3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-01 21:05:52 +00:00
z3/src/tactic/arith/lia2card_tactic.cpp
Nikolaj Bjorner af55088b78 debugging opt
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2014-03-17 10:34:32 -07:00

299 lines
9.4 KiB
C++

/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
lia2card_tactic.cpp
Abstract:
Convert 0-1 integer variables cardinality constraints to built-in cardinality operator.
Author:
Nikolaj Bjorner (nbjorner) 2013-11-5
Notes:
--*/
#include"tactical.h"
#include"cooperate.h"
#include"bound_manager.h"
#include"ast_pp.h"
#include"expr_safe_replace.h" // NB: should use proof-producing expr_substitute in polished version.
#include"pb_decl_plugin.h"
#include"arith_decl_plugin.h"
class lia2card_tactic : public tactic {
public:
typedef obj_hashtable<expr> expr_set;
ast_manager & m;
arith_util a;
params_ref m_params;
pb_util m_pb;
mutable ptr_vector<expr> m_todo;
expr_set m_01s;
bool m_compile_equality;
lia2card_tactic(ast_manager & _m, params_ref const & p):
m(_m),
a(m),
m_pb(m),
m_compile_equality(false) {
}
virtual ~lia2card_tactic() {
}
void set_cancel(bool f) {
}
void updt_params(params_ref const & p) {
m_params = p;
m_compile_equality = p.get_bool("compile_equality", false);
}
virtual void operator()(goal_ref const & g,
goal_ref_buffer & result,
model_converter_ref & mc,
proof_converter_ref & pc,
expr_dependency_ref & core) {
SASSERT(g->is_well_sorted());
mc = 0; pc = 0; core = 0;
m_01s.reset();
tactic_report report("cardinality-intro", *g);
bound_manager bounds(m);
bounds(*g);
bound_manager::iterator bit = bounds.begin(), bend = bounds.end();
for (; bit != bend; ++bit) {
expr* x = *bit;
bool s1, s2;
rational lo, hi;
if (a.is_int(x) &&
bounds.has_lower(x, lo, s1) && !s1 && lo.is_zero() &&
bounds.has_upper(x, hi, s2) && !s2 && hi.is_one()) {
m_01s.insert(x);
TRACE("pb", tout << "add bound " << mk_pp(x, m) << "\n";);
}
}
expr_safe_replace sub(m);
extract_pb_substitution(g, sub);
expr_ref new_curr(m);
proof_ref new_pr(m);
for (unsigned i = 0; i < g->size(); i++) {
expr * curr = g->form(i);
sub(curr, new_curr);
g->update(i, new_curr, new_pr, g->dep(i));
}
g->inc_depth();
result.push_back(g.get());
TRACE("pb", g->display(tout););
SASSERT(g->is_well_sorted());
// TBD: convert models for 0-1 variables.
// TBD: support proof conversion (or not..)
}
void extract_pb_substitution(goal_ref const& g, expr_safe_replace& sub) {
ast_mark mark;
for (unsigned i = 0; i < g->size(); i++) {
extract_pb_substitution(mark, g->form(i), sub);
}
}
void extract_pb_substitution(ast_mark& mark, expr* fml, expr_safe_replace& sub) {
expr_ref tmp(m);
m_todo.reset();
m_todo.push_back(fml);
while (!m_todo.empty()) {
expr* e = m_todo.back();
m_todo.pop_back();
if (mark.is_marked(e) || !is_app(e)) {
continue;
}
mark.mark(e, true);
if (get_pb_relation(sub, e, tmp)) {
sub.insert(e, tmp);
continue;
}
app* ap = to_app(e);
m_todo.append(ap->get_num_args(), ap->get_args());
}
}
bool is_01var(expr* x) const {
return m_01s.contains(x);
}
expr_ref mk_01(expr* x) {
expr* r = m.mk_eq(x, a.mk_numeral(rational(1), m.get_sort(x)));
return expr_ref(r, m);
}
bool get_pb_relation(expr_safe_replace& sub, expr* fml, expr_ref& result) {
expr* x, *y;
expr_ref_vector args(m);
vector<rational> coeffs;
rational coeff;
if ((a.is_le(fml, x, y) || a.is_ge(fml, y, x)) &&
get_pb_sum(x, rational::one(), args, coeffs, coeff) &&
get_pb_sum(y, -rational::one(), args, coeffs, coeff)) {
result = mk_le(coeffs.size(), coeffs.c_ptr(), args.c_ptr(), -coeff);
return true;
}
else if ((a.is_lt(fml, y, x) || a.is_gt(fml, x, y)) &&
get_pb_sum(x, rational::one(), args, coeffs, coeff) &&
get_pb_sum(y, -rational::one(), args, coeffs, coeff)) {
result = m.mk_not(mk_le(coeffs.size(), coeffs.c_ptr(), args.c_ptr(), -coeff));
return true;
}
else if (m.is_eq(fml, x, y) &&
get_pb_sum(x, rational::one(), args, coeffs, coeff) &&
get_pb_sum(y, -rational::one(), args, coeffs, coeff)) {
result = mk_eq(coeffs.size(), coeffs.c_ptr(), args.c_ptr(), -coeff);
return true;
}
return false;
}
expr* mk_le(unsigned sz, rational const* weights, expr* const* args, rational const& w) {
if (sz == 0) {
return w.is_neg()?m.mk_false():m.mk_true();
}
if (sz == 1 && weights[0].is_one() && w >= rational::one()) {
return m.mk_true();
}
if (sz == 1 && weights[0].is_one() && w.is_zero()) {
return m.mk_not(args[0]);
}
return m_pb.mk_le(sz, weights, args, w);
}
expr* mk_eq(unsigned sz, rational const* weights, expr* const* args, rational const& w) {
if (m_compile_equality) {
return m_pb.mk_eq(sz, weights, args, w);
}
else {
return m.mk_and(mk_ge(sz, weights, args, w), mk_le(sz, weights, args, w));
}
}
expr* mk_ge(unsigned sz, rational const* weights, expr* const* args, rational const& w) {
if (sz == 0) {
return w.is_pos()?m.mk_false():m.mk_true();
}
if (sz == 1 && weights[0].is_one() && w.is_one()) {
return args[0];
}
if (sz == 1 && weights[0].is_one() && w.is_zero()) {
return m.mk_not(args[0]);
}
return m_pb.mk_ge(sz, weights, args, w);
}
bool get_pb_sum(expr* x, rational const& mul, expr_ref_vector& args, vector<rational>& coeffs, rational& coeff) {
expr *y, *z, *u;
rational r, q;
app* f = to_app(x);
bool ok = true;
if (a.is_add(x)) {
for (unsigned i = 0; ok && i < f->get_num_args(); ++i) {
ok = get_pb_sum(f->get_arg(i), mul, args, coeffs, coeff);
}
}
else if (a.is_sub(x, y, z)) {
ok = get_pb_sum(y, mul, args, coeffs, coeff);
ok = ok && get_pb_sum(z, -mul, args, coeffs, coeff);
}
else if (a.is_uminus(x, y)) {
ok = get_pb_sum(y, -mul, args, coeffs, coeff);
}
else if (a.is_mul(x, y, z) && is_numeral(y, r)) {
ok = get_pb_sum(z, r*mul, args, coeffs, coeff);
}
else if (a.is_mul(x, z, y) && is_numeral(y, r)) {
ok = get_pb_sum(z, r*mul, args, coeffs, coeff);
}
else if (a.is_to_real(x, y)) {
ok = get_pb_sum(y, mul, args, coeffs, coeff);
}
else if (m.is_ite(x, y, z, u) && is_numeral(z, r) && is_numeral(u, q)) {
insert_arg(r*mul, y, args, coeffs, coeff);
// q*(1-y) = -q*y + q
coeff += q*mul;
insert_arg(-q*mul, y, args, coeffs, coeff);
}
else if (is_01var(x)) {
insert_arg(mul, mk_01(x), args, coeffs, coeff);
}
else if (is_numeral(x, r)) {
coeff += mul*r;
}
else {
TRACE("pb", tout << "Can't handle " << mk_pp(x, m) << "\n";);
ok = false;
}
return ok;
}
bool is_numeral(expr* e, rational& r) {
if (a.is_uminus(e, e) && is_numeral(e, r)) {
r.neg();
return true;
}
if (a.is_to_real(e, e)) {
return is_numeral(e, r);
}
return a.is_numeral(e, r);
}
void insert_arg(rational const& p, expr* x,
expr_ref_vector& args, vector<rational>& coeffs, rational& coeff) {
if (p.is_neg()) {
// p*x = -p*(1-x) + p
args.push_back(m.mk_not(x));
coeffs.push_back(-p);
coeff += p;
}
else if (p.is_pos()) {
args.push_back(x);
coeffs.push_back(p);
}
}
virtual tactic * translate(ast_manager & m) {
return alloc(lia2card_tactic, m, m_params);
}
virtual void collect_param_descrs(param_descrs & r) {
r.insert("compile_equality", CPK_BOOL,
"(default:false) compile equalities into pseudo-Boolean equality");
}
virtual void cleanup() {
#pragma omp critical (tactic_cancel)
{
m_01s.reset();
m_todo.reset();
}
}
};
tactic * mk_lia2card_tactic(ast_manager & m, params_ref const & p) {
return clean(alloc(lia2card_tactic, m, p));
}
bool get_pb_sum(expr* term, expr_ref_vector& args, vector<rational>& coeffs, rational& coeff) {
params_ref p;
ast_manager& m = args.get_manager();
lia2card_tactic tac(m, p);
return tac.get_pb_sum(term, rational::one(), args, coeffs, coeff);
}