mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 12:28:44 +00:00
665 lines
20 KiB
C++
665 lines
20 KiB
C++
/*++
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
<name>
|
|
|
|
Abstract:
|
|
|
|
<abstract>
|
|
|
|
Author:
|
|
Nikolaj Bjorner (nbjorner)
|
|
Lev Nachmanson (levnach)
|
|
|
|
Revision History:
|
|
|
|
|
|
--*/
|
|
#include "math/lp/nex_creator.h"
|
|
#include <map>
|
|
#include <vector>
|
|
|
|
namespace nla {
|
|
|
|
nex * nex_creator::mk_div(const nex* a, lpvar j) {
|
|
SASSERT(is_simplified(a));
|
|
SASSERT((a->is_mul() && a->contains(j)) || (a->is_var() && to_var(a)->var() == j));
|
|
if (a->is_var())
|
|
return mk_scalar(rational(1));
|
|
vector<nex_pow> bv;
|
|
bool seenj = false;
|
|
for (auto& p : to_mul(a)->children()) {
|
|
const nex * c = p.e();
|
|
int pow = p.pow();
|
|
if (!seenj && c->contains(j)) {
|
|
if (!c->is_var()) {
|
|
bv.push_back(nex_pow(mk_div(c, j)));
|
|
if (pow != 1) {
|
|
bv.push_back(nex_pow(clone(c), pow - 1));
|
|
}
|
|
} else {
|
|
SASSERT(to_var(c)->var() == j);
|
|
if (p.pow() != 1) {
|
|
bv.push_back(nex_pow(mk_var(j), pow - 1));
|
|
}
|
|
}
|
|
seenj = true;
|
|
} else {
|
|
bv.push_back(nex_pow(clone(c), pow));
|
|
}
|
|
}
|
|
if (bv.size() > 1) {
|
|
return mk_mul(bv);
|
|
}
|
|
if (bv.size() == 1 && bv.begin()->pow() == 1) {
|
|
return bv.begin()->e();
|
|
}
|
|
if (bv.size() == 0)
|
|
return mk_scalar(rational(1));
|
|
return mk_mul(bv);
|
|
}
|
|
|
|
bool nex_creator::eat_scalar_pow(nex_scalar *& r, nex_pow& p, unsigned pow) {
|
|
if (!p.e()->is_scalar())
|
|
return false;
|
|
nex_scalar *pe = to_scalar(p.e());
|
|
if (r == nullptr) {
|
|
r = pe;
|
|
r->value() = r->value().expt(p.pow()*pow);
|
|
} else {
|
|
r->value() *= pe->value().expt(p.pow()*pow);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void nex_creator::simplify_children_of_mul(vector<nex_pow> & children) {
|
|
nex_scalar* r = nullptr;
|
|
TRACE("nla_cn_details", print_vector(children, tout););
|
|
vector<nex_pow> to_promote;
|
|
int skipped = 0;
|
|
for(unsigned j = 0; j < children.size(); j++) {
|
|
nex_pow& p = children[j];
|
|
if (eat_scalar_pow(r, p, 1)) {
|
|
skipped++;
|
|
continue;
|
|
}
|
|
|
|
p.e() = simplify(p.e());
|
|
if ((p.e())->is_mul()) {
|
|
to_promote.push_back(p);
|
|
} else {
|
|
unsigned offset = to_promote.size() + skipped;
|
|
if (offset) {
|
|
children[j - offset] = p;
|
|
}
|
|
}
|
|
}
|
|
|
|
children.shrink(children.size() - to_promote.size() - skipped);
|
|
|
|
for (nex_pow & p : to_promote) {
|
|
TRACE("nla_cn_details", tout << p << "\n";);
|
|
for (nex_pow& pp : to_mul(p.e())->children()) {
|
|
TRACE("nla_cn_details", tout << pp << "\n";);
|
|
if (!eat_scalar_pow(r, pp, p.pow()))
|
|
children.push_back(nex_pow(pp.e(), pp.pow() * p.pow()));
|
|
}
|
|
}
|
|
|
|
if (r != nullptr) {
|
|
children.push_back(nex_pow(r));
|
|
}
|
|
|
|
mul_to_powers(children);
|
|
|
|
TRACE("nla_cn_details", print_vector(children, tout););
|
|
}
|
|
|
|
bool nex_creator::less_than_on_mul(const nex_mul* a, const nex_mul* b) const {
|
|
// the scalar, if it is there, is at the beginning of the children()
|
|
TRACE("nla_cn_details", tout << "a = " << *a << ", b = " << *b << "\n";);
|
|
SASSERT(is_simplified(a));
|
|
SASSERT(is_simplified(b));
|
|
unsigned a_deg = a->get_degree();
|
|
unsigned b_deg = b->get_degree();
|
|
if (a_deg > b_deg)
|
|
return true;
|
|
if (a_deg < b_deg)
|
|
return false;
|
|
auto it_a = a->children().begin();
|
|
auto it_b = b->children().begin();
|
|
auto a_end = a->children().end();
|
|
auto b_end = b->children().end();
|
|
unsigned a_pow, b_pow;
|
|
bool inside_a_p = false; // inside_a_p is true means we still compare the old position of it_a
|
|
bool inside_b_p = false; // inside_b_p is true means we still compare the old position of it_b
|
|
const nex* ae = nullptr;
|
|
const nex *be = nullptr;
|
|
if (it_a == a_end) {
|
|
return it_b != b_end;
|
|
}
|
|
if (it_b == b_end)
|
|
return false;
|
|
for (; ;) {
|
|
if (!inside_a_p) {
|
|
ae = it_a->e();
|
|
a_pow = it_a->pow();
|
|
}
|
|
if (!inside_b_p) {
|
|
be = it_b->e();
|
|
b_pow = it_b->pow();
|
|
}
|
|
|
|
if (lt(ae, be))
|
|
return true;
|
|
if (lt(be, ae))
|
|
return false;
|
|
if (a_pow == b_pow) {
|
|
inside_a_p = inside_b_p = false;
|
|
it_a++; it_b++;
|
|
if (it_a == a_end) {
|
|
return it_b != b_end;
|
|
} else if (it_b == b_end) {
|
|
return true;
|
|
}
|
|
// no iterator reached the end
|
|
continue;
|
|
}
|
|
if (a_pow < b_pow) {
|
|
it_a++;
|
|
if (it_a == a_end)
|
|
return true;
|
|
inside_a_p = false;
|
|
inside_b_p = true;
|
|
b_pow -= a_pow;
|
|
} else {
|
|
SASSERT(a_pow > b_pow);
|
|
a_pow -= b_pow;
|
|
it_b++;
|
|
if (it_b == b_end)
|
|
return false;
|
|
inside_a_p = true;
|
|
inside_b_p = false;
|
|
}
|
|
}
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
bool nex_creator::less_than_on_var_nex(const nex_var* a, const nex* b) const {
|
|
switch(b->type()) {
|
|
case expr_type::SCALAR: return false;
|
|
case expr_type::VAR:
|
|
return less_than(a->var() , to_var(b)->var());
|
|
case expr_type::MUL:
|
|
{
|
|
if (b->get_degree() > 1)
|
|
return true;
|
|
auto it = to_mul(b)->children().begin();
|
|
const nex_pow & c = *it;
|
|
const nex * f = c.e();
|
|
return less_than_on_var_nex(a, f);
|
|
}
|
|
|
|
case expr_type::SUM:
|
|
{
|
|
nex_sum m;
|
|
m.add_child(const_cast<nex_var*>(a));
|
|
return lt(&m, to_sum(b));
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
bool nex_creator::less_than_on_mul_nex(const nex_mul* a, const nex* b) const {
|
|
switch(b->type()) {
|
|
case expr_type::SCALAR: return false;
|
|
case expr_type::VAR:
|
|
{
|
|
if (a->get_degree() > 1)
|
|
return false;
|
|
auto it = a->children().begin();
|
|
const nex_pow & c = *it;
|
|
const nex * f = c.e();
|
|
return lt(f, a);
|
|
}
|
|
case expr_type::MUL:
|
|
return less_than_on_mul(a, to_mul(b));
|
|
case expr_type::SUM:
|
|
{
|
|
const nex* fc = *(to_sum(b)->children().begin());
|
|
return lt(a, fc);
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool nex_creator::lt(const nex* a, const nex* b) const {
|
|
bool ret;
|
|
switch (a->type()) {
|
|
case expr_type::VAR:
|
|
ret = less_than_on_var_nex(to_var(a), b);
|
|
break;
|
|
case expr_type::SCALAR: {
|
|
if (b->is_scalar())
|
|
ret = to_scalar(a)->value() < to_scalar(b)->value();
|
|
else
|
|
ret = true; // the scalars are the smallest
|
|
break;
|
|
}
|
|
case expr_type::MUL: {
|
|
ret = less_than_on_mul_nex(to_mul(a), b);
|
|
break;
|
|
}
|
|
case expr_type::SUM: {
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
|
|
TRACE("nla_cn_details_", tout << *a << (ret?" < ":" >= ") << *b << "\n";);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
bool nex_creator::is_sorted(const nex_mul* e) const {
|
|
for (unsigned j = 0; j < e->children().size() - 1; j++) {
|
|
if (!(less_than_on_nex_pow(e->children()[j], e->children()[j+1])))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
|
|
bool nex_creator::mul_is_simplified(const nex_mul* e) const {
|
|
if (e->size() == 1 && e->children().begin()->pow() == 1)
|
|
return false;
|
|
std::set<const nex*, nex_lt> s([this](const nex* a, const nex* b) {return lt(a, b); });
|
|
for (const auto &p : e->children()) {
|
|
const nex* ee = p.e();
|
|
if (p.pow() == 0)
|
|
return false;
|
|
if (ee->is_mul())
|
|
return false;
|
|
if (ee->is_scalar() && to_scalar(ee)->value().is_one())
|
|
return false;
|
|
|
|
auto it = s.find(ee);
|
|
if (it == s.end()) {
|
|
s.insert(ee);
|
|
} else {
|
|
TRACE("nla_cn_details", tout << "not simplified " << *ee << "\n";);
|
|
return false;
|
|
}
|
|
}
|
|
return is_sorted(e);
|
|
}
|
|
|
|
nex * nex_creator::simplify_mul(nex_mul *e) {
|
|
TRACE("nla_cn_details", tout << *e << "\n";);
|
|
simplify_children_of_mul(e->children());
|
|
if (e->size() == 1 && e->children()[0].pow() == 1)
|
|
return e->children()[0].e();
|
|
TRACE("nla_cn_details", tout << *e << "\n";);
|
|
SASSERT(is_simplified(e));
|
|
return e;
|
|
}
|
|
|
|
nex* nex_creator::simplify_sum(nex_sum *e) {
|
|
TRACE("nla_cn_details", tout << "was e = " << *e << "\n";);
|
|
simplify_children_of_sum(e->children());
|
|
nex *r = e->size() == 1? e->children()[0]: e;
|
|
TRACE("nla_cn_details", tout << "became r = " << *r << "\n";);
|
|
return r;
|
|
}
|
|
|
|
bool nex_creator::sum_is_simplified(const nex_sum* e) const {
|
|
TRACE("nla_cn_details", tout << ++ lp::lp_settings::ddd << std::endl;);
|
|
|
|
if (e->size() < 2) return false;
|
|
for (nex * ee : e->children()) {
|
|
if (ee->is_sum())
|
|
return false;
|
|
if (ee->is_scalar() && to_scalar(ee)->value().is_zero())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void nex_creator::mul_to_powers(vector<nex_pow>& children) {
|
|
std::map<nex*, int, nex_lt> m([this](const nex* a, const nex* b) {return lt(a, b); });
|
|
|
|
for (auto & p : children) {
|
|
auto it = m.find(p.e());
|
|
if (it == m.end()) {
|
|
m[p.e()] = p.pow();
|
|
} else {
|
|
it->second+= p.pow();
|
|
}
|
|
}
|
|
children.clear();
|
|
for (auto & p : m) {
|
|
children.push_back(nex_pow(p.first, p.second));
|
|
}
|
|
|
|
std::sort(children.begin(), children.end(), [this](const nex_pow& a, const nex_pow& b) {
|
|
return less_than_on_nex_pow(a, b);
|
|
});
|
|
}
|
|
|
|
nex* nex_creator::create_child_from_nex_and_coeff(nex *e,
|
|
const rational& coeff) {
|
|
TRACE("nla_cn_details", tout << *e << ", coeff = " << coeff << "\n";);
|
|
if (coeff.is_one())
|
|
return e;
|
|
SASSERT(is_simplified(e));
|
|
switch (e->type()) {
|
|
case expr_type::VAR: {
|
|
if (coeff.is_one())
|
|
return e;
|
|
return mk_mul(mk_scalar(coeff), e);
|
|
}
|
|
case expr_type::SCALAR: {
|
|
return mk_scalar(coeff);
|
|
}
|
|
case expr_type::MUL: {
|
|
nex_mul * em = to_mul(e);
|
|
nex_pow *np = em->children().begin();
|
|
if (np->e()->is_scalar()) {
|
|
SASSERT(np->pow() == 1);
|
|
to_scalar(np->e())->value() = coeff;
|
|
return e;
|
|
}
|
|
em->add_child(mk_scalar(coeff));
|
|
std::sort(em->children().begin(), em->children().end(), [this](const nex_pow& a,
|
|
const nex_pow& b) {return less_than_on_nex_pow(a, b);});
|
|
return em;
|
|
}
|
|
case expr_type::SUM: {
|
|
return mk_mul(mk_scalar(coeff), e);
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
return nullptr;
|
|
}
|
|
|
|
}
|
|
// returns true if the key exists already
|
|
bool nex_creator::register_in_join_map(std::map<nex*, rational, nex_lt>& map, nex* e, const rational& r) const{
|
|
TRACE("nla_cn_details", tout << *e << ", r = " << r << std::endl;);
|
|
auto map_it = map.find(e);
|
|
if (map_it == map.end()) {
|
|
map[e] = r;
|
|
return false;
|
|
} else {
|
|
map_it->second += r;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// returns true if a simplificatian happens
|
|
bool nex_creator::process_mul_in_simplify_sum(nex_mul* em, std::map<nex*, rational, nex_lt> &map) {
|
|
bool found = false;
|
|
auto it = em->children().begin();
|
|
if (it->e()->is_scalar()) {
|
|
SASSERT(it->pow() == 1);
|
|
rational r = to_scalar(it->e())->value();
|
|
auto end = em->children().end();
|
|
if (em->children().size() == 2 && em->children()[1].pow() == 1) {
|
|
found = register_in_join_map(map, em->children()[1].e(), r);
|
|
} else {
|
|
nex_mul * m = new nex_mul();
|
|
for (it++; it != end; it++) {
|
|
m->add_child_in_power(it->e(), it->pow());
|
|
}
|
|
found = register_in_join_map(map, m, r);
|
|
}
|
|
} else {
|
|
found = register_in_join_map(map, em, rational(1));
|
|
}
|
|
return found;
|
|
}
|
|
|
|
bool nex_creator::fill_join_map_for_sum(ptr_vector<nex> & children,
|
|
std::map<nex*, rational, nex_lt>& map,
|
|
std::unordered_set<nex*>& existing_nex,
|
|
nex_scalar*& common_scalar) {
|
|
|
|
common_scalar = nullptr;
|
|
bool simplified = false;
|
|
for (auto e : children) {
|
|
if (e->is_scalar()) {
|
|
nex_scalar * es = to_scalar(e);
|
|
if (common_scalar == nullptr) {
|
|
common_scalar = es;
|
|
} else {
|
|
simplified = true;
|
|
common_scalar->value() += es->value();
|
|
}
|
|
continue;
|
|
}
|
|
existing_nex.insert(e);
|
|
if (e->is_mul()) {
|
|
simplified |= process_mul_in_simplify_sum(to_mul(e), map);
|
|
} else {
|
|
SASSERT(e->is_var());
|
|
simplified |= register_in_join_map(map, e, rational(1));
|
|
}
|
|
}
|
|
return simplified;
|
|
}
|
|
// a + 3bc + 2bc => a + 5bc
|
|
void nex_creator::sort_join_sum(ptr_vector<nex> & children) {
|
|
TRACE("nla_cn_details", print_vector_of_ptrs(children, tout););
|
|
std::map<nex*, rational, nex_lt> map([this](const nex *a , const nex *b)
|
|
{ return lt(a, b); });
|
|
std::unordered_set<nex*> existing_nex; // handling (nex*) as numbers
|
|
nex_scalar * common_scalar;
|
|
bool simplified = fill_join_map_for_sum(children, map, existing_nex, common_scalar);
|
|
if (!simplified)
|
|
return;
|
|
|
|
TRACE("nla_cn_details", for (auto & p : map ) { tout << "(" << *p.first << ", " << p.second << ") ";});
|
|
children.clear();
|
|
if (common_scalar) {
|
|
children.push_back(common_scalar);
|
|
}
|
|
for (auto& p : map) {
|
|
process_map_pair(p.first, p.second, children, existing_nex);
|
|
}
|
|
}
|
|
|
|
bool is_zero_scalar(nex *e) {
|
|
return e->is_scalar() && to_scalar(e)->value().is_zero();
|
|
}
|
|
|
|
void nex_creator::simplify_children_of_sum(ptr_vector<nex> & children) {
|
|
TRACE("nla_cn_details", print_vector_of_ptrs(children, tout););
|
|
ptr_vector<nex> to_promote;
|
|
int skipped = 0;
|
|
for(unsigned j = 0; j < children.size(); j++) {
|
|
nex* e = children[j] = simplify(children[j]);
|
|
if (e->is_sum()) {
|
|
to_promote.push_back(e);
|
|
} else if (is_zero_scalar(e)) {
|
|
skipped ++;
|
|
continue;
|
|
} else {
|
|
unsigned offset = to_promote.size() + skipped;
|
|
if (offset) {
|
|
children[j - offset] = e;
|
|
}
|
|
}
|
|
}
|
|
|
|
TRACE("nla_cn_details", print_vector_of_ptrs(children, tout););
|
|
children.shrink(children.size() - to_promote.size() - skipped);
|
|
|
|
for (nex *e : to_promote) {
|
|
for (nex *ee : *(to_sum(e)->children_ptr())) {
|
|
if (!is_zero_scalar(ee))
|
|
children.push_back(ee);
|
|
}
|
|
}
|
|
|
|
sort_join_sum(children);
|
|
}
|
|
|
|
bool all_factors_are_elementary(const nex_mul* a) {
|
|
for (auto & p : a->children())
|
|
if (!p.e()->is_elementary())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool have_no_scalars(const nex_mul* a) {
|
|
for (auto & p : a->children())
|
|
if (p.e()->is_scalar() && !to_scalar(p.e())->value().is_one())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
nex * nex_creator::mk_div_by_mul(const nex* a, const nex_mul* b) {
|
|
|
|
// todo: break on shorter funcitons
|
|
if (a->is_sum()) {
|
|
nex_sum * r = mk_sum();
|
|
const nex_sum * m = to_sum(a);
|
|
for (auto e : m->children()) {
|
|
r->add_child(mk_div_by_mul(e, b));
|
|
}
|
|
TRACE("nla_cn_details", tout << *r << "\n";);
|
|
return r;
|
|
}
|
|
if (a->is_var() || (a->is_mul() && to_mul(a)->children().size() == 1)) {
|
|
return mk_scalar(rational(1));
|
|
}
|
|
const nex_mul* am = to_mul(a);
|
|
SASSERT(all_factors_are_elementary(am) && all_factors_are_elementary(b) && have_no_scalars(b));
|
|
b->get_powers_from_mul(m_powers);
|
|
nex_mul* ret = new nex_mul();
|
|
for (auto& p : am->children()) {
|
|
TRACE("nla_cn_details", tout << "p = " << p << "\n";);
|
|
const nex* e = p.e();
|
|
if (!e->is_var()) {
|
|
SASSERT(e->is_scalar());
|
|
ret->add_child_in_power(clone(e), p.pow());
|
|
TRACE("nla_cn_details", tout << "processed scalar\n";);
|
|
continue;
|
|
}
|
|
SASSERT(e->is_var());
|
|
lpvar j = to_var(e)->var();
|
|
auto it = m_powers.find(j);
|
|
if (it == m_powers.end()) {
|
|
ret->add_child_in_power(clone(e), p.pow());
|
|
} else {
|
|
unsigned pw = p.pow();
|
|
SASSERT(pw);
|
|
while (pw--) {
|
|
SASSERT(it->second);
|
|
it->second --;
|
|
if (it->second == 0) {
|
|
m_powers.erase(it);
|
|
break;
|
|
}
|
|
}
|
|
if (pw) {
|
|
ret->add_child_in_power(clone(e), pw);
|
|
}
|
|
}
|
|
TRACE("nla_cn_details", tout << *ret << "\n";);
|
|
}
|
|
SASSERT(m_powers.size() == 0);
|
|
if (ret->children().size() == 0) {
|
|
delete ret;
|
|
TRACE("nla_cn_details", tout << "return 1\n";);
|
|
return mk_scalar(rational(1));
|
|
}
|
|
add_to_allocated(ret);
|
|
TRACE("nla_cn_details", tout << *ret << "\n";);
|
|
return ret;
|
|
}
|
|
|
|
nex * nex_creator::mk_div(const nex* a, const nex* b) {
|
|
TRACE("nla_cn_details", tout << *a <<" / " << *b << "\n";);
|
|
if (b->is_var()) {
|
|
return mk_div(a, to_var(b)->var());
|
|
}
|
|
return mk_div_by_mul(a, to_mul(b));
|
|
}
|
|
|
|
nex* nex_creator::simplify(nex* e) {
|
|
nex* es;
|
|
TRACE("nla_cn_details", tout << *e << std::endl;);
|
|
if (e->is_mul())
|
|
es = simplify_mul(to_mul(e));
|
|
else if (e->is_sum())
|
|
es = simplify_sum(to_sum(e));
|
|
else
|
|
es = e;
|
|
TRACE("nla_cn_details", tout << "simplified = " << *es << std::endl;);
|
|
SASSERT(is_simplified(es));
|
|
return es;
|
|
}
|
|
|
|
void nex_creator::process_map_pair(nex *e, const rational& coeff, ptr_vector<nex> & children, std::unordered_set<nex*>& existing_nex) {
|
|
// todo : break on shorter functions
|
|
if (coeff.is_zero())
|
|
return;
|
|
bool e_is_old = existing_nex.find(e) != existing_nex.end();
|
|
if (e_is_old) {
|
|
if (coeff.is_one()) {
|
|
children.push_back(e);
|
|
} else {
|
|
if (e->is_var()) {
|
|
children.push_back(mk_mul(mk_scalar(coeff), e));
|
|
} else {
|
|
SASSERT(e->is_mul());
|
|
nex* first = to_mul(e)->children()[0].e();
|
|
if (first->is_scalar()) {
|
|
to_scalar(first)->value() = coeff;
|
|
children.push_back(e);
|
|
} else {
|
|
e = simplify(mk_mul(mk_scalar(coeff), e));
|
|
children.push_back(e);
|
|
}
|
|
}
|
|
}
|
|
} else { // e is new
|
|
if (coeff.is_one()) {
|
|
m_allocated.push_back(e);
|
|
children.push_back(e);
|
|
} else {
|
|
children.push_back(simplify(mk_mul(mk_scalar(coeff), e)));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool nex_creator::is_simplified(const nex *e) const
|
|
{
|
|
if (e->is_mul())
|
|
return mul_is_simplified(to_mul(e));
|
|
if (e->is_sum())
|
|
return sum_is_simplified(to_sum(e));
|
|
return true;
|
|
}
|
|
}
|