3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 03:33:35 +00:00
z3/lib/arith_eq_solver.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

633 lines
17 KiB
C++

/*++
Copyright (c) 2007 Microsoft Corporation
Module Name:
arith_eq_solver.cpp
Abstract:
Solver for linear arithmetic equalities.
Author:
Nikolaj Bjorner (nbjorner) 2012-02-25
--*/
#include"arith_eq_solver.h"
arith_eq_solver::~arith_eq_solver() {
}
arith_eq_solver::arith_eq_solver(ast_manager & m, params_ref const& p):
m(m),
m_params(p),
m_util(m),
m_arith_rewriter(m)
{
m_params.set_bool(":gcd-rounding", true);
// m_params.set_bool(":sum", true);
m_arith_rewriter.updt_params(m_params);
}
/**
\brief Return true if the first monomial of t is negative.
*/
bool arith_eq_solver::is_neg_poly(expr * t) const {
if (m_util.is_add(t)) {
t = to_app(t)->get_arg(0);
}
if (m_util.is_mul(t)) {
t = to_app(t)->get_arg(0);
rational r;
bool is_int;
if (m_util.is_numeral(t, r, is_int))
return r.is_neg();
}
return false;
}
void arith_eq_solver::prop_mod_const(expr * e, unsigned depth, numeral const& k, expr_ref& result) {
SASSERT(m_util.is_int(e));
SASSERT(k.is_int() && k.is_pos());
numeral n;
bool is_int;
if (depth == 0) {
result = e;
}
else if (m_util.is_add(e) || m_util.is_mul(e)) {
expr_ref_vector args(m);
expr_ref tmp(m);
app* a = to_app(e);
for (unsigned i = 0; i < a->get_num_args(); ++i) {
prop_mod_const(a->get_arg(i), depth - 1, k, tmp);
args.push_back(tmp);
}
m_arith_rewriter.mk_app(a->get_decl(), args.size(), args.c_ptr(), result);
}
else if (m_util.is_numeral(e, n, is_int) && is_int) {
result = m_util.mk_numeral(mod(n, k), true);
}
else {
result = e;
}
}
void arith_eq_solver::gcd_normalize(vector<numeral>& values) {
numeral g(0);
for (unsigned i = 0; !g.is_one() && i < values.size(); ++i) {
SASSERT(values[i].is_int());
if (!values[i].is_zero()) {
if (g.is_zero()) {
g = abs(values[i]);
}
else {
g = gcd(abs(values[i]), g);
}
}
}
if (g.is_zero() || g.is_one()) {
return;
}
for (unsigned i = 0; i < values.size(); ++i) {
values[i] = values[i] / g;
SASSERT(values[i].is_int());
}
}
unsigned arith_eq_solver::find_abs_min(vector<numeral>& values) {
SASSERT(values.size() >= 2);
unsigned index = 0;
numeral v(0);
for (unsigned i = 1; i < values.size(); ++i) {
numeral w = abs(values[i]);
if (v.is_zero() || (!w.is_zero() && w < v)) {
index = i;
v = w;
}
}
return index;
}
static void print_row(std::ostream& out, vector<rational> const& row) {
for(unsigned i = 0; i < row.size(); ++i) {
out << row[i] << " ";
}
out << "\n";
}
static void print_rows(std::ostream& out, vector<vector<rational> > const& rows) {
for (unsigned i = 0; i < rows.size(); ++i) {
print_row(out, rows[i]);
}
}
//
// The gcd of the coefficients to variables have to divide the
// coefficient to the constant.
// The constant is the last value in the array.
//
bool arith_eq_solver::gcd_test(vector<numeral>& values) {
SASSERT(values.size() > 0);
numeral g(0);
numeral first_value = values[0];
for (unsigned i = 1; !g.is_one() && i < values.size(); ++i) {
if (!values[i].is_zero()) {
if (g.is_zero()) {
g = abs(values[i]);
}
else {
g = gcd(abs(values[i]), g);
}
}
}
if (g.is_one()) {
return true;
}
if (g.is_zero()) {
return first_value.is_zero();
}
numeral r = first_value/g;
return r.is_int();
}
bool arith_eq_solver::solve_integer_equation(
vector<numeral>& values,
unsigned& index,
bool& is_fresh
)
{
TRACE("arith_eq_solver",
tout << "solving: ";
print_row(tout, values);
);
//
// perform one step of the omega test equality elimination.
//
// Given:
// a1*x1 + a2*x2 + .. + a_n*x_n + a_{n+1} = 0
//
// Assume gcd(a1,..,a_n,a_{n+1}) = 1
// Assume gcd(a1,...,a_n) divides a_{n+1} (eg. gcd(a1,..,an) = 1)
//
// post-condition: values[index] = -1.
//
// Let a_index be index of least absolute value.
//
// If |a_index| = 1, then return row and index.
// Otherwise:
// Let m = |a_index| + 1
// Set
//
// m*x_index'
// =
// ((a1 mod_hat m)*x1 + (a2 mod_hat m)*x2 + .. + (a_n mod_hat m)*x_n + (k mod_hat m))
// =
// (a1'*x1 + a2'*x2 + .. (-)1*x_index + ...)
//
// <=> Normalize signs so that sign to x_index is -1.
// (-)a1'*x1 + (-)a2'*x2 + .. -1*x_index + ... + m*x_index' = 0
//
// Return row, where the coefficient to x_index is implicit.
// Instead used the coefficient 'm' at position 'index'.
//
gcd_normalize(values);
if (!gcd_test(values)) {
TRACE("arith_eq_solver", tout << "not sat\n";
print_row(tout, values););
return false;
}
index = find_abs_min(values);
SASSERT(1 <= index && index < values.size());
numeral a = values[index];
numeral abs_a = abs(a);
if (abs_a.is_zero()) {
// The equation is trivial.
return true;
}
if (a.is_one()) {
for (unsigned i = 0; i < values.size(); ++i) {
values[i].neg();
}
}
is_fresh = !abs_a.is_one();
if (is_fresh) {
numeral m = abs_a + numeral(1);
for (unsigned i = 0; i < values.size(); ++i) {
values[i] = mod_hat(values[i], m);
}
if (values[index].is_one()) {
for (unsigned i = 0; i < values.size(); ++i) {
values[i].neg();
}
}
SASSERT(values[index].is_minus_one());
values[index] = m;
}
TRACE("arith_eq_solver",
tout << "solved at index " << index << ": ";
print_row(tout, values);
);
return true;
}
void arith_eq_solver::substitute(
row& r,
row const& s,
unsigned index
)
{
SASSERT(1 <= index && index < s.size());
TRACE("arith_eq_solver",
tout << "substitute " << index << ":\n";
print_row(tout, r);
print_row(tout, s);
);
if (index >= r.size()) {
return;
}
numeral c = r[index];
if (c.is_zero()) {
// no-op
}
else if (abs(s[index]).is_one()) {
//
// s encodes an equation that contains a variable
// with a unit coefficient.
//
// Let
// c = r[index]
// s = s[index]*x + s'*y = 0
// r = c*x + r'*y = 0
//
// =>
//
// 0
// =
// -sign(s[index])*c*s + r
// =
// -s[index]*sign(s[index])*c*x - sign(s[index])*c*s'*y + c*x + r'*y
// =
// -c*x - sign(s[index])*c*s'*y + c*x + r'*y
// =
// -sign(s[index])*c*s'*y + r'*y
//
numeral sign_s = s[index].is_pos()?numeral(1):numeral(-1);
for (unsigned i = 0; i < r.size(); ++i) {
r[i] -= c*sign_s*s[i];
}
for (unsigned i = r.size(); i < s.size(); ++i) {
r.push_back(-c*sign_s*s[i]);
}
}
else {
//
// s encodes a substitution using an auxiliary variable.
// the auxiliary variable is at position 'index'.
//
// Let
// c = r[index]
// s = s[index]*x + s'*y = 0
// r = c*x + r'*y = 0
//
// s encodes : x |-> s[index]*x' + s'*y
//
// Set:
//
// r := c*s + r'*y
//
r[index] = numeral(0);
for (unsigned i = 0; i < r.size(); ++i) {
r[i] += c*s[i];
}
for (unsigned i = r.size(); i < s.size(); ++i) {
r.push_back(c*s[i]);
}
}
TRACE("arith_eq_solver",
tout << "result: ";
print_row(tout, r);
);
}
bool arith_eq_solver::solve_integer_equations(
vector<row>& rows,
row& unsat_row
)
{
// return solve_integer_equations_units(rows, unsat_row);
return solve_integer_equations_gcd(rows, unsat_row);
}
//
// Naive integer equation solver where only units are eliminated.
//
bool arith_eq_solver::solve_integer_equations_units(
vector<row>& rows,
row& unsat_row
)
{
TRACE("arith_eq_solver", print_rows(tout << "solving:\n", rows););
unsigned_vector todo, done;
for (unsigned i = 0; i < rows.size(); ++i) {
todo.push_back(i);
row& r = rows[i];
gcd_normalize(r);
if (!gcd_test(r)) {
unsat_row = r;
TRACE("arith_eq_solver", print_row(tout << "input is unsat: ", unsat_row); );
return false;
}
}
for (unsigned i = 0; i < todo.size(); ++i) {
row& r = rows[todo[i]];
gcd_normalize(r);
if (!gcd_test(r)) {
unsat_row = r;
TRACE("arith_eq_solver", print_row(tout << "unsat: ", unsat_row); );
return false;
}
unsigned index = find_abs_min(r);
SASSERT(1 <= index && index < r.size());
numeral a = r[index];
numeral abs_a = abs(a);
if (abs_a.is_zero()) {
continue;
}
else if (abs_a.is_one()) {
for (unsigned j = i+1; j < todo.size(); ++j) {
substitute(rows[todo[j]], r, index);
}
for (unsigned j = 0; j < done.size(); ++j) {
row& r2 = rows[done[j]];
if (!r2[index].is_zero()) {
substitute(r2, r, index);
todo.push_back(done[j]);
done.erase(done.begin()+j);
--j;
}
}
}
else {
done.push_back(todo[i]);
}
}
TRACE("arith_eq_solver",
tout << ((done.size()<=1)?"solved ":"incomplete check ") << done.size() << "\n";
for (unsigned i = 0; i < done.size(); ++i) {
print_row(tout, rows[done[i]]);
}
);
return true;
}
//
// Partial solver based on the omega test equalities.
// unsatisfiability is not preserved when eliminating
// auxiliary variables.
//
bool arith_eq_solver::solve_integer_equations_omega(
vector<row> & rows,
row& unsat_row
)
{
unsigned index;
bool is_fresh;
vector<row> rows_solved;
unsigned_vector indices;
unsigned_vector aux_indices;
for (unsigned i = 0; i < rows.size(); ++i) {
rows_solved.push_back(rows[i]);
row& r = rows_solved.back();
for (unsigned j = 0; j + 1 < rows_solved.size(); ++j) {
substitute(r, rows_solved[j], indices[j]);
}
if (!solve_integer_equation(r, index, is_fresh)) {
unsat_row = r;
gcd_normalize(unsat_row);
// invert the substitution for every index that is fresh.
TRACE("arith_eq_solver",
tout << "unsat:\n";
print_row(tout, unsat_row);
for (unsigned l = 0; l + 1< rows_solved.size(); ++l) {
print_row(tout, rows_solved[l]);
});
for (unsigned j = rows_solved.size()-1; j > 0; ) {
--j;
row& solved_row = rows_solved[j];
unsigned index_j = indices[j];
unsigned aux_index_j = aux_indices[j];
SASSERT(index_j <= aux_index_j);
if (unsat_row.size() <= aux_index_j) {
unsat_row.resize(aux_index_j+1);
}
numeral m = solved_row[aux_index_j];
numeral k = unsat_row[aux_index_j];
if (aux_index_j != index_j && !k.is_zero()) {
//
// solved_row: -x_index + m*sigma + r1 = 0
// unsat_row: k*sigma + r2 = 0
//
// <=>
//
// solved_row: -k*x_index + k*m*sigma + k*r1 = 0
// unsat_row: m*k*sigma + m*r2 = 0
//
// =>
//
// m*k*sigma + m*r2 + k*x_index - k*m*sigma - k*r1 = 0
//
for (unsigned l = 0; l < unsat_row.size(); ++l) {
unsat_row[l] *= m;
unsat_row[l] -= k*solved_row[l];
}
for (unsigned l = unsat_row.size(); l < solved_row.size(); ++l) {
unsat_row.push_back(solved_row[l]);
}
gcd_normalize(unsat_row);
TRACE("arith_eq_solver",
tout << "gcd: ";
print_row(tout, solved_row);
print_row(tout, unsat_row);
);
}
if (gcd_test(unsat_row)) {
TRACE("arith_eq_solver", tout << "missed pure explanation\n";);
return true;
}
SASSERT(!gcd_test(unsat_row));
}
return false;
}
else if (r[index].is_zero()) {
// Row is trival
rows_solved.pop_back();
continue;
}
else if (!abs(r[index]).is_one()) {
//
// The solution introduces a fresh auxiliary variable.
// Make space for this variable as a fresh numeral.
//
indices.push_back(index);
aux_indices.push_back(r.size());
r.push_back(r[index]);
r[index] = numeral(-1);
// re-solve the same row.
--i;
}
else {
indices.push_back(index);
aux_indices.push_back(index);
}
}
return true;
}
//
// Eliminate variables by searching for combination of rows where
// the coefficients have gcd = 1.
//
bool arith_eq_solver::solve_integer_equations_gcd(
vector<row> & rows,
row& unsat_row
)
{
unsigned_vector live, useful, gcd_pos;
vector<rational> gcds;
rational u, v;
if (rows.empty()) {
return true;
}
for (unsigned i = 0; i < rows.size(); ++i) {
live.push_back(i);
row& r = rows[i];
gcd_normalize(r);
if (!gcd_test(r)) {
unsat_row = r;
TRACE("arith_eq_solver", print_row(tout << "input is unsat: ", unsat_row); );
return false;
}
}
unsigned max_column = rows[0].size();
bool change = true;
while (change && !live.empty()) {
change = false;
for (unsigned i = 1; i < max_column; ++i) {
rational g(0);
gcds.reset();
gcd_pos.reset();
unsigned j = 0;
for (; j < live.size(); ++j) {
rational const& k = rows[live[j]][i];
if (k.is_zero()) {
continue;
}
if (g.is_zero()) {
g = abs(k);
}
else {
g = gcd(g, abs(k));
}
if (abs(g).is_one()) {
break;
}
gcds.push_back(g);
gcd_pos.push_back(live[j]);
}
if (j == live.size()) {
continue;
}
change = true;
// found gcd, now identify reduced set of rows with GCD = 1.
g = abs(rows[live[j]][i]);
useful.push_back(live[j]);
unsigned live_pos = j;
for (j = gcds.size(); !g.is_one() && j > 0; ) {
SASSERT(g.is_pos());
--j;
if (j == 0 || !gcd(g, gcds[j-1]).is_one()) {
useful.push_back(gcd_pos[j]);
g = gcd(g, gcds[j]);
SASSERT(j == 0 || gcd(g,gcds[j-1]).is_one());
}
}
//
// we now have a set "useful" of rows whose combined GCD = 1.
// pivot the remaining with the first row.
//
row& r0 = rows[useful[0]];
for (j = 1; j < useful.size(); ++j) {
row& r1 = rows[useful[j]];
g = gcd(r0[i], r1[i], u, v);
for (unsigned k = 0; k < max_column; ++k) {
r0[k] = u*r0[k] + v*r1[k];
}
SASSERT(g == r0[i]);
}
SASSERT(abs(r0[i]).is_one());
live.erase(live.begin()+live_pos);
for (j = 0; j < live.size(); ++j) {
row& r = rows[live[j]];
if (!r[i].is_zero()) {
substitute(r, r0, i);
gcd_normalize(r);
if (!gcd_test(r)) {
unsat_row = r;
TRACE("arith_eq_solver", print_row(tout << "unsat: ", unsat_row); );
return false;
}
}
}
}
}
TRACE("arith_eq_solver",
tout << ((live.size()<=1)?"solved ":"incomplete check ") << live.size() << "\n";
for (unsigned i = 0; i < live.size(); ++i) {
print_row(tout, rows[live[i]]);
}
);
return true;
}