3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 19:27:06 +00:00
z3/lib/array_factory.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

207 lines
6.7 KiB
C++

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
array_factory.cpp
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2008-10-28.
Revision History:
--*/
#include"array_factory.h"
#include"array_decl_plugin.h"
#include"proto_model.h"
#include"func_interp.h"
#include"ast_pp.h"
func_decl * mk_aux_decl_for_array_sort(ast_manager & m, sort * s) {
ptr_buffer<sort> domain;
sort * range = get_array_range(s);
unsigned arity = get_array_arity(s);
for (unsigned i = 0; i < arity; i++) {
domain.push_back(get_array_domain(s, i));
}
return m.mk_fresh_func_decl(symbol::null, symbol::null, arity, domain.c_ptr(), range);
}
array_factory::array_factory(ast_manager & m, proto_model & md):
struct_factory(m, m.get_family_id("array"), md) {
}
/**
\brieft Return as-array[f] where f is a fresh function symbol with the right domain and range for the array sort s.
Store in fi the function interpretation for f.
*/
expr * array_factory::mk_array_interp(sort * s, func_interp * & fi) {
func_decl * f = mk_aux_decl_for_array_sort(m_manager, s);
fi = alloc(func_interp, m_manager, get_array_arity(s));
m_model.register_decl(f, fi);
parameter p[1] = { parameter(f) };
expr * val = m_manager.mk_app(get_family_id(), OP_AS_ARRAY, 1, p);
register_value(val);
return val;
}
void array_factory::get_some_args_for(sort * s, ptr_buffer<expr> & args) {
unsigned arity = get_array_arity(s);
for (unsigned i = 0; i < arity; i++) {
sort * d = get_array_domain(s, i);
expr * a = m_model.get_some_value(d);
args.push_back(a);
}
}
expr * array_factory::get_some_value(sort * s) {
TRACE("array_factory", tout << mk_pp(s, m_manager) << "\n";);
value_set * set = 0;
if (m_sort2value_set.find(s, set) && !set->empty())
return *(set->begin());
func_interp * fi;
expr * val = mk_array_interp(s, fi);
ptr_buffer<expr> args;
get_some_args_for(s, args);
fi->insert_entry(args.c_ptr(), m_model.get_some_value(get_array_range(s)));
return val;
}
bool array_factory::mk_two_diff_values_for(sort * s) {
DEBUG_CODE({
value_set * set = 0;
SASSERT(!m_sort2value_set.find(s, set) || set->size() == 0);
});
expr_ref r1(m_manager);
expr_ref r2(m_manager);
sort * range = get_array_range(s);
if (!m_model.get_some_values(range, r1, r2))
return false; // failed... the range is probably unit.
ptr_buffer<expr> args;
get_some_args_for(s, args);
func_interp * fi1;
func_interp * fi2;
mk_array_interp(s, fi1);
mk_array_interp(s, fi2);
fi1->insert_entry(args.c_ptr(), r1);
fi2->insert_entry(args.c_ptr(), r2);
DEBUG_CODE({
value_set * set = 0;
SASSERT(m_sort2value_set.find(s, set) && set->size() == 2);
});
return true;
}
bool array_factory::get_some_values(sort * s, expr_ref & v1, expr_ref & v2) {
value_set * set = 0;
if (!m_sort2value_set.find(s, set) || set->size() == 0) {
if (!mk_two_diff_values_for(s))
return false;
}
m_sort2value_set.find(s, set);
SASSERT(set != 0);
SASSERT(set->size() > 0);
if (set->size() == 1) {
v1 = *(set->begin());
v2 = get_fresh_value(s);
return v2.get() != 0;
}
else {
SASSERT(set->size() >= 2);
value_set::iterator it = set->begin();
v1 = *it;
++it;
v2 = *it;
return true;
}
}
//
// TODO: I have to check if the following procedure is really correct.
// I'm supporting partial arrays where the "else" can be set later by the model_finder or model classes.
// Projection functions may be also used.
//
// If projections are not used, then the following code should work if the "else" of a partial array
// is set with the result of some entry.
//
expr * array_factory::get_fresh_value(sort * s) {
value_set * set = get_value_set(s);
if (set->empty()) {
// easy case
return get_some_value(s);
}
sort * range = get_array_range(s);
expr * range_val = m_model.get_fresh_value(range);
if (range_val != 0) {
// easy case
func_interp * fi;
expr * val = mk_array_interp(s, fi);
ptr_buffer<expr> args;
get_some_args_for(s, args);
fi->insert_entry(args.c_ptr(), range_val);
return val;
}
else {
TRACE("array_factory_bug", tout << "array fresh value: using fresh index, range: " << mk_pp(range, m_manager) << "\n";);
expr_ref v1(m_manager);
expr_ref v2(m_manager);
if (m_model.get_some_values(range, v1, v2)) {
// Claim: A is fresh if A[i1] = v1 and A[i2] = v2 where i1 and i2 are fresh values,
// and v1 and v2 are distinct.
//
// Proof: let assume there is an Array A' such that A' = A.
// Then A[i1] == A'[i1] and A[i2] == A'[i2]. Since, i1 and i2 are fresh,
// A' does not have an entry for i1 or i2, So A'[i1] == A'[i2] == A'.m_else.
// Thus, A[i1] == A[i2] which is a contradiction since v1 != v2 and A[i1] = v1 and A[i2] = v2.
TRACE("array_factory_bug", tout << "v1: " << mk_pp(v1, m_manager) << " v2: " << mk_pp(v2, m_manager) << "\n";);
ptr_buffer<expr> args1;
ptr_buffer<expr> args2;
bool found = false;
unsigned arity = get_array_arity(s);
for (unsigned i = 0; i < arity; i++) {
sort * d = get_array_domain(s, i);
if (!found) {
expr * arg1 = m_model.get_fresh_value(d);
expr * arg2 = m_model.get_fresh_value(d);
if (arg1 != 0 && arg2 != 0) {
found = true;
args1.push_back(arg1);
args2.push_back(arg2);
continue;
}
}
expr * arg = m_model.get_some_value(d);
args1.push_back(arg);
args2.push_back(arg);
}
if (found) {
func_interp * fi;
expr * val = mk_array_interp(s, fi);
fi->insert_entry(args1.c_ptr(), v1);
fi->insert_entry(args2.c_ptr(), v2);
return val;
}
}
}
// TODO: use more expensive procedures to create a fresh array value.
// Example: track the values used in the domain.
// Remark: in the current implementation, this function
// will never fail, since if a type is finite, then
// type_pred will be applied and get_fresh_value will not
// need to be used.
// failed to create a fresh array value
TRACE("array_factory_bug", tout << "failed to build fresh array value\n";);
return 0;
}