i) {
|
|
m_args.push_back(get_cached(n->get_arg(i)));
|
|
}
|
|
|
|
expr* const* args = m_args.c_ptr();
|
|
|
|
bool has_b2i =
|
|
m_arith_util.is_le(n) || m_arith_util.is_ge(n) || m_arith_util.is_gt(n) ||
|
|
m_arith_util.is_lt(n) || m_manager.is_eq(n);
|
|
expr_ref result(m_manager);
|
|
for (unsigned i = 0; !has_b2i && i < num_args; ++i) {
|
|
has_b2i = m_bv_util.is_bv2int(args[i]);
|
|
}
|
|
if (!has_b2i) {
|
|
result = m_manager.mk_app(f, num_args, args);
|
|
cache_result(n, result);
|
|
return;
|
|
}
|
|
//
|
|
// bv2int(x) + bv2int(y) -> bv2int(pad(x) + pad(y))
|
|
// bv2int(x) + k -> bv2int(pad(x) + pad(k))
|
|
// bv2int(x) * bv2int(y) -> bv2int(pad(x) * pad(y))
|
|
// bv2int(x) * k -> sign(k)*bv2int(pad(x) * pad(k))
|
|
// bv2int(x) - bv2int(y) <= z -> bv2int(x) <= bv2int(y) + z
|
|
// bv2int(x) <= z - bv2int(y) -> bv2int(x) + bv2int(y) <= z
|
|
//
|
|
|
|
expr* e1, *e2;
|
|
expr_ref tmp1(m_manager), tmp2(m_manager);
|
|
expr_ref tmp3(m_manager);
|
|
expr_ref pos1(m_manager), neg1(m_manager);
|
|
expr_ref pos2(m_manager), neg2(m_manager);
|
|
expr_ref e2bv(m_manager);
|
|
bool sign2;
|
|
numeral k;
|
|
unsigned sz2;
|
|
|
|
if (num_args >= 2) {
|
|
e1 = args[0];
|
|
e2 = args[1];
|
|
}
|
|
|
|
if (m_arith_util.is_add(n) && num_args >= 1) {
|
|
result = e1;
|
|
for (unsigned i = 1; i < num_args; ++i) {
|
|
e1 = result;
|
|
e2 = args[i];
|
|
if (!mk_add(e1, e2, result)) {
|
|
result = m_manager.mk_app(f, num_args, args);
|
|
cache_result(n, result);
|
|
return;
|
|
}
|
|
}
|
|
cache_result(n, result);
|
|
}
|
|
else if (m_arith_util.is_mul(n) && num_args >= 1) {
|
|
result = e1;
|
|
for (unsigned i = 1; i < num_args; ++i) {
|
|
e1 = result;
|
|
e2 = args[i];
|
|
if (!mk_mul(e1, e2, result)) {
|
|
result = m_manager.mk_app(f, num_args, args);
|
|
cache_result(n, result);
|
|
return;
|
|
}
|
|
}
|
|
cache_result(n, result);
|
|
}
|
|
else if (m_manager.is_eq(n) &&
|
|
is_bv_poly(e1, pos1, neg1) &&
|
|
is_bv_poly(e2, pos2, neg2) &&
|
|
mk_add(pos1, neg2, tmp1) &&
|
|
mk_add(neg1, pos2, tmp2) &&
|
|
mk_comp(eq, tmp1, tmp2, result)) {
|
|
cache_result(n, result);
|
|
}
|
|
else if (m_arith_util.is_le(n) &&
|
|
is_bv_poly(e1, pos1, neg1) &&
|
|
is_bv_poly(e2, pos2, neg2) &&
|
|
mk_add(pos1, neg2, tmp1) &&
|
|
mk_add(neg1, pos2, tmp2) &&
|
|
mk_comp(le, tmp1, tmp2, result)) {
|
|
cache_result(n, result);
|
|
}
|
|
else if (m_arith_util.is_lt(n) &&
|
|
is_bv_poly(e1, pos1, neg1) &&
|
|
is_bv_poly(e2, pos2, neg2) &&
|
|
mk_add(pos1, neg2, tmp1) &&
|
|
mk_add(neg1, pos2, tmp2) &&
|
|
mk_comp(lt, tmp1, tmp2, result)) {
|
|
cache_result(n, result);
|
|
}
|
|
else if (m_arith_util.is_ge(n) &&
|
|
is_bv_poly(e1, pos1, neg1) &&
|
|
is_bv_poly(e2, pos2, neg2) &&
|
|
mk_add(pos1, neg2, tmp1) &&
|
|
mk_add(neg1, pos2, tmp2) &&
|
|
mk_comp(le, tmp2, tmp1, result)) {
|
|
cache_result(n, result);
|
|
}
|
|
else if (m_arith_util.is_gt(n) &&
|
|
is_bv_poly(e1, pos1, neg1) &&
|
|
is_bv_poly(e2, pos2, neg2) &&
|
|
mk_add(pos1, neg2, tmp1) &&
|
|
mk_add(neg1, pos2, tmp2) &&
|
|
mk_comp(lt, tmp2, tmp1, result)) {
|
|
cache_result(n, result);
|
|
}
|
|
else if (m_arith_util.is_mod(n) &&
|
|
is_bv_poly(e1, pos1, neg1) &&
|
|
extract_bv(e2, sz2, sign2, e2bv) && !sign2) {
|
|
//
|
|
// (pos1 - neg1) mod e2 = (pos1 + (e2 - (neg1 mod e2))) mod e2
|
|
//
|
|
unsigned sz_p, sz_n, sz;
|
|
bool sign_p, sign_n;
|
|
expr_ref tmp_p(m_manager), tmp_n(m_manager);
|
|
CHECK(extract_bv(pos1, sz_p, sign_p, tmp_p));
|
|
CHECK(extract_bv(neg1, sz_n, sign_n, tmp_n));
|
|
SASSERT(!sign_p && !sign_n);
|
|
|
|
// pos1 mod e2
|
|
if (m_bv_util.is_numeral(tmp_n, k, sz) && k.is_zero()) {
|
|
tmp1 = tmp_p;
|
|
tmp2 = e2bv;
|
|
align_sizes(tmp1, tmp2);
|
|
m_bv_simplifier->mk_bv_urem(tmp1, tmp2, tmp3);
|
|
m_bv_simplifier->mk_bv2int(tmp3, m_arith_util.mk_int(), result);
|
|
cache_result(n, result);
|
|
return;
|
|
}
|
|
|
|
// neg1 mod e2;
|
|
tmp1 = tmp_n;
|
|
tmp2 = e2bv;
|
|
align_sizes(tmp1, tmp2);
|
|
m_bv_simplifier->mk_bv_urem(tmp1, tmp2, tmp3);
|
|
// e2 - (neg1 mod e2)
|
|
tmp1 = e2bv;
|
|
tmp2 = tmp3;
|
|
align_sizes(tmp1, tmp2);
|
|
m_bv_simplifier->mk_sub(tmp1, tmp2, tmp3);
|
|
// pos1 + (e2 - (neg1 mod e2))
|
|
tmp1 = tmp_p;
|
|
tmp2 = tmp3;
|
|
align_sizes(tmp1, tmp2);
|
|
m_bv_simplifier->mk_zeroext(1, tmp1, tmp_p);
|
|
m_bv_simplifier->mk_zeroext(1, tmp2, tmp_n);
|
|
m_bv_simplifier->mk_add(tmp_p, tmp_n, tmp1);
|
|
// (pos1 + (e2 - (neg1 mod e2))) mod e2
|
|
tmp2 = e2bv;
|
|
align_sizes(tmp1, tmp2);
|
|
m_bv_simplifier->mk_bv_urem(tmp1, tmp2, tmp3);
|
|
|
|
m_bv_simplifier->mk_bv2int(tmp3, m_arith_util.mk_int(), result);
|
|
|
|
cache_result(n, result);
|
|
}
|
|
else {
|
|
result = m_manager.mk_app(f, num_args, args);
|
|
cache_result(n, result);
|
|
}
|
|
}
|
|
|
|
expr * bit2int::get_cached(expr * n) const {
|
|
return const_cast<bit2int*>(this)->m_cache.find(n);
|
|
}
|
|
|
|
void bit2int::cache_result(expr * n, expr * r) {
|
|
TRACE("bit2int_verbose", tout << "caching:\n" << mk_ll_pp(n, m_manager) <<
|
|
"======>\n" << mk_ll_pp(r, m_manager) << "\n";);
|
|
m_cache.insert(n, r);
|
|
}
|