3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 19:27:06 +00:00
z3/lib/assertion_set.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

431 lines
12 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
assertion_set.cpp
Abstract:
Assertion set.
Author:
Leonardo de Moura (leonardo) 2011-04-20
Revision History:
--*/
#include"assertion_set.h"
#include"cmd_context.h"
#include"ast_ll_pp.h"
#include"ast_smt2_pp.h"
#include"for_each_expr.h"
void assertion_set::copy(assertion_set & target) const {
if (this == &target)
return;
m().copy(m_forms, target.m_forms);
m().copy(m_proofs, target.m_proofs);
target.m_inconsistent = m_inconsistent;
}
void assertion_set::push_back(expr * f, proof * pr) {
if (m().is_true(f))
return;
if (m().is_false(f)) {
m().del(m_forms);
m().del(m_proofs);
m_inconsistent = true;
}
else {
SASSERT(!m_inconsistent);
}
m().push_back(m_forms, f);
if (m().proofs_enabled())
m().push_back(m_proofs, pr);
}
void assertion_set::quick_process(bool save_first, expr * & f) {
if (!m().is_and(f) && !(m().is_not(f) && m().is_or(to_app(f)->get_arg(0)))) {
if (!save_first) {
push_back(f, 0);
}
return;
}
typedef std::pair<expr *, bool> expr_pol;
sbuffer<expr_pol, 64> todo;
todo.push_back(expr_pol(f, true));
while (!todo.empty()) {
if (m_inconsistent)
return;
expr_pol p = todo.back();
expr * curr = p.first;
bool pol = p.second;
todo.pop_back();
if (pol && m().is_and(curr)) {
app * t = to_app(curr);
unsigned i = t->get_num_args();
while (i > 0) {
--i;
todo.push_back(expr_pol(t->get_arg(i), true));
}
}
else if (!pol && m().is_or(curr)) {
app * t = to_app(curr);
unsigned i = t->get_num_args();
while (i > 0) {
--i;
todo.push_back(expr_pol(t->get_arg(i), false));
}
}
else if (m().is_not(curr)) {
todo.push_back(expr_pol(to_app(curr)->get_arg(0), !pol));
}
else {
if (!pol)
curr = m().mk_not(curr);
if (save_first) {
f = curr;
save_first = false;
}
else {
push_back(curr, 0);
}
}
}
}
void assertion_set::process_and(bool save_first, app * f, proof * pr, expr_ref & out_f, proof_ref & out_pr) {
unsigned num = f->get_num_args();
for (unsigned i = 0; i < num; i++) {
if (m_inconsistent)
return;
slow_process(save_first && i == 0, f->get_arg(i), m().mk_and_elim(pr, i), out_f, out_pr);
}
}
void assertion_set::process_not_or(bool save_first, app * f, proof * pr, expr_ref & out_f, proof_ref & out_pr) {
unsigned num = f->get_num_args();
for (unsigned i = 0; i < num; i++) {
if (m_inconsistent)
return;
expr * child = f->get_arg(i);
if (m().is_not(child)) {
expr * not_child = to_app(child)->get_arg(0);
slow_process(save_first && i == 0, not_child, m().mk_not_or_elim(pr, i), out_f, out_pr);
}
else {
expr_ref not_child(m());
not_child = m().mk_not(child);
slow_process(save_first && i == 0, not_child, m().mk_not_or_elim(pr, i), out_f, out_pr);
}
}
}
void assertion_set::slow_process(bool save_first, expr * f, proof * pr, expr_ref & out_f, proof_ref & out_pr) {
if (m().is_and(f))
process_and(save_first, to_app(f), pr, out_f, out_pr);
else if (m().is_not(f) && m().is_or(to_app(f)->get_arg(0)))
process_not_or(save_first, to_app(to_app(f)->get_arg(0)), pr, out_f, out_pr);
else if (save_first) {
out_f = f;
out_pr = pr;
}
else {
push_back(f, pr);
}
}
void assertion_set::slow_process(expr * f, proof * pr) {
expr_ref out_f(m());
proof_ref out_pr(m());
slow_process(false, f, pr, out_f, out_pr);
}
void assertion_set::assert_expr(expr * f, proof * pr) {
SASSERT(m().proofs_enabled() == (pr != 0 && !m().is_undef_proof(pr)));
if (m_inconsistent)
return;
if (m().proofs_enabled())
slow_process(f, pr);
else
quick_process(false, f);
}
void assertion_set::update(unsigned i, expr * f, proof * pr) {
SASSERT(m().proofs_enabled() == (pr != 0 && !m().is_undef_proof(pr)));
if (m_inconsistent)
return;
if (m().proofs_enabled()) {
expr_ref out_f(m());
proof_ref out_pr(m());
slow_process(true, f, pr, out_f, out_pr);
if (!m_inconsistent) {
if (m().is_false(out_f)) {
push_back(out_f, out_pr);
}
else {
m().set(m_forms, i, out_f);
m().set(m_proofs, i, out_pr);
}
}
}
else {
quick_process(true, f);
if (!m_inconsistent) {
if (m().is_false(f))
push_back(f, 0);
else
m().set(m_forms, i, f);
}
}
}
void assertion_set::reset() {
m().del(m_forms);
m().del(m_proofs);
m_inconsistent = false;
}
void assertion_set::display(cmd_context & ctx, std::ostream & out) const {
out << "(assertion-set";
unsigned sz = size();
for (unsigned i = 0; i < sz; i++) {
out << "\n ";
ctx.display(out, form(i), 2);
}
out << ")" << std::endl;
}
void assertion_set::display(cmd_context & ctx) const {
display(ctx, ctx.regular_stream());
}
void assertion_set::display(std::ostream & out) const {
out << "(assertion-set";
unsigned sz = size();
for (unsigned i = 0; i < sz; i++) {
out << "\n ";
out << mk_ismt2_pp(form(i), m(), 2);
}
out << ")" << std::endl;
}
void assertion_set::display_as_and(std::ostream & out) const {
ptr_buffer<expr> args;
unsigned sz = size();
for (unsigned i = 0; i < sz; i++)
args.push_back(form(i));
expr_ref tmp(m());
tmp = m().mk_and(args.size(), args.c_ptr());
out << mk_ismt2_pp(tmp, m()) << "\n";
}
void assertion_set::display_ll(std::ostream & out) const {
unsigned sz = size();
for (unsigned i = 0; i < sz; i++) {
out << mk_ll_pp(form(i), m()) << "\n";
}
}
/**
\brief Assumes that the formula is already in CNF.
*/
void assertion_set::display_dimacs(std::ostream & out) const {
obj_map<expr, unsigned> expr2var;
unsigned num_vars = 0;
unsigned num_cls = size();
for (unsigned i = 0; i < num_cls; i++) {
expr * f = form(i);
unsigned num_lits;
expr * const * lits;
if (m().is_or(f)) {
num_lits = to_app(f)->get_num_args();
lits = to_app(f)->get_args();
}
else {
num_lits = 1;
lits = &f;
}
for (unsigned j = 0; j < num_lits; j++) {
expr * l = lits[j];
if (m().is_not(l))
l = to_app(l)->get_arg(0);
if (expr2var.contains(l))
continue;
num_vars++;
expr2var.insert(l, num_vars);
}
}
out << "p cnf " << num_vars << " " << num_cls << "\n";
for (unsigned i = 0; i < num_cls; i++) {
expr * f = form(i);
unsigned num_lits;
expr * const * lits;
if (m().is_or(f)) {
num_lits = to_app(f)->get_num_args();
lits = to_app(f)->get_args();
}
else {
num_lits = 1;
lits = &f;
}
for (unsigned j = 0; j < num_lits; j++) {
expr * l = lits[j];
if (m().is_not(l)) {
out << "-";
l = to_app(l)->get_arg(0);
}
unsigned id = UINT_MAX;
expr2var.find(l, id);
SASSERT(id != UINT_MAX);
out << id << " ";
}
out << "0\n";
}
}
unsigned assertion_set::num_exprs() const {
expr_fast_mark1 visited;
unsigned sz = size();
unsigned r = 0;
for (unsigned i = 0; i < sz; i++) {
r += get_num_exprs(form(i), visited);
}
return r;
}
/**
\brief Eliminate true formulas.
*/
void assertion_set::elim_true() {
unsigned sz = size();
unsigned j = 0;
for (unsigned i = 0; i < sz; i++) {
expr * f = form(i);
if (m().is_true(f))
continue;
if (i == j) {
j++;
continue;
}
m().set(m_forms, j, f);
if (m().proofs_enabled())
m().set(m_proofs, j, m().get(m_proofs, i));
j++;
}
for (; j < sz; j++) {
m().pop_back(m_forms);
if (m().proofs_enabled())
m().pop_back(m_proofs);
}
}
void assertion_set::elim_redundancies() {
if (inconsistent())
return;
expr_ref_fast_mark1 neg_lits(m());
expr_ref_fast_mark2 pos_lits(m());
unsigned sz = size();
unsigned j = 0;
for (unsigned i = 0; i < sz; i++) {
expr * f = form(i);
if (m().is_true(f))
continue;
if (m().is_not(f)) {
expr * atom = to_app(f)->get_arg(0);
if (neg_lits.is_marked(atom))
continue;
if (pos_lits.is_marked(atom)) {
proof * p = 0;
if (m().proofs_enabled()) {
proof * pr1 = 0;
proof * pr2 = pr(i);
for (unsigned j = 0; j < i; j++) {
if (form(j) == atom) {
pr1 = pr(j);
break;
}
}
SASSERT(pr1);
proof * prs[2] = { pr1, pr2 };
p = m().mk_unit_resolution(2, prs);
}
push_back(m().mk_false(), p);
return;
}
neg_lits.mark(atom);
}
else {
if (pos_lits.is_marked(f))
continue;
if (neg_lits.is_marked(f)) {
proof * p = 0;
if (m().proofs_enabled()) {
proof * pr1 = 0;
proof * pr2 = pr(i);
for (unsigned j = 0; j < i; j++) {
expr * curr = form(j);
expr * atom;
if (m().is_not(curr, atom) && atom == f) {
pr1 = pr(j);
break;
}
}
SASSERT(pr1);
proof * prs[2] = { pr1, pr2 };
p = m().mk_unit_resolution(2, prs);
}
push_back(m().mk_false(), p);
return;
}
pos_lits.mark(f);
}
if (i == j) {
j++;
continue;
}
m().set(m_forms, j, f);
if (m().proofs_enabled())
m().set(m_proofs, j, pr(i));
j++;
}
for (; j < sz; j++) {
m().pop_back(m_forms);
if (m().proofs_enabled())
m().pop_back(m_proofs);
}
}
/**
\brief Assert expressions from ctx into t.
*/
void assert_exprs_from(cmd_context const & ctx, assertion_set & t) {
ptr_vector<expr>::const_iterator it = ctx.begin_assertions();
ptr_vector<expr>::const_iterator end = ctx.end_assertions();
for (; it != end; ++it) {
t.assert_expr(*it);
}
}
/**
\brief Translate the assertion set to a new one that uses a different ast_manager.
*/
assertion_set * assertion_set::translate(ast_translation & translator) const {
ast_manager & m_to = translator.to();
assertion_set * res = alloc(assertion_set, m_to);
unsigned sz = m().size(m_forms);
for (unsigned i = 0; i < sz; i++) {
res->m().push_back(res->m_forms, translator(m().get(m_forms, i)));
if (m_to.proofs_enabled())
res->m().push_back(res->m_proofs, translator(m().get(m_proofs, i)));
}
res->m_inconsistent = m_inconsistent;
return res;
}